
	
	

	
	
	

	
Weapon	Effects	Creation	Pipeline		
Using	Houdini	and	Unreal	Engine		

	
	

	
MSc	Computer	Animation	and	Visual	Effects	

	
Sarah	Shahzad	

	
August	2018	

	 	

	 2	

	

Abstract	
	
Weapon	effects	are	an	important	element	in	any	game	that	uses	weapons.	
Creating	these	effects	has	both	an	artistic	and	technical	element	to	them.	To	
create	the	desired	effect,	technical	difficulties	can	hinder	the	artist	to	create	
to	their	full	potential.	 In	our	paper	we	propose	a	pipeline	to	create	sword	
effects	using	Houdini’s	capabilities	and	integrating	them	into	Unreal	Engine	
4.	We	will	make	use	of	the	new	“Game	Development	Toolset”	in	Houdini	to	
create	and	export	 the	assets,	using	 the	“Houdini	Engine	Plugin”	 to	 import	
them	 in	UE4.	Furthermore,	we	will	use	 the	 shader	and	particle	 system	 in	
Unreal	Engine	4	to	create	and	attach	the	effects	to	pre-existing	animations.	
	 	

	 3	

Table	of	Contents	
	
Abstract	..	2	
1	 Introduction	..	5	
2	 Previous	Work	..	5	
3	 Technical	Background	...	6	
3.1	 Houdini	...	6	
3.2	 Unreal	Engine	...	7	
3.2.1	 Blueprints	..	7	
3.2.2	 Material	Editor	..	8	
3.2.3	 Cascade	...	8	
3.2.4	 Sequencer	..	9	
3.2.5	 Animation	Editor	...	9	
3.2.6	 Setting	up	Character	...	9	

4	 Proposed	Method	..	11	
4.1	 Using	Houdini	Digital	Asset	(HDA)	..	11	
4.1.1	 Creating	and	Exporting	the	HDA	from	Houdini	into	UE4	..	12	
4.1.2	 Creating	the	Trail	Mesh	Asset	...	13	
4.1.3	 Spawning	and	Animating	the	Trail	Effect	(Method	1:	Animating	in	BP)	15	
4.1.4	Spawning	and	Animating	the	Trail	Effect	(Method	2:	Animating	with	Sequencer)	18	
4.1.5	 Analysis	...	21	

4.2	 Using	Houdini	Vertex	Animation	(VA)	..	22	
4.2.1	 Creating	and	Exporting	the	VA	from	Houdini	into	UE4	for	a	Looping	Effect	22	
4.2.2	 Using	the	VA	as	a	Constant/Looping	Effect	...	23	
4.2.3	 Creating	and	Exporting	the	VA	from	Houdini	into	UE4	for	a	Timed	Effect	25	
4.2.4	 Using	the	VA	as	a	Timed	Effect	...	25	
4.2.5	 Analysis	...	28	

4.3	 Using	Houdini	Vector	Field	(VF)	...	28	
4.3.1	 Creating	and	Exporting	the	VF	from	Houdini	into	UE4	..	28	
4.3.2	 Setting	up	the	VF	using	Cascade	in	UE4	..	29	
4.3.3	 Analysis	...	30	

4.4	 Explaining	Material	Networks	in	UE4	...	31	
Red/Purple	Trail	Material	..	31	
GPU	Spark	Material	..	32	
Ice	Trail	Material	...	32	
Sword	Material	to	Add	Bloom	Effect	..	33	
Ice	VA	/	Electricity	VA	/	Swirl	VA	Material	...	34	

5	 Conclusion	..	34	
References	...	36	
Bibliography	...	38	
Abbreviations	...	39	
	
	 	

	 4	

Table	of	Figures	
	
	
Figure	1:	Cascade-	UE4	Particle	Emitter	Editor	...	8	
Figure	2:	Character	Animation	BP.	...	10	
Figure	3:	Creating	Animation	in	UE4	Animation	Editor	10	
Figure	4:	Level	BP	for	Attack	Inputs	..	11	
Figure	5:	Curve	Sweeper	Network	in	Houdini	...	12	
Figure	6:	HDA	Curve	Input	...	13	
Figure	7:	Create	HDA	Curve	...	14	
Figure	8:	Animate	Trail	Material	Parameters	in	Sequencer	15	
Figure	9:	Script	in	Character	BP	to	Spawn	Trail	Mesh	...	16	
Figure	10:	Script	in	Trail	BP	to	Animate	Trail	Material	17	
Figure	11:	Copy	Sequencer	Keys	to	Timeline	Curve	...	18	
Figure	12:	Copy	Sequencer	Keys	to	Trail	BP	Tracks	...	19	
Figure	13:	Spawn	Trail	Effect	Using	Sequencer	in	Character	BP	20	
Figure	14:	Completed	Trail	Effects.	..	20	
Figure	15:	Swirls	Vector	Animation	Network	in	Houdini	22	
Figure	16:	Vertex	Animation	Node	Parameters	..	23	
Figure	17:	Looping	Vertex	Animation	Script	in	Sword	BP	24	
Figure	18:	Ice	Attack	Network	in	Houdini	...	25	
Figure	19:	Set	Dynamic	Material	in	the	Particle	Emitter	26	
Figure	20:	Spawn	VA	emitter	at	Notify	in	Sword	Anim	BP	27	
Figure	21:	Add	Offset	in	Material.	...	27	
Figure	22:	Vector	Field	Network	in	Houdini	..	29	
Figure	23:	Snapshot	of	Vector	Field	Sparks	Effect	...	30	
Figure	24:	Modifications	for	VF	Sprite	Effect	Using	Multiple	Sockets.	31	
Figure	25:	Red/Purple	Trail	Material	..	31	
Figure	26:	GPU	Spark	Material	...	32	
Figure	27:	Ice	Trail	Material	..	32	
Figure	28:	Sword	Material	for	Bloom	Effect	...	33	
Figure	29:	Creating	Animation	Curves	for	Bloom	Effect	34	
Figure	30:	Final	Bloom	Effect	..	34	

	
	 	

	 5	

1	 Introduction	
	
In	the	world	of	computer	games	these	days,	it	is	undeniable	that	weapons	
are	a	big	part	of	them.	Whether	these	are	role	playing	games	(RPG),	first	
person	shooters	(FPS),	Massively	Multiplayer	Online	(MMO),	or	Real	Time	
Strategy	games	(RTS),	most,	if	not	all,	have	different	weapons	that	are	a	
significant	part	of	the	gameplay	or	even	the	storyline.	These	weapons	can	
include	swords,	bow	and	arrows,	spears,	axes,	guns,	gauntlets,	magic	spells	
or	staff	etc.	The	types	are	endless.	However	the	undeniable	choice	of	
weapon	in	games	of	a	fantasy	setting	is	swords,	which	is	what	will	be	the	
focus	of	our	effects	creation	pipeline.	
	
Various	effects	are	applied	to	swords	in	games	not	just	for	visual	appeal,	
but	also	because	it	enhances	gameplay.	The	effects	of	a	weapon	can	depict	
how	strong	a	weapon	is,	how	fast	it	is,	what	is	its	range,	or	even	what	
element	or	type	it	is.	It	visually	assists	the	player	to	immerse	themselves	
even	further	in	the	game.	One	key	feature	of	a	sword	effect	is	the	trail	it	
leaves	behind	after	it	swings.	This	is	something	we	will	look	at	creating	in	
our	project.	Some	games	famous	for	their	weapons	and	effects	are	“Devil	
May	Cry”	with	“Rebellion”,	“God	of	War”,	many	of	the	Final	Fantasy	games	
especially	“FFVII”	with	the	“Buster	sword”	to	name	a	few.	
	
There	are	many	industry	leading	software	that	are	used	in	creating	weapon	
effects,	where	the	choice	of	using	one	over	the	other	is	based	on	the	specific	
project	or	workflow.	These	weapon	effects	can	be	created	directly	in	the	
engine	such	as	Unity	(Unity,	2018),	or	Unreal	Engine	4	(Unreal	Engine	4,	
2018),	or	from	external	software	such	as	Maya	(Maya,	2018),	Houdini	
(Houdini,	2018),	3DSMax	(3ds	Max,	2018),	Blender	(Blender,	2018)	etc.	For	
our	project,	we	will	be	using	Houdini	and	Unreal	Engine	for	our	purposes.	
Houdini	is	not	new	in	a	games	pipeline,	but	recently	it	has	been	spilling	
more	into	the	games	studios	as	agreed	by	Andreas	Glad	in	an	interview	
(CGSociety,	2018).	There	are	not	many	examples	of	weapon	effects	created	
through	Houdini	into	UE4,	which	is	what	we	will	explore	in	our	project.	

2	 Previous	Work	
	
Creating	weapon	effects	is	a	versatile	area.	Due	to	countless	weapons	and	
the	effects	that	can	be	applied,	creating	them	is	a	work	of	art.	Though	to	
create	these	effects	there	are	a	lot	of	technical	aspects	behind	them.	For	an	
artist	to	fully	realize	what	they	are	meaning	to	create,	these	technical	
aspects	need	to	be	simplified	and	streamlined	to	make	the	process	as	

	 6	

smooth	as	possible.	Weapon	effects	can	be	made	directly	in	an	engine	or	
bigger	companies	have	their	own	in	house	tools	to	do	so.	These	can	be	
coded	directly,	depending	on	the	pipeline,	or	used	with	external	software	
and	integrated	with	the	engine.	Unity	has	many	examples	of	weapon	effects	
being	created	directly	in	it	using	its	particle	system,	such	as	a	sword	slash	
effect	(imn	nam,	2016),	an	ice	attack	(Gabriel	Aguiar	Prod.,	2017),	or	an	
electric	sword	effect	(Mirza,	2017).	Unreal	Engine	also	has	a	few	examples	
of	creating	weapon	effects	such	as	sword	trails	(DV7	Pavilion,	2016),	or	gun	
shots	(Smyke,	2016).	Some	of	the	famous	games	known	for	being	created	in	
UE4	are	Ark	Survival	(Ark:	Survival	Evolved,	2017),	Sea	of	Thieves	(Sea	of	
Thieves,	2018),	and	Hellblade	(Hellblade:	Senua's	Sacrifice,	2017)	to	name	
a	few.	
	
Houdini	in	the	games	industry	is	becoming	more	and	more	popular,	though	
it	still	stands	out	the	most	for	its	node	based	VFX	capabilities.	These	can	be	
use	in	games	to	create	destructible	environments	or	dramatic	weather	
effects.	(Bannink,	2009).	Since	Houdini	is	a	powerful	tool	when	it	comes	to	
creating	procedural	content,	more	games	have	been	utilizing	it	in	its	
pipelines.	Some	these	examples	are	Horizon	Zero	Dawn	for	its	procedural	
rivers	and	wires	(80	Level,	2017),	and	Ghost	Recon:	Wildlands	for	its	
procedural	world	(80	Level,	2017).	With	the	recent	game	development	tool	
set	in	Houdini,	and	the	Houdini	Engine	plugin	for	UE4,	transferring	assets	
and	content	for	Houdini	to	UE4	has	opened	a	way	for	a	new	pipeline	for	
games.		
	
Some	of	the	tools	that	we	will	be	looking	at	are	the	“Houdini	Digital	Asset”,	
the	“Vertex	Animation”	tool,	and	the	“Vector	Field”	and	“Flow	maps”	tool.	
For	our	project	we	have	decided	to	use	UE4	for	our	purposes,	and	have	
created	a	pipeline	that	utilizes	the	capabilities	of	both	Houdini	and	UE4	to	
create	sword	effects.	

3	 Technical	Background	
3.1	 Houdini	
	
Houdini	 is	 a	 3D	 animation	 software,	 that	 has	 a	 node	 based	 procedural	
workflow.	 It	 is	 best	 known	 for	 creating	 non-destructive	 workflows	 and	
strong	 fluid	 simulations	 such	 as	 smoke	 and	 pyro	 effects.	Within	Houdini,	
networks	 can	 be	 saved	 into	 a	 single	 node	 called	 a	 Digital	 Asset	 (HDA).	
These	 HDA	 can	 be	 set	 up	 to	 have	 control	 over	 parameters	 to	 make	
alterations	 to	 the	 variables	 within	 the	 network	 contained.	 Having	 this	
feature	 makes	 the	 networks	 portable	 in	 different	 projects,	 and	 also	 into	

	 7	

other	 software.	 This	 feature	 is	 key	 factor	 for	 our	 project	 as	 we	 will	 be	
looking	into	creating	an	HDA	to	import	into	UE4.	
	
Houdini	 has	 introduced	 a	 new	 toolset	 for	 game	development.	 Two	of	 the	
tools	that	it	features	that	are	significant	to	our	project	are	exporting	vertex	
animation	and	vector	fields.	Vertex	animations	are	key	framed	animations	
of	 positions	 of	 the	 vertices	 of	 the	 mesh.	 In	 complex	 simulations	 such	 as	
water,	 cloth	 or	 smoke,	 the	 computation	 time	 is	 expensive	 and	 such	
simulations	 cannot	 run	 in	 real-time	 in	 games.	 This	 is	 when	 vertex	
animations	 come	 into	play	 as	 the	 calculations	 are	 already	performed	and	
the	positions	are	prebaked.		We	will	look	at	using	this	for	adding	effects	to	
our	 weapons.	 And	 finally,	 vector	 field	 in	 a	 3D	 space	 is	 a	 function	 that	
defines	 the	points	 in	 the	 filed	with	a	vector.	This	vector	 is	 essentially	 the	
direction	a	particle	should	go	when	it	enters	that	space.	These	fields	define	
the	 flow	within	 a	 given	 space.	 In	 our	 project,	 we	will	 make	 use	 of	 these	
vector	fields	with	UE4	to	control	the	flow	of	our	particles	in	a	specific	way,	
which	we	cannot	created	from	the	engine’s	particle	system	alone.		
	
The	version	used	for	our	project	is	Houdini	16.0.671,	student	licensed.	This	
student	 license	 or	 above	 is	 required	 to	 use	 the	Houdini	 Engine	 plugin	 in	
UE4.	 It	 should	be	noted	 that	 there	 is	 a	 “Games”	 shelf	within	Houdini	 that	
has	 some	 of	 the	 same	 tools	 as	 the	 “Game	 Dev	 Toolset”	 that	 is	 installed	
separately.	The	vertex	animation	tool	version	1.12	has	errors	at	the	time	of	
the	creation	of	the	project	and	therefore	the	inbuilt	shelf	VA	tool	has	been	
used.	

3.2	 Unreal	Engine	
	
Unreal	 Engine	 4	 is	 an	 industry	 leading	 games	 engine	 created	 by	 Epic	
Games.	 It	 has	 integrated	 tools	 to	 help	 developers	 to	 design	 and	 build	
games.	For	the	purposes	of	our	project	version	4.16.3	has	been	used.	Some	
of	the	following	terms	will	be	used	in	the	paper.	These	are	the	names	of	the	
different	tools	or	editors	within	UE4	and	are	briefly	explained	below.	

3.2.1	 Blueprints	
Blueprint	in	UE4	is	a	visual	scripting	tool.	It	provides	a	node	based	
approach	for	programming	and	setting	up	scripts	that	define	the	gameplay.	
Actors	or	assets	can	be	attached	to	blueprints,	whose	initial	variables	can	
be	defined	in	the	viewport.	Different	assets	can	be	attached	to	one	
blueprint	and	set	up	as	a	class	or	prefab.	There	are	different	types	of	
blueprints.	The	two	our	project	will	make	use	of	are	the	character	and	actor	
BP,	and	the	animation	BP.	

	 8	

3.2.2	 Material	Editor		
The	UE4	material	editor	provides	a	platform	to	create	shaders	within	the	
engine.	This	is	a	powerful	editor	that	can	create	from	simple	shaders	with	
just	colour	value	to	complex	shaders	that	can	animate	a	fluid	simulation.	
This	editor	is	also	node	based.	For	our	project	we	will	be	using	the	material	
editor	to	create	our	shaders	rather	than	creating	them	in	Houdini.	This	was	
decided	to	keep	the	implementation	and	transfer	of	the	Houdini	asset	as	
simple	as	possible.	

3.2.3	 Cascade	
Cascade	is	the	editor	that	handles	UE4’s	particle	system.	This	editor	has	a	
few	components	in	it	as	shown	in	figure	1.	On	the	left	of	the	editor	is	the	
viewport,	where	we	can	see	the	results	of	our	emitter	settings.	On	the	right	
is	the	emitter	panel.	This	is	where	all	the	emitters	required	are	created.	The	
emitter	itself	has	modules	that	control	a	set	of	variables	associated	to	that	
module.	These	variables	can	be	seen	below	the	viewport	in	the	properties	
panel.	Different	modules	can	be	added	by	right	clicking	on	the	emitter.	The	
type	of	the	emitter	can	also	be	selected	this	way.	Below	the	emitter	panel	is	
the	curve	editor.	The	curve	editor	for	each	module	can	be	accessed	by	
clicking	the	green	curve	button	next	to	its	name.	Cascade	will	be	useful	in	
our	project	when	we	integrate	the	vertex	animations.	
	

	
	

Figure	1:	Cascade-	UE4	Particle	Emitter	Editor	

	 9	

3.2.4	 Sequencer	
A	level	sequencer	can	be	created	in	UE4.	The	purpose	of	the	sequencer	is	to	
create	cinematics	and	cut	scenes	for	a	game.	It	allows	you	to	render	and	
export	shots	or	entire	cinematics.	However	for	our	purpose	we	will	be	
using	it	differently.	The	sequencer	for	our	project	would	be	used	as	more	of	
a	visualizing	tool.	To	use	it,	actors	that	are	already	in	the	level	can	be	added	
to	it	and	the	values	of	the	variables	associated	with	that	actor	can	be	keyed,	
such	as	transforms	or	the	parameters	of	the	material	attached	to	it.	There	is	
a	timeline	and	a	curve	editor	in	the	sequencer	tool	that	can	be	scrubbed	
through.	The	animations	created	by	these	set	keys	can	be	seen	in	the	
viewport	without	the	need	to	run	the	game.	

3.2.5	 Animation	Editor	
The	 animation	 editor	 is	 associated	 with	 animations	 on	 an	 asset.	 The	
animations	on	the	asset	can	be	seen	in	the	viewport.	The	bones	or	skeletal	
hierarchy	 of	 the	 asset	 can	 be	 seen	 on	 the	 left	 panel,	 and	 sockets	 can	 be	
created	and	attached	to	these	bones.	The	best	use	of	an	animation	editor	is	
the	 use	 of	 “notifies”.	 The	 notify	 section	 in	 the	 animation	 editor	 has	 a	
timeline.	On	this	timeline	a	“notify”	can	be	added	that	can	launch	a	particle	
emitter	or	execute	timed	events	within	the	animation	blueprint.	Most	of	the	
“notifies”	created	in	our	project	are	launched	using	animation	blueprints.	

3.2.6	 Setting	up	Character	
Before	we	 start	 discussing	 our	 proposed	 pipeline,	 the	 project	was	 set	 up	
with	 two	 assets	 with	 animations	 on	 them.	We	will	 use	 these	 assets	 as	 a	
means	 to	 test	 our	 methods.	 The	 first	 asset	 is	 a	 character	 with	 two	
animations	 imported	with	 it.	To	 set	 this	up	an	animation	BP	was	 created	
with	an	“Idle”	and	“Attacking”	state,	and	a	variable	“Is	attacking?”	to	define	
the	rules.	Figure	2	shows	the	state	machine	and	the	animation	event	graph.	
A	character	BP	was	created	with	the	character	mesh	and	the	newly	created	
animation	BP	attached.	The	 “attacking”	variable	 is	added	 to	 the	character	
BP	to	work	with	the	anim	BP	script.	
	

	

	 10	

	
	

Figure	2:	Character	Animation	BP.		

Top	–	State	Machine.	Bottom	–	Anim	Graph	

	
The	 second	 asset	 is	 a	 sword	 with	 no	 animations	 but	 is	 imported	 with	 a	
skeleton.	 Due	 to	 this	 a	 simple	 animation	 is	 created	 within	 UE4	 in	 the	
animation	editor.	In	this	editor	there	is	a	section	for	“tracks”.	From	the	left,	
select	a	bone	 to	animate	and	press	 “Key”	on	 the	 toolbar	at	 the	 top.	Doing	
this	will	 add	 curves	 for	 the	 transforms	 of	 the	 bone.	 These	 curves	 can	 be	
keyed	to	create	the	animation	as	shown	in	figure	3.	The	rest	of	the	setup	is	
the	same	as	the	character.	

	

	
	

Figure	3:	Creating	Animation	in	UE4	Animation	Editor	

	
There	 was	 in	 issue	 in	 our	 project	 when	 adding	 input	 from	 the	
character/sword	 BP.	 Due	 to	 time	 constrains,	 and	 also	 because	 it	 is	 not	 a	

	 11	

core	 part	 of	 our	 project,	 the	 issue	was	 not	 solved.	 Therefore	 the	 input	 is	
handled	from	within	the	level	BP	as	shown	in	figure	4.	
	

	
	

Figure	4:	Level	BP	for	Attack	Inputs	

4	 Proposed	Method	
	

4.1	 Using	Houdini	Digital	Asset	(HDA)	
	
Flow	chart	of	the	steps:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

HDA	

Create	Mesh	

Use	Sequencer	to	
Create	Effect	
Animation	

Create	Material	

Use	BP	to	Spawn	
Effect	

UE4	

Houdini	

	 12	

4.1.1	 Creating	and	Exporting	the	HDA	from	Houdini	into	UE4	
Houdini	can	be	used	to	make	any	network	into	an	HDA.	In	our	example	we	
will	 look	at	creating	a	base	mesh	that	will	help	 in	shaping	the	sword	trail	
for	a	pre-existing	animation	in	UE4.	The	design	for	the	trail	mesh	HDA	is	at	
the	 discretion	 of	 the	 creator	 and	 therefore	 can	 be	 different	 than	 our	
example.	 The	 Curve	 Sweeper	 tutorial	 by	 Andreas	 Glad	 (SideFX	 Houdini,	
2017)	was	used	for	our	project	as	it	was	simple	and	easy	to	create,	and	is	
perfect	 to	 implement	 in	 this	pipeline.	Figure	5	shows	 the	network	 for	 the	
trail	 asset	 and	 the	 controls	 available.	 It	 takes	 a	 curve	 input	 that	 will	 be	
defined	in	UE4.	Once	the	network	has	been	created	it	is	converted	into	an	
HDA	 and	 saved.	 In	 UE4	 this	 HDA	 can	 be	 imported	 like	 any	 other	 asset,	
provided	the	plugin	has	been	installed	and	a	licensed	version	of	Houdini	is	
being	used	as	mentioned	before	in	section	3.	
	
	

	

Figure	5:	Curve	Sweeper	Network	in	Houdini	

	

	 13	

4.1.2	 Creating	the	Trail	Mesh	Asset	
Once	we	have	 the	 trail	mesh	 imported	 into	UE4	we	can	use	 it	 to	 create	a	
trail	 for	 our	 sword	 animation.	 In	 our	 project	we	 have	 used	 the	 Gray	 Fox	
model	and	animation	provided	by	person-x	(Gray	Fox,	2017),	and	set	it	up	
so	 that	 it	 has	 an	 animation	 BP	 for	 “Idle”	 and	 “Attacking”	 states.	 And	 we	
have	also	created	a	character	BP	with	the	animation	BP	attached.	(Refer	to	
section	 3.2.6)	 The	 character	 attacks	 on	 a	 key	 press.	 This	 animation	
provides	a	good	example	of	a	more	complex	animation	for	the	trail	effect.	
We	have	also	used	 the	Azure	Sword	model	provided	by	sinchik97	 (Azure	
Sword,	 2017),	 and	 set	 it	 up	 similarly	 to	 the	 character	 BP.	However	 since	
this	model	 does	 not	 have	 any	 animation,	 we	 have	 created	 a	 very	 simple	
animation	for	it.	(Refer	to	section	3.2.6)	
	
To	create	the	trail,	drag	the	HDA	into	the	viewport.	In	the	details	panel	we	
can	 see	 all	 the	 controls	we	had	 set	 up	 in	Houdini.	 In	 the	 “Houdini	 Input”	
section,	change	the	input	from	“Geometry”	to	“Curve”	and	change	the	type	
to	“Nurbs”	as	shown	in	figure	6.		
	

	
	

Figure	6:	HDA	Curve	Input	

	
The	HDA	changes	into	two	points	for	a	curve	that	can	now	be	used	to	create	
a	curve	for	our	trail	mesh.	Pressing	ALT	and	dragging	on	the	last	point	adds	

	 14	

more	 points	 to	 the	 curve.	 Make	 sure	 the	 “Show	 Curve	 Only”	 option	 is	
turned	 on	while	 drawing	 the	 curve.	 Before	we	 can	 go	 about	 creating	 the	
curve,	we	need	the	movement	of	the	animation	as	a	reference.	As	the	trail	
effect	 is	being	added	onto	an	animation,	using	UE4’s	 sequencer	would	be	
the	best	way	to	visualize	the	animation	as	we	create	our	curve.	For	this	we	
need	the	animation	asset	in	the	level.	Create	the	level	sequencer,	open	it	up	
and	 add	 the	 actor	 the	 sequencer,	 choosing	 the	 animation	we	 have	 in	 the	
level.	Add	an	animation	track	for	the	animation	we	are	creating	the	curve	
for.	Using	the	timeline	we	can	now	scrub	through	the	animation	and	create	
our	curve	as	shown	in	figure	7.		
	

	
	

Figure	7:	Create	HDA	Curve	

	
Once	the	whole	curve	 is	created	the	mesh	can	be	turned	on	and	modified	
using	 the	other	settings	 to	shape	 it	how	we	want	 it	 to.	Now	that	we	have	
our	HDA	mesh,	a	material	 is	 created	 for	 this	 trail.	 It	 is	 important	 that	 the	
trail	materials	have	parameters	that	can	be	controlled	to	animate	the	effect,	
esp.	a	panning	parameter	with	transparency	on	it.	The	trail	materials	have	
been	explained	in	section	4.4.	Apply	the	material	to	the	HDA	and	add	it	to	
the	sequencer.	Add	tracks	 to	 the	parameters	 that	need	to	be	animated.	 In	

	 15	

this	 example	 we	 will	 look	 at	 the	 red	 trail	 material,	 so	 we	 will	 add	 the	
location	 and	 colour	 track.	 Set	 keys	 to	 the	 parameters	 values	 while	
scrubbing	through	the	timeline	to	create	the	desired	animation	as	shown	in	
figure	8.	
	

	
	

Figure	8:	Animate	Trail	Material	Parameters	in	Sequencer	

	
By	this	point	we	have	an	idea	of	what	the	effect	will	look	like.	Since	we	have	
our	HDA	mesh	and	material,	we	can	bake	this	asset	into	a	static	mesh	that	
can	be	used	anywhere.	The	save	 location	 for	 the	static	mesh	 is	defined	 in	
the	“Houdini	Asset”	tab,	and	the	bake	options	are	in	the	“Houdini	Generated	
Meshes”	tab	in	the	details	panel.	This	static	mesh	with	the	material	is	what	
we	 will	 spawn	 in	 game	 during	 the	 attack.	 The	 HDA	 and	 the	 character	
animation	 in	 the	 level	 are	no	 longer	needed	and	 can	be	hidden,	but	keep	
them	in	the	sequencer.	From	here	we	have	two	methods	that	can	be	used	to	
spawn	and	animate	the	trail	mesh.	Both	have	their	pros	and	cons	which	we	
will	discuss	later.	
	

4.1.3	 Spawning	and	Animating	the	Trail	Effect	(Method	1:	Animating	in	BP)	
At	this	point	we	have	everything	we	need	to	add	the	scripts	to	spawn	our	
trail	effect	during	an	attack	and	animate	the	materials	accordingly.	This	is	
done	using	two	scripts.	One	script	is	to	spawn	the	effect,	which	is	done	in	
the	character	BP,	and	the	other	to	animate	the	trail	material,	which	is	done	

	 16	

in	the	trail	BP.	The	trail	BP	can	be	set	up	simply	by	creating	an	actor	BP	and	
attaching	the	trail	mesh	to	the	root	node.	In	the	character	BP	Event	Graph	
the	script	shown	in	figure	9	is	added.	
	

	
	

Figure	9:	Script	in	Character	BP	to	Spawn	Trail	Mesh	

	
The	“spawn	event”	 is	when	the	script	should	be	launched.	In	our	example	
the	 custom	 event	 “If	 Attacking”	 is	 launched	 on	 a	 key	 press,	 which	 also	
animates	the	attack	animation	(Refer	to	section	3.2.6).	Then	it	checks	if	the	
effect	mesh	has	already	spawned.	This	optimizes	our	gameplay	as	we	don’t	
want	 multiple	 instances	 of	 our	 effect,	 which	 also	 prevents	 the	 effect	
overlapping	from	multiple	key	presses.	When	this	script	is	used	in	another	
blueprint,	the	“Actor	Class”	needs	to	define	the	trail	BP	specific	to	the	one	
that	has	to	spawn.	The	“trail	location”	is	an	arrow	component	that	has	been	
attached	 to	 the	 character	 mesh.	 A	 tutorial	 by	 TorQueMoD	 (TorQueMoD,	
2015)	was	 referenced	 to	 define	 the	 position	 of	where	 to	 spawn	 the	 trail.	
The	transformation	of	this	arrow	component	defines	the	transformation	of	
the	 effect.	 Position	 this	 arrow	 at	 the	 spawn	 location	 of	 the	 trail	 in	 the	
blueprint’s	viewport,	which	for	this	example	is	the	sword’s	tip.	Next,	spawn	
the	trail	BP	at	the	position	of	the	arrow	component	and	launch	“If	Spawn”.	
“If	 Spawn”	 is	 a	 custom	 event	 in	 the	 trail	 BP.	 Now	 that	 the	 trail	 has	 been	
spawned,	it	needs	to	animate.	Figure	10	shows	the	script	in	the	trail	BP.	

	 17	

	

	
	

Figure	10:	Script	in	Trail	BP	to	Animate	Trail	Material	

	
The	script	creates	a	“Dynamic	Material	 Instance”	that	allows	us	to	modify	
the	parameters	of	the	material	specified.	Set	the	source	material	to	the	trail	
material	 and	 connect	 the	 return	 value	 to	 the	 parameters	 that	 have	 to	 be	
animated,	as	shown	above.	These	can	be	either	scalar	or	vector	parameters.	
The	“Timeline”	node	is	where	the	material	parameter	values	update	along	
with	 time.	 A	 tutorial	 by	 Dean	 Ashford	 (Ashford,	 2017)	 explains	 how	 to	
create	dynamic	materials	 in	a	blueprint	using	 the	 timeline	node.	Open	up	
the	timeline	node	and	add	two	tracks,	one	for	“Location”	and	the	other	for	
“Colour”.	 Set	 the	 time	 range	 exactly	 as	 the	 time	 range	 for	 the	 attack	
animation.	 This	 can	 be	 checked	 by	 opening	 up	 the	 animation	 asset	 and	
copying	 the	 total	 time.	 This	 is	 important	 to	 keep	 the	 animations	 in	 sync.	
This	is	where	the	animation	we	defined	in	the	sequencer	comes	into	play.	
Open	up	the	sequencer,	and	from	the	curve	editor,	manually	copy	the	keys	
over	to	the	track	curves.	Figure	11	shows	the	completed	curves.	Once	the	
curves	 have	 been	 completed,	 connect	 the	 corresponding	 node	 to	 the	
parameter	 value	 node.	 Place	 the	 Character	 BP	 in	 the	 level,	 and	 the	 trail	
effect	will	show	upon	attacking.	
	

	 18	

	
	

Figure	11:	Copy	Sequencer	Keys	to	Timeline	Curve	

	

4.1.4	 Spawning	 and	 Animating	 the	 Trail	 Effect	 (Method	 2:	 Animating	 with	
Sequencer)	
The	second	method	is	easier	and	less	manual	like	the	first.	After	creating	
the	animation	in	the	sequencer	and	the	static	trail	mesh,	create	the	trail	
mesh	BP	as	mentioned	earlier.	Drag	this	blueprint	into	the	level	scene	and	
add	it	to	the	sequencer.	In	the	sequencer,	track	the	“location”	and	“colour”	
of	the	mesh	component	as	it	was	done	for	the	HDA	material.	Select	all	the	
keys	in	the	HDA	animated	material	and	copy	them	over	the	trail	BP	tracks	
we	just	added	as	shown	in	figure	12.	We	want	the	sequencer	to	spawn	this	
trail	wen	it	is	playing	and	destroy	to	when	the	animation	is	complete.	To	do	
this,	right	click	on	the	trail	BP	added	to	the	sequence	and	convert	it	to	
“Spawnable”.	A	new	variable	“Spawned”	is	added	to	the	tracks.	Key	this	as	
enabled	at	the	start	and	disabled	at	the	end.		

	 19	

	

	

	
	

Figure	12:	Copy	Sequencer	Keys	to	Trail	BP	Tracks	

	
Only	one	script	is	required	in	this	method.	This	script	(figure	13)	is	added	
to	 the	Character	or	Weapon	BP.	The	 level	 sequencer	 can	be	deleted	 from	
the	level	as	we	will	be	spawning	it	from	the	blueprint.	In	the	blueprint	we	
first	check	if	the	sequencer	actor	is	already	created.	We	need	to	do	this	so	
that	we	do	 not	 spawn	 a	 new	 actor	 every	 time	we	 attack.	 If	 the	 sequence	
actor	 does	 not	 exist	 in	 the	 level	 then	 create	 it,	 otherwise	 play	 the	
animation.	Next	we	need	 to	 check	 if	 the	 trail	 exists	 in	 the	 level.	 If	 it	 does	
then	use	the	arrow	component	for	the	trail	location	and	set	the	transforms	
of	the	trail	BP	as	we	did	previously	for	spawning	the	trail	BP	in	method	1	
(Refer	 to	 section	 4.1.3).	 Note	 that	 for	 the	 location	 to	 be	 updated	 the	
transform	 tracks	 in	 the	 sequencer	 for	 the	 trail	 BP	 have	 to	 be	 deleted	 as	
those	 values	 are	 given	 preference.	 Now	 if	we	 attack	we	 can	 see	 the	 trail	
effect.	Figure	14	show	the	three	trail	effects	created	for	demonstration.	
	

	 20	

	

	
	

Figure	13:	Spawn	Trail	Effect	Using	Sequencer	in	Character	BP	

	

	 	 	
	

Figure	14:	Completed	Trail	Effects.	

	Left	-	Red	trail.	Middle	-	Ice	trail.	Right	-	Purple	trail	

	

	 21	

4.1.5	 Analysis	
Using	Houdini	 to	create	the	trail	mesh	has	 its	own	benefits	as	opposed	to	
creating	the	trail	 in	UE4	itself.	 If	 the	trails	were	to	be	created	in	UE4	they	
have	to	be	connected	to	two	sockets	to	define	the	start	and	the	end	of	the	
trail.	The	trails	particle	emitter	is	launched	with	an	“Anim	Trail	notify”	and	
is	timed.	There	is	an	option	to	add	a	curve	to	the	trail	to	modify	its	shape	
slightly;	however	it	is	limited	as	compared	to	the	HDA	and	cannot	be	view	
in	an	interactive	way.	The	material	on	the	UE4	trails	cannot	be	dynamically	
animated	 as	 easily	 as	 the	 flexibility	 available	while	 animating	 it	 from	 the	
blueprint.	 Since	 the	 mesh	 is	 already	 created,	 changing	 the	 material	 can	
transform	the	trail	into	a	completely	different	effect.	
	
In	method	1,	although	 the	sequencer	 is	more	 interactive	visually,	 copying	
over	 the	keys	 to	 the	 timeline	node	 is	a	slow,	manual	process.	 It	would	be	
easier	if	the	curve	from	the	sequencer	could	be	exported	and	imported	into	
the	 timeline,	 however	 the	 UE4	 API	 does	 not	 provide	 any	way	 to	 read	 in	
those	values	yet.	Hence	if	a	quick	trail	is	required	without	any	complicated	
animation	 or	 material,	 creating	 it	 directly	 in	 UE4	 is	 a	 better	 option.	
However	 using	 an	HDA	 trail	 gives	more	 artistic	 flexibility.	 Upon	multiple	
keypresses,	 the	 script	 prevents	 the	 effect	 to	 spawn	multiple	 times	 while	
still	playing.	
	
In	method	2,	the	trail	BP	can	be	created	and	animated	directly	in	the	
sequencer	without	having	animate	the	HDA	and	to	copy	keys,	but	for	that	
then	we	have	to	position	the	trail	mesh	at	the	precise	location	we	created	
the	HDA	to	have	the	sword	follow	the	curve	as	designed.	This	prevents	it	
from	staying	in	sync.	However	if	the	curve	is	not	complicated	and	easy	to	
set	then	creating	the	trail	BP	first	and	then	using	the	sequencer	can	work	
just	as	well.	One	major	issue	with	using	the	sequencer	method	is	that	the	
script	does	not	prevent	multiple	key	presses	and	on	every	input	the	effect	
restarts.	
	
When	 copying	 the	 scripts	 into	 other	 blueprints,	 some	 of	 the	 nodes	 may	
need	to	be	deleted	and	recreated.	This	 is	due	 to	UE4	not	recognizing	 that	
the	nodes	belong	to	a	new	actor	of	the	same	type.	Hence	some	connections	
need	to	be	refreshed.	It	should	also	be	noted	that	the	variables	also	need	to	
be	created	and	replace	with	the	same	ones.	
	

	 22	

4.2	 Using	Houdini	Vertex	Animation	(VA)	

4.2.1	 Creating	 and	 Exporting	 the	 VA	 from	 Houdini	 into	 UE4	 for	 a	 Looping	
Effect	
Any	animation	that	has	been	created	in	Houdini	can	be	exported	as	a	vertex	
animation	for	UE4.	In	our	example	we	will	look	at	creating	a	“Swirl”	effect,	
which	 is	 just	 a	 bunch	 of	 particles	 following	 a	 curve.	 The	 tutorial	 by	MIX	
Training	 (MIX	 Training,	 2017)	 helped	 in	 creating	 this	 effect.	 Figure	 15	
shows	the	network	for	creating	the	swirls	animation.	
	

	
	

Figure	15:	Swirls	Vector	Animation	Network	in	Houdini	

Left	-	Object	Level.	Middle	-	TestGeo	Network.	Right	-	Path	Network	

	
Once	 the	 animation	 is	 ready,	 in	 the	 game	 dev	 toolset,	 select	 the	 “Vertex	
Animation	Textures”	 tool.	 In	 the	 “out”	 level	 the	 vertex	 animation	 node	 is	
created.	 In	 the	parameters	of	 this	node,	set	 the	“Export	Node”	 to	 the	OUT	
node	 of	 out	 animation.	 For	 our	 swirls	 animation	 we	 will	 be	 using	 the	
“Sprite”	 option	 in	 the	 drop	 down.	 Set	 the	 path	 for	 the	 geometry	 and	 the	
position	 map	 and	 render.	 There	 are	 options	 for	 real	 time	 render	 in	 the	
parameters	 which	 we	 will	 need	 inside	 UE4	 when	 we	 set	 up	 our	 vertex	
animation.		
	
In	UE4,	import	the	FBX	mesh	and	the	position	map	that	has	been	exported	
from	 Houdini,	 and	 then	 create	 a	 material.	 In	 Houdini,	 in	 the	 VA	 node	

	 23	

parameters,	 there	 is	 a	 “Sample	 UE4	 Shader	 Code”	 section	 (figure	 16).	 In	
that	 section	 copy	 everything	 in	 the	 “Sprite	UE4	Code”	 and	paste	 it	 in	 the	
material	 just	 created.	 Follow	 the	 instructions	 on	 the	 nodes	 and	 complete	
the	network.	This	material	can	be	modified	to	change	colour	or	opacity	etc.	
Next	 create	 an	 instance	 of	 the	 material,	 and	 in	 the	 settings	 replace	 the	
position	map	with	the	imported	position	map.	The	min	and	max	bounding	
box	values	need	 to	be	replaced	with	 the	values	mentioned	 in	 the	Houdini	
VA	node	parameters,	as	well	as	the	number	of	frames.	Apply	this	material	
to	 the	 mesh	 and	 drag	 it	 into	 the	 level.	 And	 we	 can	 see	 our	 animation	
successfully	set	up	and	playing	in	a	loop.	
	

	
	

Figure	16:	Vertex	Animation	Node	Parameters	

	

4.2.2	 Using	the	VA	as	a	Constant/Looping	Effect		
Having	the	Swirl	animation	set	up,	we	will	use	it	 to	attach	it	 to	the	sword	
and	play	constantly.	To	do	so	the	sword	needs	to	have	a	skeleton.	Open	up	

	 24	

the	 sword	 skeleton	 and	 create	 a	 new	 socket	 and	 position	 it	 where	 the	
animation	 needs	 to	 spawn	 from.	 In	 our	 swirl	 animation	 case,	 it	 is	
positioned	 at	 the	 center	 of	 the	blade.	Right	 click	 on	 the	 socket	 name	 and	
add	a	preview	mesh,	choosing	the	swirl	mesh.	Ideally	this	would	allow	us	to	
visualize	 what	 the	 swirls	 would	 look	 like	 on	 the	 sword	 however,	 the	
position	transforms	of	the	mesh	do	not	update	with	the	socket	position	in	
the	preview.	This	is	because	of	how	the	position	of	the	asset	is	calculated	by	
the	material.	An	offset	 to	 the	material	can	be	added	to	modify	 this,	which	
we	will	look	at	later.	The	scale	and	rotation	of	the	asset	can	be	set	using	the	
socket.	Once	the	socket	transforms	have	been	set	to	where	they	are	needed,	
we	can	now	connect	 it	 to	 the	actual	socket	rather	 than	 just	previewing	 it.	
Due	 to	 the	 same	 problem	with	 the	 transforms,	 the	 VA	 doesn’t	 follow	 the	
sword’s	animations	if	it	is	simply	added	to	the	sword	BP	and	connected	to	
the	 socket.	 Therefore	we	will	 add	 a	 script	 to	 the	 sword’s	 event	 graph	 to	
spawn	 the	 effect	 on	 startup,	 and	 update	 the	 positions	 of	 the	 effect	
according	to	the	socket	position.	The	script	is	shown	in	figure	17.	

	

	
	

Figure	17:	Looping	Vertex	Animation	Script	in	Sword	BP	

The	script	uses	the	weapon	attached	and	gets	a	socket	attached	to	it.	The	
name	of	the	socket	needs	to	be	defined,	which	is	the	one	we	created	for	the	
swirls.	Create	an	actor	blueprint	and	attach	the	swirls	to	create	a	swirl	BP.	
In	the	spawn	node,	add	the	swirl	BP	in	the	class	to	spawn	it.	Next	set	the	
actor	transforms	and	connect	the	transform	node	of	the	socket	to	it.	Update	
this	every	frame	to	follow	the	socket	location	during	animation.	Since	our	

	 25	

swirls	are	centered,	they	do	not	need	to	be	offset	from	the	sword	socket,	
however,	if	the	animation	needs	to	do	so	a	world	offset	node	is	added.	
	

4.2.3	 Creating	and	Exporting	the	VA	from	Houdini	into	UE4	for	a	Timed	Effect	
Using	vertex	animation	for	a	timed	effect	is	slightly	different	than	a	
constant	effect;	however	exporting	it	is	exactly	the	same	as	before.	To	give	
an	example	of	a	time	effect,	an	ice	attack	has	been	created	to	spawn	and	
animate	at	a	particular	time	during	an	animation.	To	create	the	ice	attack	
animation	a	tutorial	by	Mehdi	(FX	HIVE	EVOLUTION,	2016)	was	partially	
followed.	Figure	18	show	the	network	created.	In	the	VA	export	setting,	we	
are	using	the	“Fluid”	method	and	shader.	Export,	import,	and	set	up	the	VA	
asset	as	before.		
	

	
	

Figure	18:	Ice	Attack	Network	in	Houdini	

4.2.4	 Using	the	VA	as	a	Timed	Effect	
The	 VA	 is	 set	 up	 the	 same	way	 as	mentioned	 earlier.	 However	 this	 time	
we’ll	have	to	make	modifications	to	the	material	and	spawn	it	using	UE4’s	
particle	system.	Create	a	particle	system	for	 the	 ice	attack	and	open	 it	up	
which	will	take	you	to	cascade.	Set	the	emitter	type	data	to	a	mesh	emitter	
and	the	mesh	variable	to	the	VA	mesh	and	its	material.		
	
The	animation	right	now	is	constantly	looping	because	of	a	“Time”	node	in	
the	 material.	 This	 time	 node	 constantly	 updates	 which	 means	 that	 the	
animation	 start	 time	 will	 not	 be	 when	 spawned.	 We	 need	 some	 way	 of	
controlling	 this	so	 that	when	 the	emitter	 is	 spawned,	 the	animation	plays	

	 26	

from	the	start	and	does	not	loop.	To	do	this,	a	“Dynamic	module”	is	added	
to	the	emitter	in	cascade.	This	module	is	where	we	will	control	the	time	or	
panning	of	the	animation.	In	the	material	editor	of	the	VA	mesh,	“Dynamic	
Parameter”	replaces	the	“Time”	node	connected	at	the	start	of	the	“World	
Position	Offset”.	Change	the	name	of	the	first	parameter	to	“Time”.	Back	in	
Cascade,	 refresh	 the	 “Dynamic”	 module	 and	 the	 “Time”	 parameter	 is	
updated	in	it	to	reflect	our	node	in	the	material,	as	shown	in	figure	19.	
	

	
	

Figure	19:	Set	Dynamic	Material	in	the	Particle	Emitter	

	
In	the	Time	parameters,	change	the	distribution	to	a	“constant	curve”	and	
add	two	“point”	elements	to	this.	This	curve	can	be	viewed	using	the	curve	
editor	 of	 this	 module.	 The	 parameters	 for	 the	 effect	 will	 vary	 from	
animation	to	animation.	For	our	ice	attack	the	first	point	is	set	to	start	from	
emitter	time	0	and	animation	time	0	and	the	second	point	to	emitter	time	
0.5	and	animation	time	3.	The	total	emission	life	is	2	seconds.	The	time	can	
be	 set	 according	 to	 how	 fast	 the	 effect	 needs	 to	 be	 and	 making	 sure	 it	
doesn’t	repeat.		
	
Now	that	the	animation	is	under	control,	in	the	sword	animation	sequence	
window,	a	custom	“notify”	is	created	at	the	time	the	effect	has	to	spawn.	In	
the	 animation	 BP	 of	 the	 sword,	 add	 a	 script	 to	 spawn	 the	 emitter	 at	 the	
location	 of	 a	 socket,	 which	 in	 our	 case	was	 the	 sword	 tip.	 This	 socket	 is	
required	since	spawning	the	emitter	needs	a	socket	location	and	rotation.	A	

	 27	

short	delay	has	been	added	to	deactivate	the	emitter.	The	script	is	shown	in	
figure	20.	
	

	
	

Figure	20:	Spawn	VA	emitter	at	Notify	in	Sword	Anim	BP	

	In	 the	material,	 an	 offset	 to	 the	 actor	 can	 be	 added	 and	 in	 the	 instance	
material	the	offset	can	be	set	so	that	position	matches	to	where	it	needs	to	
be	when	 spawned.	 Figure	 21	 shows	 the	 changes	 in	 the	material	 network	
and	the	final	result.	
	

	
	

Figure	21:	Add	Offset	in	Material.		

Top	Left	-	Modifications	in	VA	Material.	Top	Right	-	Offset	Setting	in	Material	Instance.	
Bottom	Left	-	Before	Offset.	Bottom	right	-	After	Offset	

	 28	

	

4.2.5	 Analysis	
For	 the	 looping	animation,	one	 improvement	 that	can	be	made	 is	 that	 for	
now	the	socket	is	updating	constantly.	The	other	way	to	do	that	would	be	
to	attach	the	VA	animation	to	the	sword	and	its	socket,	and	only	update	the	
position	when	it	is	animating.	This	is	because	the	animation	does	not	follow	
the	socket	position	only	during	animation.	This	way	it	won’t	be	constantly	
updating	during	gameplay,	optimizing	it	further.		
	
Using	a	vertex	animation	from	Houdini	in	UE4	for	a	timed	effect	gives	the	
flexibility	to	attach	any	complex	animation	and	spawn	it	using	notifies.	This	
method	 provides	 ease	 in	 adding	 one-time	 event	 during	 any	 animation	
which	otherwise	would	be	 complicated	 to	do	 in	UE4.	 	The	 reason	we	are	
not	 using	 the	 “play	 particle	 effect”	 or	 “timed	 particle	 effect”	 notify	 in	
persona	 is	 because	 we	 do	 not	 want	 it	 attached	 to	 socket,	 which	 is	
mandatory	in	“timed	particle	effect”,	and	we	also	want	it	to	be	deactivated	
after	 the	 animation	 has	 played	 once.	 Since	 no	 current	 notify	 gives	 that	
option	we	used	a	BP	script.		
	
One	issue	with	the	spawn	count	is	that	it	only	works	when	set	to	5	or	above	
for	the	ice	attack.	If	the	icicle	attack	is	used	using	the	timed	particle	effect,	
offset	size	can	vary	from	the	view	in	persona	to	the	view	in	the	editor	since	
it	 takes	 the	size	of	 the	socket.	So	spawn	 in	game	to	 test	 location.	Another	
limitation	with	this	method	is	that	the	location	that	is	set	for	the	animation	
(relative	 to	 the	 sword)	 will	 stay	 consistent.	 With	 the	 current	 script	 the	
transformations	cannot	be	animated.	
	

4.3	 Using	Houdini	Vector	Field	(VF)	

4.3.1	 Creating	and	Exporting	the	VF	from	Houdini	into	UE4	
Creating	and	exporting	vector	 fields	 from	Houdini	 is	very	simple.	For	our	
example	we	will	create	some	sparks	for	the	red	trail	that	will	be	affected	by	
the	VF.	A	 tutorial	 by	Mike	 Lyndon	 (SideFX,	 2017)	 explains	 how	 to	 create	
vector	 fields	 in	 Houdini.	 To	 create	 the	 VF	 we	 have	 used	 a	 grid	 and	
connected	it	to	a	flow	map.	This	node	sets	the	initial	direction	of	the	force	
and	 the	 visualizer	 can	 be	 turned	 on	 to	 see	 that	 direction.	 Create	 some	
curves	that	define	the	flow	of	the	field.	Connect	these	curves	and	the	gird	to	
a	 “flowmap	 guide”	 node,	 which	 is	 part	 of	 the	 game	 dev	 toolset.	 Set	 the	
parameters	 in	 this	 node	 to	 define	 the	 strength,	 width,	 and	 falloff	 of	 the	
effect	the	curves	will	have	on	the	flow	of	the	grid.	Copy	this	a	few	times	to	
create	a	box	of	 the	VF.	Next	connect	 the	“ROP	Vector	Field”	node.	Change	

	 29	

the	 input	 type	 to	 “Particles”	 (since	 we	 are	 not	 using	 a	 dynamic	 from	 a	
volume	 created	 e.g.	 smoke)	 and	 set	 the	 sampling	 size.	 For	 our	 example	 a	
sample	size	of	10	x	10	x	10	works.	Set	the	directory	to	save	in	and	render.	
Our	 vector	 field	 has	 been	 created.	 Import	 this	 VF	 into	 UE4	 to	 be	 used.	
Figure	22	shows	our	VF	network	and	the	flow	direction.	
	

	
	

Figure	22:	Vector	Field	Network	in	Houdini	

4.3.2	 Setting	up	the	VF	using	Cascade	in	UE4	
Using	vector	fields	with	UE4’s	particle	emitter	allows	us	more	control	over	
how	 the	particles	emitted	will	 flow.	Change	 the	particle	 emitter	 type	 to	a	
GPU	sprite	emitter.	Vector	fields	in	UE4	can	only	be	used	with	GPU	sprites.	
As	the	name	suggests	GPU	sprites	are	handled	by	the	GPU	rather	than	the	
CPU,	which	allows	us	to	create	a	 lot	more	particles	at	a	given	time.	Add	a	
“Local	Vector	Field”	module	to	the	emitter	and	set	the	vector	field	created.	
Add	a	material	to	the	emitter	to	define	the	look	if	the	particle,	which	in	our	
case	we	have	added	the	“Sparks”	material	explained	in	section	4.4.		
	
Set	 the	 intensity	 and	 tightness	 to	 see	 any	 result.	 The	 vector	 fields	 can	be	
moved	around	in	the	cascade	viewport	to	place	it	where	needed.	Once	the	
particle	effect	looks	like	how	it	is	intended,	notifies	have	to	be	set	using	the	
animation	 sequence	 window	 for	 the	 intended	 animation.	 Create	 custom	
notifies	and	place	them	on	the	timeline	when	the	emitter	needs	to	activate.	
In	our	 case	of	 the	 red	 trails,	we	add	notifies	named	 “Burst”	 at	 the	mid	of	
every	slash	on	the	timeline.	In	the	animation	BP	of	the	weapon	or	character	
add	 the	 script	 to	 spawn	 the	 emitter	 at	 the	 socket	 location	 as	mentioned	
before	in	section	4.1.3.	Figure	23	show	the	VF	sparks	result.	
	

	 30	

	
	

Figure	23:	Snapshot	of	Vector	Field	Sparks	Effect	

	

4.3.3	 Analysis	
Vector	fields	are	powerful	when	it	comes	to	animating	particles	in	a	certain	
direction.	The	ease	at	which	the	vector	fields	can	be	created	from	Houdini	
cannot	be	replicated	by	just	cascade.	Using	just	the	functionality	in	cascade	
allows	us	to	control	the	flow	of	the	particles	is	some	manner	but	does	not	
give	any	way	of	calculating	complex	movements.	UE4	does	not	provide	any	
preset	vector	fields	either,	and	that	is	where	Houdini	comes	into	play.	
	
For	our	sparks	animation,	spawning	the	emitter	with	the	“Burst”	at	the	mid	
of	each	slash	did	not	give	us	the	direction	exactly	as	we	wanted	it	at	 first.	
This	was	due	to	the	animation	 itself	where	the	bones	do	not	rotate	 in	the	
direction	of	the	slash.	To	tackle	this,	3	socket	were	created	on	the	character	
sword	 and	 positioned	 at	 the	 correct	 place,	with	 the	 correct	 rotation.	 The	
scale	does	not	matter.	Three	different	burst	notify	were	created	and	set	to	
the	respective	bone	in	the	script	as	show	in	figure	24.			
	

	

	 31	

	
	

Figure	24:	Modifications	for	VF	Sprite	Effect	Using	Multiple	Sockets.		

Top	-	Creating	Multiple	Sockets	for	Emitter	Transforms.	Bottom	-	Modified	Script	For	
Spawning	Emiiter	for	Multiple	Sockets	

	

4.4	 Explaining	Material	Networks	in	UE4	
	
The	following	materials	show	an	overview	of	the	network	created	for	each	
shader	for	our	example	of	the	effects	created.	

Red/Purple	Trail	Material	
The	 red	and	purple	 trail	materials	 are	 the	 same	material	with	 a	different	
colour	parameter.	This	was	created	with	the	help	of	the	tutorial	by	Andreas	
Glad	(SideFX	Houdini,	2017).	The	 texture	used	 in	our	version	 is	different.	
(Red/Purple	Trail	Texture,	2018)	

	
	

Figure	25:	Red/Purple	Trail	Material	

	 32	

	

GPU	Spark	Material	
The	GPU	Spark	material	is	used	in	the	GPU	spirits	for	the	red	trail.	
	

	
	

Figure	26:	GPU	Spark	Material	

Ice	Trail	Material	
	
The	 ice	 trail	 material	 creates	 an	 icy	 shard	 displacement	 in	 the	 upward	
direction.	 The	material	was	 create	with	 the	 help	 of	 this	 tutorial	 by	 Dean	
Ashford	(Ashford,	2017)	and	was	slightly	modified	to	suit	our	effect.	
	

	
	

Figure	27:	Ice	Trail	Material	

	 33	

	

Sword	Material	to	Add	Bloom	Effect	
To	create	an	animated	bloom	effect	on	an	asset,	the	material	must	exist	on	
a	mesh	or	asset	that	is	animated.	In	the	case	of	our	Sword,	the	material	
shown	in	figure	28	is	applied.	Notice	that	the	material	has	a	“Bloom”	
parameter	multiplying	with	a	colour	and	is	connected	to	the	“Emissive	
Color”	node.	
	

	
	

Figure	28:	Sword	Material	for	Bloom	Effect	

In	the	animation	sequence	window	add	a	new	curve	and	give	it	the	same	
name	as	the	parameter.	For	this	curve	to	be	recognized	as	a	material,	“Anim	
Curves”	need	to	be	turned	on	as	shown	in	figure	29.	
	
	

	

	 34	

	
	

Figure	29:	Creating	Animation	Curves	for	Bloom	Effect	

	
Create	the	curve	along	the	timeline	and	the	changes	can	be	seen	
accordingly.	

	
	

Figure	30:	Final	Bloom	Effect	

	

Ice	VA	/	Electricity	VA	/	Swirl	VA	Material	
The	materials	created	by	the	vertex	animations	can	be	modified	as	
required.	In	our	examples	the	colour,	emission,	and	some	normal	maps	
have	been	modified	or	added	to	the	material	created	by	Houdini.	The	offset	
to	the	actor	has	also	been	added	as	mentioned	previously.	

5	 Conclusion	
The	 aim	 of	 this	 project	was	 to	 utilize	 the	 capabilities	 of	Houdini	 and	 use	
them	in	Unreal	Engine	4	to	create	effects	for	sword	weapons.	The	focus	was	
to	 find	 effective	ways	 to	 integrate	 the	 assets	 created	 in	 Houdini	 to	work	
with	 UE4	 in	 a	 reusable	 way,	 which	 is	 what	 the	 project	 has	 managed	 to	
show.	The	methods	proposed	can	be	used	for	creating	various	effects	that	
can	be	 seen	 in	 the	 industry.	These	methods	can	be	modified	with	ease	 to	

	 35	

quickly	 see	 different	 effects	 just	 by	 changing	 the	 shader	 or	 the	 HDA	
parameters	for	a	different	shape.	
	
Though	the	methods	have	a	workable	final	result	there	are	limitations	with	
each	method	which	have	been	discussed	 above	 after	 each	method.	These	
include	 freedom	 to	 visualize	 some	 results,	 tedious	 job	 of	 copying	 over	
curve	data,	or	some	transformation	issues	from	the	side	of	the	engine.			
	
In	the	two	methods	that	have	been	discussed	for	creating	the	trail,	though	
the	first	method	is	tedious	to	create	due	to	copying	sequencer	keys,	it	is	a	
more	 stable	way	of	 executing	and	animating	 the	effect.	This	 is	due	 to	 the	
fact	 that	 multiple	 key	 presses	 do	 not	 affect	 the	 execution	 of	 the	 effect	
whereas	the	second	method	does,	which	is	not	ideal.	The	UE4	API	does	not	
allow	 a	 way	 in	 the	 blueprints	 to	 refuse	 inputs	 while	 the	 sequencer	 is	
playing.	This	however	can	be	tackled	in	the	future	by	adding	in	a	delay	for	a	
key	press	while	the	effect	is	playing.	The	sequencer	in	UE4	was	not	meant	
for	 creating	 effects	 for	 game	 but	 is	 more	 for	 creating	 cinematic	 or	 cut	
scenes,	and	therefore	is	not	tailored	for	handling	in-game	effects.	However	
that	said,	the	sequencer	is	the	best	way	to	visualize	these	effect	animations,	
especially	when	added	on	later	to	the	character	animation.	
	
When	 it	 comes	 to	 performance,	 each	 is	 method	 is	 performance	 efficient.	
The	vertex	animation	is	a	powerful	tool	where	simulations	with	very	heavy	
computations	 can	 be	 converted	 in	 to	 VA	 and	 animated	 in	 game.	 There’s	
much	 that	 can	be	 explored	with	vertex	 animation	 for	weapon	effects	 and	
also	 the	capabilities	of	Houdini	Engine	 for	UE4	 itself.	Using	 the	HDA	for	a	
trail	mesh	is	just	one	example.	A	lot	more	can	be	done	for	other	weapons,	
such	as	arrows,	guns,	and	magic	etc.	 	

	 36	

References	
	
3ds	Max.	(2018).	Autodesk,	Inc.	
	
Ark:	Survival	Evolved.	(2017).	Studio	Wildcard.	
	
Ashford,	D.	(2017).	UE4	-	Tutorial	-	Dynamic	Materials	in	BluePrints!	(Request!).	[video]	
Available	at:	https://www.youtube.com/watch?v=6OTaEHfRyH8	[Accessed	9	Aug.	
2018].	
	
Ashford,	D.	(2017).	UE4	-	Tutorial	-	Ice!	(Ice	baby!).	[video]	Available	at:	
https://www.youtube.com/watch?v=sE64iTjnoUM	[Accessed	10	Aug.	2018].	
	
Azure	Sword.	(2017).	[3D	Asset]	Available	at:	
https://sketchfab.com/models/f49c38d21e0449c387c7d6174e16f973	[Accessed	9	
Aug.	2018].	
	
Bannink,	P.	(2009).	Houdini	in	a	games	pipeline.	In:	SIGGRAPH	'09	SIGGRAPH	2009:	
Talks.	[online]	ACM,	p.Article	No.	61.	Available	at:	http://10.1145/1597990.1598051	
[Accessed	14	Aug.	2018].	
	
Blender.	(2018).	Blender	Foundation.	
	
CGSociety.	(2018).	Creating	VFX	for	Games,	with	Houdini	Artist	Andreas	Glad.	[online]	
Available	at:	http://www.cgsociety.org/news/article/3238/creating-vfx-for-games-
with-houdini-artist-andreas-glad-	[Accessed	13	Aug.	2018].	
	
DV7	Pavilion	(2016).	UE4	Fire	Sword	Trail.	[video]	Available	at:	
https://www.youtube.com/watch?v=JCfbBA42_xE	[Accessed	14	Aug.	2018].	
	
FX	HIVE	EVOLUTION	(2016).	3D	Animation	Houdini	Tutorial	-	Ice	Chrystals	Designs.	
[video]	Available	at:	https://www.youtube.com/watch?v=5ifMIXwBzh8	[Accessed	10	
Aug.	2018].	
	
Gabriel	Aguiar	Prod.	(2017).	Unity	5	-	Game	Effects	VFX	-	Ice	Attack.	[video]	Available	at:	
https://www.youtube.com/watch?v=XqWZZejtjIk&t=1s	[Accessed	14	Aug.	2018].	
	
Gray	Fox.	(2017).	[3D	Asset]	Available	at:	
https://sketchfab.com/models/7313f22ffe3945cf83445d1bc3860d73	[Accessed	9	Aug.	
2018].	
	
Houdini.	(2018).	Side	Effects	Software	Inc.	
	
imn	nam	(2016).	Game	effect	tutorial	-	Sword	Slash.	[video]	Available	at:	
https://www.youtube.com/watch?v=wFgS5pzG1Qs	[Accessed	14	Aug.	2018].	
	
Hellblade:	Senua's	Sacrifice.	(2017).	Ninja	Theory.	
	

	 37	

80	Level.	(2017).	Horizon	Zero	Dawn:	Procedural	Rivers	&	Wires.	[online]	Available	at:	
https://80.lv/articles/horizon-zero-dawn-procedural-rivers-wires/	[Accessed	14	Aug.	
2018].	
	
Mirza	(2017).	Unity	VFX	-	Weapon	Effect:	Electric-Spark	Blood	Sword	(Particle	System	
Tutorial).	[video]	Available	at:	https://www.youtube.com/watch?v=PswVoS5dxtA	
[Accessed	14	Aug.	2018].	
	
Maya.	(2018).	Autodesk,	Inc.	
	
MIX	Training	(2017).	VMT	012	-	HOUDINI	-	Particles	Follow	a	Curve.	[video]	Available	at:	
https://www.youtube.com/watch?v=pBZM387_SYg&t=209s	[Accessed	10	Aug.	2018].	
	
80	Level.	(2017).	Procedural	Technology	in	Ghost	Recon:	Wildlands.	[online]	Available	at:	
https://80.lv/articles/procedural-technology-in-ghost-recon-wildlands/	[Accessed	14	
Aug.	2018].	
	
Red/Purple	Trail	Texture.	(2018).	[image]	Available	at:	http://jeffreycollins.us/wp-
content/uploads/2018/02/paint-stroke-lovely-white-paint-stroke-08-of-paint-
stroke.png	[Accessed	10	Aug.	2018].	
	
Sea	of	Thieves.	(2018).	Microsoft	Studios.	
	
SideFX	(2017).	GAME	TOOLS	|	VECTOR	FIELDS	TO	UE4.	[video]	Available	at:	
https://www.sidefx.com/tutorials/exporting-vector-fields-to-ue4/	[Accessed	10	Aug.	
2018].	
	
SideFX	Houdini	(2017).	CurveSweeper	-	Intro	to	Houdini	Engine	//	Houdini	for	Games.	
[video]	Available	at:	https://vimeo.com/223354261	[Accessed	9	Aug.	2018].	
	
Smyke	(2016).	UE4	-	VFX	weapon	effect.	[video]	Available	at:	
https://www.youtube.com/watch?v=56PctWEYSKY	[Accessed	14	Aug.	2018].	
	
TorQueMoD	(2015).	UE4	Quick	Tutorial	-	Spawn	Actor	at	Player	Location	with	Blueprint.	
[video]	Available	at:	https://www.youtube.com/watch?v=jMBlz0o5wNk	[Accessed	9	
Aug.	2018].	
	
Unity.	(2005).	Unity	Technologies.	
	
Unreal	Engine	4.	(1998).	Epic	Games.	

	 38	

Bibliography	

Kruel,	L.	(2017).	Vertex	Animation	GDC	Project	Overview.	[video]	Available	at:	
https://vimeo.com/207832662	[Accessed	14	Aug.	2018].	

mamoniem	(2017).	Unreal	Engine,	Houdini	Vertex	Animation	to	UE4	-	UE4U.XYZ.	[video]	
Available	at:	https://www.youtube.com/watch?v=zGmElCpxZnk	[Accessed	14	Aug.	
2018].	

Mckinnon,	L.	(2015).	Unreal	Engine	4	Weapon	Animation	Trails	Tutorial.	[video]	
Available	at:	https://www.youtube.com/watch?v=an1ndqt-iO0	[Accessed	14	Aug.	
2018].	

SideFX	Houdini	(2017).	Flowmaps!	//	Houdini	for	Games.	[video]	Available	at:	
https://vimeo.com/243733565	[Accessed	14	Aug.	2018].	

Unreal	Engine	(2015).	Skeleton	Assets:	Using	Anim	Notifies,	Curves	&	Slots	|	05	|	v4.8	
Tutorial	Series	|	Unreal	Engine.	[video]	Available	at:	
https://www.youtube.com/watch?v=per6KmuvRlQ	[Accessed	14	Aug.	2018].	

Unreal	Engine	4	Documentation.	(n.d.).	Animation	Curves.	[online]	Available	at:	
https://docs.unrealengine.com/en-us/Engine/Animation/Sequences/Curves	[Accessed	
14	Aug.	2018].	

Villani,	R.	(2017).	UE4	Tutorial	101	—	Control	Materials	in	Blueprints.	[video]	Available	
at:	https://www.youtube.com/watch?v=I8s-Bt-YOUg	[Accessed	14	Aug.	2018].	

	 	

	 39	

Abbreviations	
	
Anim		 Animation	
BP	 	 Blueprint	
HDA	 	 Houdini	Digital	Asset	
UE4	 	 Unreal	Engine	4	
VA		 	 Vertex	animation	
VF	 	 Vector	Field	

