
       1 | P a g e  

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis by Lloyd Phillips 



       2 | P a g e  

CONTENTS 
Contents .................................................................................................................................................................................. 2 
Abstract ................................................................................................................................................................................... 5 
Introduction ............................................................................................................................................................................ 5 
Planning................................................................................................................................................................................... 5 

BREAKDOWN ....................................................................................................................................................................... 6 

DESIRABLES GAINED FROM GDD ........................................................................................................................................ 6 

GitHub ................................................................................................................................................................................. 7 

Initial Designs .......................................................................................................................................................................... 8 
UI Design ............................................................................................................................................................................. 8 

In Game UI ...................................................................................................................................................................... 8 

Inventory UI .................................................................................................................................................................... 8 

Main Menu UI ................................................................................................................................................................. 8 

Control set up...................................................................................................................................................................... 9 

Production ............................................................................................................................................................................. 10 
Puzzles ............................................................................................................................................................................... 10 

Class Diagram .................................................................................................................................................................... 10 

Door Class .......................................................................................................................................................................... 10 

Statue Object Actor Class .................................................................................................................................................. 11 

Green Puzzle ..................................................................................................................................................................... 12 

Blue Puzzle ........................................................................................................................................................................ 13 

UML Diagram ..................................................................................................................................................................... 13 

How the Puzzle Works ....................................................................................................................................................... 13 

Issues That Arose ............................................................................................................................................................... 14 

Push and Pull Functionality ............................................................................................................................................... 14 

Solutions ............................................................................................................................................................................ 14 

Current Bugs ...................................................................................................................................................................... 15 

White Puzzle...................................................................................................................................................................... 16 

UML Diagram ..................................................................................................................................................................... 16 

How the Puzzle Works ....................................................................................................................................................... 16 

Issues That Arose ............................................................................................................................................................... 16 

Data Factory Class ............................................................................................................................................................. 17 

Offering Statue .................................................................................................................................................................. 17 

Solutions ............................................................................................................................................................................ 18 

Current Bugs ...................................................................................................................................................................... 18 

Red Puzzle ......................................................................................................................................................................... 19 



       3 | P a g e  

UML Diagram ..................................................................................................................................................................... 19 

How the Puzzle Works ....................................................................................................................................................... 19 

Issues That Arose ............................................................................................................................................................... 20 

Offering Pit ........................................................................................................................................................................ 20 

Solutions ............................................................................................................................................................................ 20 

Current Bugs ...................................................................................................................................................................... 20 

Yellow Puzzle ..................................................................................................................................................................... 21 

UML Diagram ..................................................................................................................................................................... 21 

How the Puzzle Works ....................................................................................................................................................... 21 

Issues That Arose ............................................................................................................................................................... 22 

Pick Up Item Actor ............................................................................................................................................................. 22 

Solutions ............................................................................................................................................................................ 22 

Current Bugs ...................................................................................................................................................................... 22 

Black Puzzle ....................................................................................................................................................................... 23 

UML Diagram ..................................................................................................................................................................... 23 

How the Puzzle Works ....................................................................................................................................................... 23 

Issues That Arose ............................................................................................................................................................... 23 

Painting Object Class ......................................................................................................................................................... 24 

Solutions ............................................................................................................................................................................ 24 

Current Bugs ...................................................................................................................................................................... 24 

Last Notes .......................................................................................................................................................................... 24 

Sequences ......................................................................................................................................................................... 25 

Sequencer Explained ......................................................................................................................................................... 25 

Our Sequences ................................................................................................................................................................... 25 

Lotus Door ......................................................................................................................................................................... 27 

Inventory ........................................................................................................................................................................... 28 

Spawning an item .............................................................................................................................................................. 28 

Reset All UI Slots ................................................................................................................................................................ 28 

Mouse Input ...................................................................................................................................................................... 28 

Slot Selections ................................................................................................................................................................... 29 

Particle Simulations........................................................................................................................................................... 30 

Torch Light ......................................................................................................................................................................... 30 

Pickup Item Indicator......................................................................................................................................................... 30 



       4 | P a g e  

What didn’t make it to final game ........................................................................................................................................ 31 
Antelope ............................................................................................................................................................................ 31 

Class Diagram .................................................................................................................................................................... 31 

Behaviour Tree .................................................................................................................................................................. 31 

Why it didn’t make it in ..................................................................................................................................................... 31 

Particle Simulation ............................................................................................................................................................ 32 

Fog ..................................................................................................................................................................................... 32 

Why it didn’t make it in ..................................................................................................................................................... 32 

Candle Light ....................................................................................................................................................................... 33 

Why it didn’t make it in ..................................................................................................................................................... 33 

Working with Artists ............................................................................................................................................................. 34 
Poly Counts & Textures sizes ............................................................................................................................................. 34 

Sounds Specifications ........................................................................................................................................................ 34 

Communications between Artists and Programmers. ...................................................................................................... 34 

Conclusion & Evaluation ....................................................................................................................................................... 35 
References ............................................................................................................................................................................ 36 
Appendix ............................................................................................................................................................................... 37 
 

 



       5 | P a g e  

ABSTRACT  
This thesis undergoes the process of a group project undergoing the development of a game. The game is called AVA and it is 
a 3rd person puzzle walking simulator game produced by 5 artists and a programmer. This piece explains what planning was 
put into the games development process, what it’s like to work with artists and how the final game came to be. Additionally, 
work that was not in the final game is shown and why it did not make it to the final deliverable. It is hoped that this thesis 
informs the reader of the process that went on during the development of this project whilst also enlightening issues of 
communication between artists and programmers.  

INTRODUCTION  
AVA is a game about a character’s journey through their past, which will lead them and the player into the Tibetan culture and 
rituals to unlock the door to Nirvana. This thesis focuses on the development of a group project were the team have decided 
to build a game in Unreal Engine. The team consists of 5 artists and a single programmer meaning game mechanics were 
limited to a single person. This game is a 3rd person puzzle walking simulator game which allows the game to focused more on 
art in the 10 weeks development time rather than the game itself. The thesis will go over the planning and how the game was 
planned. The initial designs of UI so that the artists and programmer new what to aim for/produce. Production; what was and 
wasn’t implemented, how, why, and what went wrong. Finally, what it’s like working with artists, issues, restrictions and perks 
that come with it.  

PLANNING  
The first part of this project was coming together as a team and coming up with initial ideas. The artists underwent a 
preproduction task of thinking about how they want their game and what they want it to be when it’s finished, a selection of 
different cultures where provided to vote upon on depending on colours, structures and native animals. Once the culture had 
been chosen the team then went their separate ways in trying to come up with mechanic ideas and how the story might play 
out. The author’s initial design for the game mechanics and how they might work can be found in External Document E (Please 
refer to External Document E – Initial Thoughts and Worries). Within this document can also be found the initial culture 
votes, worries that where found with the teams’ chemistry and of course the story and mechanics and how they might 
entwine. The initial design used the lunar cycle and the Tibetan culture research (Provided by one of the artists) to merge the 
culture, mechanics, and story into one as well as using key items within the culture to come up with some game mechanics 
and puzzles. 
The following part of the planning was to get the artists to complete a GDD (Please refer to External Document A – GDD). This 
was surprisingly difficult to get them to complete as it was their first time making and designing a game and the process was 
unfamiliar to them. The GDD is a preproduction document that allows the programmer to understand the functionalities and 
requirements that the Artists desire and require and get a rough outline of what classes can be implemented. It also works as 
a focus for the artists to keep on point to the initial design as designs can run astray and take quite large tangents without 
having a structured document to refer to as reference. This then moves onto the considering of how the mechanics of the 
game might be developed and how they might work in a theoretical sense. The inspiration for the template of the GDD that 
was provided to the artists comes from a book by Scott Rogers (2014) called Level Up! Which is a structured book on games 
design and is aimed at more game design than technical design.  
From the GDD usually a Technical Design Document (TDD) will be created however in this case the TDD blends in with this 
thesis. From the GDD the first step is to breakdown the overall game aspects, then gather the desirables from what the artists 
have said they want in the game.  From this it is possible to start to consider how the game will be designed and implemented. 
What needs to be learned, and what’s already known, and what can’t be done.  
 



       6 | P a g e  

BREAKDOWN 
 This is a game about a character called AVA. 

 He killed a weasel out of malice. 

 The Weasel is now your companion. 

 Walking Simulator + Puzzles. 

 Puzzles Include: 
o Green Room: Ethics: Praying 
o White: Generosity: Gifting 
o Yellow: Patience: Waiting/Slow Walking 
o Blue: Diligence: Helping 
o Red: Renunciation: giving up an item 
o Black: Wisdom: Solve the library 

 Rich Environment 

 Interior & Exterior Environments 
 

DESIRABLES GAINED FROM GDD 
 3rd Person Game 

 Game World 
o Simple interactable objects 
o Models 
o Textures 
o External Environment 
o Interior Environment 
o Moving Grass 
o Deformed Grass 
o Trees blowing 

 Movement to include: 
o Multi Speed movement (Walk, Run, 

Sprint) 
o Turn Around 
o Jumping 
o Push/Pull 
o Climbing 

 Inventory System 
o Collection of Items 
o Discardable 
o Collectables 
o Intractable in world 
o Intractable in game. 

 Puzzles 
o Praying 
o Puzzle Completion 
o “Peaceful” particle effect while praying. 
o 4 Piece Puzzle set up 
o Gifting puzzle (apply gift to god) 
o Throw item down whole puzzle 
o Stay away from throne. (Check) 
o Apply scrolls to a match symbol puzzle 

 UI 
o Main Menu 
o In Game 
o Controls 
o Inventory System 

 Cut Scenes 
o Puzzle Completion 
o Opening Scene 
o Closing Scene 

 Inverse Kinematics (IK) 
 Highlight of objects.  

 Volumetric Lights 

 Audio & Sound Effects 

 Antelope AI 

 Weasel AI 

 Lighting 

 

As is apparent the list is quite a substantial size for a game development of 10 weeks and it’s highly likely that fair amount of it 
will have to be cut from the project to be able to provide a reasonably polished deliverable. An artist’s mind can be quite 
ambitious without understanding the implications to gameplay and programming requirements for different aspects. Luckily 
this project had a team of reasonable artists who understood that some things would have to be compromised whilst others 
will have to be dropped completely.  
After this breakdown was completed a full task list was constructed, continuing from that an ABC plan was put into place 
(Please refer to External Document B – ABC Plan). Plan A was kept to the bare minimum and to as minimal of a deliverable as 
possible as through previous group projects it was seen that a project can have a very quick turnaround into failing and having 
no deliverable at all. Plan B was kept to a more desired output that the team would be happy to hand in as a polished 
deliverable this was the “Target” for the final hand in. Plan C was a highly desired game that if time permitted could 
implement certain technical and artistic advances.  



       7 | P a g e  

From the ABC plan a Gantt chart was produced, sadly this was mainly used for tracking days, a more detailed task list and 
where the team was regarding the tasks, it wasn’t used as an actual scheduler. The reasons for this was because of the 
sporadic working times of some team members as well as changes in management throughout the process. (Please refer to 
External Document C – Gantt chart) 
A final document was put into place to track the work of the team members this was the Production Diary (Please Refer to 
External Document D – Production Diary (Post)). This helped keep track of team members and to make sure that all the team 
was working appropriately as they should. It was also helpful with days off and estimating ETA’s on work based on time taken 
to do a job.  

GitHub  
The project initially used GitHub as our choice of source control, however due to the following reasons: 

 Right limitations on the university computers  

 issues with file sizes going over 100MB  

 Only being able to use Git Desktop 

 The gitignore file not doing its job properly 
As the project went on sadly the source control had to be manual for the project. However, GitHub was still used as a source 
control for all the coding. A back up was stored on a separate external HD as well as other backups of various files. An 
eventuality of having to merge all files across the group had to be done and took a few days which could have been removed if 
git had been installed on the windows machines at university.  
The repo for this project can be found here: 
https://github.com/Driven-Mad/MastersProject 
 
 

https://github.com/Driven-Mad/MastersProject


       8 | P a g e  

INITIAL DESIGNS 

UI Design 
IN GAME UI  
A blocked-out example of the in-game UI was 
provided for the artists so that they could understand 
what they were aiming for, keeping in mind the 
simplistic design and considering the programming 
restrictions, so they wouldn’t go overboard with their 
design. Based on this, feedback could be given from 
both ends and a final design could be made keeping 
both technical and artistic parties happy. The initial 
game UI had very simple and very minimal design to 
keep the screen as clear as possible. The design 
wanted to use the 6 virtues that are assigned to each 
room as a notification to the player to let them know 
that the puzzle was complete. Each time a puzzle was 
complete a flower petal would fill with the color of the 
room. In figure 1 all images are filled in for simplicity. 
This kept the UI concise and with the theme of the 
game. 

INVENTORY UI  
A blocked-out example of the Inventory system 
(Figure 2) had to be provided to the artists allowing 
them to understand how the inventory system would 
be implemented. Initially the team wanted to have 
two tabs, one for collectables to allow for a more in-
depth story to be told through them, whilst the 
second tab was for items which are found around the 
palace for different puzzle solutions.  
The team wanted items to be picked up, a description 
of the item to be shown and for the items to be 
discarded or used. The description would just be a 
simple sentence and with time would turn into an 
object viewer and give a greater description or play a 
short video with some history to the object.  
The initial thoughts on the implementation of the 
inventory system was to have the player hold an array 
of “Items” and push/pop a list of widgets that held the 
sprites to the UI slots.  

MAIN MENU UI  
The main menu also had to be blocked-out (Figure 3) 
for the artists so they had a good understanding of 
what was needed. The initial design had a beautiful 
image as the background and three simple buttons; 
play, controls and quit.  The artists would have to 
provide the image and the 3 buttons one highlighted, 
one not. This allowed the indication to the user where 
their cursor is currently selected. The reason for this is 
that fonts can be quite a pain within unreal. 

Figure 1 In Game UI (Initial)  

Figure 2 Inventory UI (Initial)  

Figure 3 - Main Menu (Initial)  



       9 | P a g e  

The initial controls window that was desired was in 
Figure 4 where there is a simple sophisticated table 
which had all possible inputs based the user’s desired 
input method whether that be Keyboard & Mouse, X-
Box Controller, or the PS4 controller. This method 
gave the ability to show the menu to the user without 
too much change. Which can cause some 
disorientation to some users when they’re switching 
between multiple menus. 

Control set up. 
The controls were prechosen based on previous 
games and how the team saw games were played 
from personal experiences and based on the 
mechanics that were going to be implement. The full 
key mapping can be seen in both Figure 5 and Table 1. 
This controller setup was tested to see what felt more comfortable during gameplay when doing multiple interactions. 
 

 

 

 

Figure 4 - Instructions (Initial)  

Table 1 - Control Setup 

Figure 5 - Control Setup 



       10 | P a g e  

PRODUCTION 

Puzzles  
Class Diagram 

 

This is the general structure for the puzzles. The puzzle class itself is abstract and must be instantiated, however unreal 
doesn’t support “Real” abstract classes that inherit anything from the engine. UE4 does allow the change of the UCLASS() to 
UCLASS(abstract) which will make the class unable to be instantiated as itself and must have children classes to be 
instantiated (Davidson 2014).  
The parent class “Puzzle” is the child of UE4’s spawnable class “Actor”, this allows the item to be spawned within the game. 
This helps keep the puzzles in context and updated using UE4’s system and makes it easier to get pointers to objects within 
the scene as reference. A full UML diagram can be seen in External Document F - Full Puzzle UML Diagram. Each puzzle is 
represented by a colour and a virtue, this help to narrow down the game mechanic design as well as base the rooms design 
around the different colours and virtues.  

Door Class 
Each puzzle requires a door that will open when the puzzle is complete. The door is a mostly a simple class that will run a 
timeline function that will read in a curve that has been designated by an artist to match their choice of door swing.  



       11 | P a g e  

First a curve is found and then a timeline is defined. The interp function which is used by the timeline class, declare in the 
header file, will bind a function to be called that will access the floating point value given from the timeline (See Appendix 
Code Snippet G). The function that is bound then allows for the value from the timeline to be used. (See Appendix Code 
Snippet H). 
As is visible in figure 6 the curve goes from 0 to -90 over the course of 5 seconds. This value over time will be the doors new 
yaw value, seen in the above function, to simulate the movement over time. 

 

Statue Object Actor Class 
The next thing that every puzzle has is a statue which allows the player 
to pray at and receive some instruction towards the current puzzle that 
they are in. The instruction is given via a small sequence which will be 
explained later in this thesis. Each statue has its 3D representation 
which is the static mesh component “Designated mesh”. This allows for 
the artists to give an appropriate model for each different room. An 
example of a setup of this actor can be seen in figure 7, where the 
yellow rooms Tara is placed, and a mat is placed in front for the player 
to pray if they require the help of the goddess. The functionality for 
praying at this class is provided in the character class in the interaction 
function. (See Appendix Code Snippet I) 
In this we create an array to store any actors which are overlapping 
with the characters attached sphere. This sphere fully encapsulates the 
player allowing triggers to be fired when another actor overlaps with it. 
The GetOverlappingActors function, provided by unreal, will store all 
the actors within the array. To proceed, loop through the overlapping 
actors, and check if one of them is a statue object. If so then the statue 
variables is player praying and can the player pray at the statue are 
changed. This makes sure that the player can only pray at any statue 
once, this helps reduce the length of the game as due to time making these skippable was not available. Watching them 

Figure 6 Door Swing Curve 

Figure7 - Tara Praying Object 



       12 | P a g e  

multiple times by accident would increase the time it takes to play substantially. The IsPraying is for the animator within the 
animation graph so that it can play the appropriate praying animation at the right time.    

Green Puzzle 
Green puzzle had little functionality so there was not much point in doing a UML diagram for this puzzle as the only thing that 
was required to complete this puzzle was to have the player pray at the statue to receive hints. It inherits from the puzzle class 
and only really uses the same functionality as the parent class, except for a slight modification to the tick function. This may be 
a simple class but it was felt to be one of the more important puzzles as it helps show the player where they can find help. 
Praying at this statue triggers a small sequence that will show the player the way to the next puzzle and informs them that 
praying at statues will result in help. 
 
 



       13 | P a g e  

Blue Puzzle  
UML Diagram 
 

 

How the Puzzle Works 
This puzzle is the blue room puzzle and is based on diligence. The point 
is to help the god by putting the lilies in their place (On lily pads). As is 
visible in figure 8 the yellow dots represent the lilies and the red squares 
represent the targets (Lily Pads). The player must push the lilies onto 
the targets to complete the puzzle. To do this the push and pull actors 
that represent the lilies are pushed onto the lily pads by the player and 
when it overlaps with a trigger box an overlap event occurs and the 
puzzle is informed that the Lily is in its place. Pushing all 4 actors onto 
the targets completes the puzzle and will switch to a small sequence to 
show the lotus door changing a petals colour to blue. This functionality 
is based in the Blue Puzzle class update function. (See Appendix Code 
Snippet J) 
 
 

Figure 8 Blue Room Puzzle Explained 



       14 | P a g e  

 
From this, much like the praying functionality, each of the trigger boxes stored in the blue puzzle class are checked through a 
for loop and checks if the push pull objects that are also stored within the class are overlapping with it. If the overlap is true, a 
stored array of Booleans is set to the same index. Once all overlaps are true, the puzzle is complete.  

Issues That Arose 
The blue puzzle was the second of the implementations of the puzzles and was where the first of many issues with this project 
came into effect. When an Actor (A) is attached to another Actor (B), the collisions of Actor B are not passed to Actor A and so 
provides the first issue: Clipping meshes.  

Push and Pull Functionality 
The push and pull class is inherited from the Actor class to give it more functionality that is required within this class. This class 
inherits from the actor class so that the ability to use UE4’s AActor::AttachToActor and AActor::DetachFromActor functions is 
available to be used. These are used to accomplish a relatively smooth transition in attachment and to be able to leave them 
within the scene.  (See Appendix Code Snippet K) 
When attached and the player pushes an item it goes through other objects and walls. To fix this and accomplish a push and 
pull like reaction from an object a few solutions where attempted. To solve the clipping issue solutions that were tried in-
cluded; trying to modify Actor A’s collisions to match that of Actor B’s, A simple replacement of Actor A’s collisions to be B’s, 
and adding a new collision altogether. Sadly, none of these were successful and so a final addition was added which was a 
simple and fast hard coded box collision. During this attachment, the players walk speed is reduced to make it appear as the 
player is pushing slower with the added weight. Once this process is complete the StopPushPull function simply reverses it.  

Solutions 
The class allowed the artist to input 
hard values of X&Y Minimum and 
Maximum values which if met would 
detach the player from the item they 
have “pushed or pulled”, these figures 
can be seen in Figure 8. Additionally, a 
lock entirely on a chosen axis was 
added because the Unreal’s lock to 
axis did not work due to the hard-
coded collision box. Finally, the artists 
helped by modifying the rooms design 
and layout to avoid having objects 
within the scene that weren’t 
necessary during the push and pull 
portion. 
During this process, the character class 
needed to see if it could interact with 
a push and pull object. To accomplish 
this a line trace was cast forward X 
amount from the player by getting the actors forward vector (FV) and getting the actors location (L). The ray starts at the 
actor’s location (Blue Dot in Figure 9) and an offset A is added, the end of the ray is calculated by L + (FV * Trace Distance B). 
(See Code Snippet L) 
The trace distance allows for the item to be only attached when it is in range giving mostly full control on the attachment 
process. The reason for the required offset is because the actor’s location is set at the centre of the mesh and the artists 
wanted something to match so that only something that hit the trace line would be able to be pushed/pulled to increase 
believability and adjust mesh sizes of the push and pull items accordingly. This helped to minimise the attachment process 
giving odd results such as the player having its back to the object but still attached.  
The sphere component of the push and pull actor can be moved to be placed where it is required for the player to attach, this 
could be the orange circle in figure 9 where it’s at a very specific point, or it could be in a more varied placed such as the large 
red area. This does not mean, for example like IK (Inverse Kinematics) where the hand would attach exactly like a human’s 
hand, this means that the player will “Collide” the trace line with this circle and that would allow them to attach to that 
object. The push and pull actor is used in the black puzzle and can be used over and over within the game if the game was 

Figure 9 Push Pull Explained 



       15 | P a g e  

extended to move platforms to jump around on for example. However, this is currently not the case as the development of 
further puzzles and mechanics would take time.   

Current Bugs 
Current issues on the bug list regarding the push and pull mechanic is that it allows for the user to approach from the side and 
still attach at a certain range of angles (roughly 30 degrees’ either way). The player can still only go forward and backwards 
but this makes it look worse and less believable.  This could be solved by snapping the user to the object within a certain 
threshold however this may not be implemented in the deliverable due to shortage of time.  
 



       16 | P a g e  

White Puzzle  
UML Diagram 

 

How the Puzzle Works 
This puzzle is the white room puzzle and is based on generosity. 
To complete the puzzle the player must generously offer up to 
the Buddha statues an offering, in this case a mandala which will 
be represented by our class “Pick Up Item”. As is visible can see 
in figure 10 the yellow dots represent the three Pick Up Item 
actors that the player need to pick up and place in their 
inventory. The red squares represent the Buddha statues which 
will be the class “Offering Statue”. The player must search the 
rooms and collect all 3 items and offer them up as a gift to each 
of the Buddha statues. They do this by entering their inventory, 
selecting the appropriate item and click “use”. At the end of this 
puzzle the game will switch to a small sequence to show the 
lotus door changing a petals colour to white. 

Issues That Arose 
There were a few issues that arose when it came to light by 
implementing this puzzle. The main ones being on the Offering 
Statue class the Buddha Statue and Alter meshes would 
constantly put their relative locations to world locations which 

Figure 10 White Room Puzzle Explained  



       17 | P a g e  

would remove them from their proper places. Acknowledgement that the puzzle was complete had to be achieved so the 
player new they were progressing. A second door was also required for this puzzle as it lead to the great hall before going into 
the next room.  

Data Factory Class 
The data factory class allows the ability to store all the data on various 
items that are within the scene that go in the inventory system. This 
includes different file paths to various assets as well as properties required 
for the game. First, two enum classes were created which were exposed to 
blueprints via the UENUM (Blueprint Type) allowing the use of these within 
the blueprint system. Next a type definition map called Item Data was 
created which will be used to store string data variables based on the 
enums Item Data Variables.  
typedef TMap<ItemDataVariables, FString> ItemData; 
Then a map of the enum class Item and the type definition Item Data is created. 
static TMap<Item, ItemData> Items; 
This links items to a set of data within the map. This will allow the eventuality of accessing data values via strings and the 
enums themselves, it also makes it easier to create re-usable functions for all items rather than individual items. To clarify the 
data flow can be seen in figure 11 and shows the data factory structure better in terms of the maps that are being used. 
Note: Inventory & The pick up actor will be explained later in this thesis. An example of an item being set up can be seen in 
Appendix Code Snippet M. 

Offering Statue 
Each offering statue requires a single item to be offered to it. Once the appropriate Pick Up Item actor overlaps with the 
overlapping sphere, much like how overlapping actors are found in previous functionality shown, the item is destroyed and 
the Offering Item static mesh becomes the 3D representation mesh of the Pick Up Item actor. As the item is offered a Boolean 
is also triggered to inform the puzzle that the item has been offered successfully.  This is calculated in a similar way to the blue 
puzzle with overlaps being the triggering notify of events. (See Appendix Code Snippet N) 

Figure 12 Offering Statues  

Figure 11 Data Factory Tree 



       18 | P a g e  

Solutions 
Regarding the two meshes Currently setting them as attached to the Root Component works for now, however it’s rather 
random and cannot be guaranteed as a fixed as this an unreal bug and requires rebuilding of the class to 100% fix which time 
is not allowing. To solve the acknowledgment issue once the item has been offered the Buddha statue will hold the item in 
their hands as acknowledgment that the player has offered the item successfully. As seen in figure 12 the green circles where 
on the left an item has been offered to the statue and on the right the item has not been offered. The second door was added 
to the child actor as this was not considered during the designing of the puzzles. Leading to when the puzzle is complete, the 
door on the right-hand side will open and lead into the great hall, whilst also a second door will open to the red puzzle room 
across the hall.  

Current Bugs 
The only known bug for this puzzle is the Buddha statue and alter, which currently seems to be okay however still noting it 
here in the case that it happens during testing. 



       19 | P a g e  

Red Puzzle  
UML Diagram 

 

How the Puzzle Works 
This puzzle is the red room puzzle and is based on the virtue of renunciation. 
The player must offer up a precious item that the character AVA holds dear 
to their heart to show the willingness renouncing worldly possessions. From 
the beginning of the game the character holds in their inventory a bracelet 
that Ava has had since they were born. The player must go to the offering 
pit and offer up the bracelet which will drop down the pit. A short cinematic 
will play which shows Ava taking off the bracelet and dropping it into a pit. 
Upon offering this item the player has completed the puzzle and the lotus 
door sequence will play and a petal will change to red. A layout of the red 
room can be seen in figure 13. The bracelet will no longer be on the player’s 
wrist nor will it be in the inventory. 
 Figure 13 Red Room Explained 



       20 | P a g e  

Issues That Arose 
This was the first time a full cinematic would be played however the solution to that will be explained further on in the thesis. 
The biggest issue was adding to the realism of the game regarding what would happen to the bracelet once the cutscene had 
played and how the bracelet would work in general. Another issue that arose was that the bracelet could be dropped 
anywhere within the palace and it is required to be able to complete this puzzle.  

Offering Pit 
The offering pit works very much like the offering statues, an item is required, specifically the bracelet, and must be offered 
up to the Offering Pit actor to sate the puzzle. This class could have been avoided completely and the two merged however 
this class was a quick addition at the time as ease was needed over efficiency. Once the bracelet overlaps with the overlapping 
sphere then the item is destroyed in game, and the cut scene is played.  As seen in figure 14 the pit is set up with the giant 
cylindrical mesh being the pit and the small mat indicates where the player should stand to offer up the item.  

Solutions 
After a long discussion with one of the artists it was decided that the bracelet would be an item that was attached to the rig 
and they would animate it within the animation itself, once the cut scene complete the material of the bracelet would be 
replaced with a transparent one. This kept the solution rather simple and saved messing around with sockets attached to the 
rig within unreal engine. 
To solve the issue with the dropping the bracelet anywhere, the plan is to have it much like within Pokémon when a player 
tries to use the bicycle indoors and professor oak says that it is not possible to use the item here. The plan is to do much the 
same however have the Tara say, “This item is precious to you, you cannot just throw it away like its trash”. This solution has 
not been implemented yet however should be within the final deliverable.  

Current Bugs 
Current known bugs with this is that the collision circle for the offering is too small and that the player sometimes just drops 
the item to the floor. They can pick it up again and try again, however this should work first time, simply increasing the size of 
the collision sphere should fix this. 
A further bug includes the cloth simulation where the sequence snaps the player into place the cloth sim is then broken 
randomly and clips in the arm. The plan is to change this so that the sequence doesn’t control the player and instead to switch 
to the puzzle itself having it manage the player, that way the player can be lerped between the two positions rather than 
snapped. However, if time does not allow the bug has been recorded here.   
 

Figure 14 Red puzzle pit 



       21 | P a g e  

Yellow Puzzle 
UML Diagram 

 

How the Puzzle Works 
This puzzle is the yellow room puzzle and is based 
on the virtue of patience. The target for getting 
this puzzle complete is to get a pick up item actor 
from the throne, but when the player gets close 
to it, the item disappears. The player must wait in 
one place for a total of 10 seconds and upon 
waiting for the 10 seconds a cut scene is triggered 
where the weasel gets the item for the player. 
The point to this puzzle is to show that patience is 
a virtue and that with patience reaps rewards. A 
layout of the room can be seen in figure 15.  
 
 Figure 15 Yellow Room Explained 



       22 | P a g e  

This puzzle uses a timer, and once the player has been overlapping with the correct sphere for the right amount of time the 
puzzle is complete. The throne item has to be destroyed, so that it is removed from the world, and so that the rigged one can 
be replaced with it. The rigged one has an invisible texture till this point. Upon completing this the rigged throne item’s 
material is changed to the right one, set to invisible at the end, and then finally the item added to the inventory. (See 
Appendix Code Snippet O) 

Issues That Arose 
The main things that arose within this cut scene is that the player had to wait in a specific spot for a certain amount of time 
and it was not clear how to accomplish this.   

Pick Up Item Actor 
The Pick Up actor is a class that inherits from the actor class and uses the data factory to adjust all of its variables. This actor 
can be spawned and manipulated by anything else within the game however is used within the inventory system that is 
attached to the UI blueprint. Items can be added to the game and simply change the item time and the variables will change 
on the fly. When the player interacts bIsPickingUp is set to true which is used for the animator if they wanted to play an 
animation of picking up. bPlaySoundPickup is a notify to allow for a sound to be played when they pick up an item. (See 
Appendix Code Snippet P 

Solutions 
As seen in figure 16 the solution to having the player wait in a single spot was to indicate it with a mat for the user to stand 
on. The Tara gives hints to how to complete the puzzle also and through user testing most the players understood how to 
complete this.  

Current Bugs 
The player is currently able to pick up the item from the throne even as invisible, the solution to this is to simply move the 
collision sphere away from the item and out of the players reach. The reason this is not simply a static mesh is because it 
interacts with the inventory.  

Figure 16 Yellow Room Waiting  



       23 | P a g e  

Black Puzzle  
UML Diagram 

 

How the Puzzle Works 
This puzzle is the black room puzzle and is based on the virtue 
of wisdom. The target for getting this puzzle complete is to 
gather from around the library 7 of 8 pickup items, which are 
based on the auspicious symbols of the Tibetan culture, and 
place them in the painting at the back of the room.  The 8th is 
already in the painting to show the player what they are 
doing. Once all items have been placed on the painting object 
then the puzzle will be complete. The Final petal will turn 
black on the lotus door, and Tara will explain to the player 
that having completed all the virtues it’s finally time to go to 
Nirvana through the lotus door.  

Issues That Arose 
Issues that arose with this puzzle was in the push and pull 
objects and how because of the hands not touching the 
handle, how unrealistic it was. The implementation of the 
painting object, and having 8 pick up items attached to it was also an issue at the beginning.  

Figure 17 Black Room Puzzle Layout 



       24 | P a g e  

Painting Object Class 
The painting object allows the 
placing of 8 items in the object 
like the way that the offering 
objects are collected. Once all 
items have been offered the 
painting object is complete and 
the puzzle is done. The object 
holds 8 pick up actors, which are 
all Item::Blank initially. Upon 
using the item on the painting, 
the items are swapped out and 
will appear as a part of the 
painting. A finished “painting” 
can be seen in figure 18. This is 
obviously just a stand in to show 
the point of the puzzle, artists 
will work on an actual mural 
eventually.    

Solutions 
To solve the issue of the push 
and pull items, the draws were 
redesigned to match the 
animation. As in figure 19 the 
old draws can be seen in the 
background, and the new one 
attached to Ava is the 
redesigned version. This was so 
that the items matched to the 
animation as closely as possible.  
Originally the pickup items in 
this room had a lot of issues 
with being attached to the push 
and pull objects as well as 
physics on them. To solve this, 
physics were removed from all 
pick up items, and added to the 
class was the ability to block on 
certain axis’ to stop the item 
from moving about, this has 
been previously explained in 
detail.  

Current Bugs 
Current bugs for this room is that the player can attach from a weird angel.  
Another is that the items can be picked up from the outside. This will be solved by reducing the size of the pick up items 
collision boxes.  

Last Notes 
This puzzle is a great example of the re-usability of the pick up items, the inventory system and the push and pull objects. It 
also shows that these can be combined and used in various ways to create a wide range of puzzles if the game was to be 
expanded. Other puzzles could be developed in a similar way to this by re-using a lot of the classes already implemented to 
expand and broaden this game. An example could be to have push and pull crates to be moved to jump onto to get to higher 
places where items could be waiting to be offered to a different deity within the Tibetan culture.  

Figure 19 Ava pushing and pulling shelf in library  

Figure 18 Ava completing the puzzle  



       25 | P a g e  

Sequences  
Sequencer Explained 
Sequencer Editor is Unreal’s inbuilt cinematic creator to create in game cinematics, it is brand new as of version 4.12 replacing 
their original matinee cinematic maker from UDK. The sequencer is a multi-track editor that works with cameras called Cine 
Cameras, and cuts between them via the user’s choice in track. The cameras are animated using key framed animation within 
the level and upon each of their own tracks. Other assets such as actors, sounds and animations can also be played by adding 
tracks through the sequencer. (Epic Games, 2017). When a sequence is created the sequence itself remains within the scene 
as an actor, it is possible to create versions of this within blueprints, however having a pointer to the actor within the scene 
stops a lot of issues that can confuse the engine and throw out bugs. With the help of Bourrelly (2016) this was a successful 
implementation as the tutorial provided by him clearly explains how to set up a simple sequence and use the sequencer 
effectively.  

Our Sequences 
In figure 20 an example of the sequencer for one of the Tara’s, it has a single camera and the camera has had its transform key 
framed. It uses curves to transition between the two frames creating a smooth transition between the two. A great added 
feature is the addition of the fade to black track. This allows the ability to fade our cinematics to black to hide unwanted arte-
facts or returning to the main camera.  
 

In figure 21 an example of the sequencer for the cut scene, there is three different cameras which have been cut together in 
the camera cuts track. This allows a smooth transition between cuts rather than a snapping of the camera when moving it. In 
this scenario the player has been added however due to a bug with cloth sim this will be removed and the character will be 
moved by other means.  
One issue that was found with this is that if the camera cuts goes all the way to the last frame then the camera can get stuck 
and will not return to the game, cutting the sequence a few frames short with a fade to black fixed this. This was found after 
reading about a different bug by Cinebeast (2016) with issues playing animations from the character.  
 

Figure 20 Tara Sequence 

Figure 21 Cinematic Sequence 



       26 | P a g e  

In figure 22 a sequence is played via a reference to a sequence actor within the scene; in this case the green puzzle explained 
sequence. From that the sequence player is accessed and simply calling the play function from the class plays the sequence. 
Now because of the way the sequencer works the player still has user input so this must be disabled via the blueprint before 
the sequence starts playing.  

As the Tara speaks to the player delays, timelines and sounds needed to be matched with that of the artists requirements for 
camera cuts. A delay is added in figure 22 to match the time of when the Tara starts speaking through the UI. Timelines are 
added to add fades in opacity to each of the new sets of texts so that it’s not so harsh to the user in switching between 
sentences of Tara. These can all be seen in detail as apart of figure 23. Delays are also added in between the sentences again 
to match the camera movement 
of the sequence.  
Unfortunately, in game 
cinematics that use something 
like the character class can’t 
have full animations played 
through this without getting 
stuck at the end or looping over 
and over (Cinebeast, 2016). This 
has been resolved in newer 
versions as stated by developers 
in the Cinebeast post (2016), 
however this project couldn’t 
switch version due to software 
limitations. This meant that the 
characters animation had to be animated within Maya, imported into UE4 and then played via a montage through the various 
puzzles once they had been completed. In figure 24 delays and timelines had to be added to match the animation of the 
cameras in the sequencer to the animation of the character. The montage and sequence had to only be played once and so 
Booleans and conditions were met to make sure this happened.  

Figure 22 Playing the Tara Sequence 

Figure 23 Tara speaking to the player.  

Figure 24 Playing a montage. 



       27 | P a g e  

Lotus Door  

The ending of each of the puzzles is to play a sequence of the lotus 
door (Figure 25). It’s a simple shot of the final door that the player is 
aiming to go through. As the user completes each puzzle the door 
will add a new petal to the lotus at the top to match the colour of 
the room they have just completed.  Once the puzzle is complete 
any text from the UI is cleared and the users input is re-enabled. 
This sequence is about 5 seconds long, but shows the players that 
they are progressing.  
This final lotus door holds a reference to all the puzzles within the 
scene. As the game progresses and the player completes each of 
the puzzles the appropriate element in the array of materials of the 
door is changed to the appropriate material to match the colour of 
the completed puzzle. Delays are added to counter act the fades 
and if another cinematic must be played first. For example, the red 
room has a delay of 32 seconds due to the cinematic that is being 
played before this one (Figure 26).  
Once all the puzzles were complete a final Boolean is set to let the 
door know that the player can now progress to the next stage of the 
game. A trigger box is placed in front of the door and when the 
player overlaps with it the final cut scene is triggered. Much like the 
rest montages, delays and such are all matched to the camera 
movements. Along with this a timeline is added to the doors so that 
they open at an appropriate time within the cut scene (Figure 27).  
Once this cut scene has finished the game will be ended and currently returns to the main menu, it is hoped that credits will 
be added to this before the game is delivered.  

Figure 25 Playing of the lotus door sequence 

Figure 26 Lotus Door, updating materials  

Figure 27 Playing the final Cutscene 



       28 | P a g e  

Inventory 
Spawning an item 

To spawn an item, UE4’s blueprint node “Spawn Actor” is used. By selecting the class “Pick Up Item” from the drop-down 
menu the item can be spawned. To do this within the inventory the player will select the item within their inventory and 
select the use button. A reference to that item name is retrieved and from that, set the item type of the new pick up item that 
will be spawned. From the item name, various data variables can be accessed via the data factory. The reason the function 
was not done in C++ was because the Pick Up class includes the data factory, and to forward declare the pickup item could 
have caused issues down the line. The UI inventory part of the system is all in blueprints so this helped in removing items from 
the player inventory and the UI. To make sure this remained as realistic as possible, physics & gravity is enabled on the item so 
that it falls to the ground. The item is then removed from the player’s inventory, and the currently selected item is set to blank 
in the UI and remove the item description to blank. Reset all UI Slots is then called.  

Reset All UI Slots 

The reset all UI Slots keeps the UI up to date, and keeps the inventory as clean as possible. It works by checking if the length of 
the characters inventory exceeds 0, if it doesn’t it keeps all the textures blank. However, if it does exceed 0, it does a full loop 
of the inventory and getting the item gets the icon for the image and applies that as the slots brush. Once it exceeds the 
inventory size it continues through the slots loop and finishes by setting all the brushes back to blank.  

Mouse Input 
Each slot within the inventory has its own function (Figure 30) 
to check if the mouse has been pressed on it. Upon pressing it 
via the player, all UI slots are reset to make sure they’re all up 
to date and then the slot press function is called passing in the 
index to the slot that the player selected. Due to an issue were 
a controller is present, the mouse is not portrayed as an input 
from any of the controller inputs. How this is going to be fixed 
is currently unknown as it was presumed that the input would 
be matched by unreal through the thumb sticks. A quick thought to this would be to simply change between the slots using is 
key pressed from the character controller, the same issue is within the main menu.  
 

Figure 28 spawning an item from the inventory  

Figure 29 reset all UI Slots function 

Figure 30 Mouse Button Down 



       29 | P a g e  

Slot Selections 

Once the player has selected the slot, the “Currently selected item” is set to be the equivalent to the characters inventory. If it 
is not blank the hover icon is retrieved and once validated the brush is changed to the new texture. The description of the 
item is then set on screen once that has been achieved.  
 
 

Figure 31 Slot selection 



       30 | P a g e  

 

Particle Simulations 
Torch Light 

 

Figure 32 Torch Light Particle System Set up 

 
The torch light uses 
unreals own sprite 
sheet for fire provided 
in the starter content. 
The way the sprite 
sheet works is by 
rendering out the fire 
simulation onto a 6 X 6 
sprite sheet (Figure 
33). As you can see the 
sprite sheet goes from 
starting of the flame all 

the way to full flame and then to dissipating. The particle system then plays the sprite 
sheet which simulate the fire on each particle. This particle system has 4 emitters, the first two sets being flames. One for the 
body of the torch whilst the second being the spattering of fire. The third being the spattering of sparks/embers and the final 
being a distortion to simulate the heat that comes off the flames. The distortion part is simply a material that has some 
refraction on it.  The particle system being in use can be seen in figure 34 and adds a nice light to the environment and a bit 
more life.  

Pickup Item Indicator  
The pickup item indicator particle system 
(Figures 35 & 36) uses a simple sprite with a 
random size and a color change over time 
from yellow to orange. This adds a nice col-
our change to this so that the its not a bland 
particle system. The velocity is ranges be-
tween 5 to -5 on X & Y axis, and 0 to  5 on 
the Z. This gives the implication of a random 
choice of direction and keeps the particles 
ascending. An orbit node was added so that 
the particles orbited around. This gave the 
item a point of focus for the particle to flow 
around. 

Figure 33 Particle Sprite Sheet  

Figure 34 Torch in use 

Figure 36 Particle System in editor Figure 35 particle system in effect 



       31 | P a g e  

WHAT DIDN’T MAKE IT TO FINAL GAME 

Antelope 
Class Diagram 
The AI controller would be 
built up so that it would host 
the behaviour tree and 
blackboard components. 
The behaviour tree 
component will work as the 
link between how to control 
the AI to the behaviour tree. 
The blackboard component 
works as a data 
storage/accessor for the AI 
which variables are written 
too for the behaviour tree to 
access. In the character 
class, the behaviour tree 
component will work as the 
brain for the AI entity. The 
animation instance will work as rules for transitioning from one animation loop to 
another. 

Behaviour Tree 
The behaviour tree uses a range of selectors and sequences to imitate the behaviour 
of an Antelope. The aim of this would be to use two types of inherited waypoint 
classes. One which is the route the AI follows, whilst the others are safe zones out of 
the players reach. The AI will follow a predefined route marked out by the waypoint 
route class. Upon following this the AI will check if the player is close by. If the player 
is close by the AI will go alert. If the character goes further than 10 meters it will 
return to the beginning of the node graph. However, if the player gets closer more 
towards 5 meters away. The AI will run to the closest safe zone, wait 60 seconds and 
then return to a route waypoint to continue its route. The functionality with this was 
helped by Looman (2015) in their zombie survival game in which they had AI 
zombies. The setup of this in C++ was very good as a reference to help implement 
this AI as there is little documentation on the C++ AI side unless you search through 
the engine.  
Look for Player function:  
This function would use a sphere component (A Large one) to check if the player is 
colliding with the AI. If colliding the AI will go into alert mode and then start looking 
at the distance value between the AI and the player.  
If Player is found function: 
This function would take in the distance value from the Look for Player function if the 
player is found, the AI will search for the closest safe zone waypoint. Upon which it 
will start traversing the landscape to escape the player. It will wait for 60 seconds, 
upon once complete will return to one of the closest route waypoints. 

Why it didn’t make it in 
The reason the Antelope didn’t make it into the game is due to 3 weeks prior to the 
deadline the external environment being dropped to allow for the polishing of the 
internal environments instead. This also meant that the antelope was not fully tested and could not be polished to a 
deliverable standard.  



       32 | P a g e  

Particle Simulation 
Fog 

 

The artists wanted to add some noise to the scene, not so much that it is noticeable, but a bit of smoke/fog to remove a bit of 
the “Cleanness” from the atmosphere. Unreal already provides an ambient dust particle effect which does add a bit of dirt to 
the atmosphere however this was not enough as it was quite minuscule.  The main reference for this was a short video by 
DokipenTech (2015) and previous knowledge. First a cloud texture was created in photoshop and noise added to it to give the 
dusty effect that was required. This was imported to unreal and a shader was created. The shader will allow the particles to 
fade as the player gets closer to them.  
The particle system itself has only one emitter on the 
GPU that uses the material as the particles. The 
emitter only emits the once in a single burst of 500 
particles, the particle sprite size is between 100 and 
1000 in size and are dispersed in a 10003 area, they 
move only ever so slightly. It adds a nice noise to the 
screen as seen in figure 37 which was a very quick 
test and placement. The right-hand side of the 
screenshot is clean and the one on the left is a bit 
dirty.  

Why it didn’t make it in 
Due to lack of time the particle system couldn’t be 
added to the game as the artists didn’t have time to 
add a decent texture or modify the colours. The area 
of effect had to be altered in each room as well which 
the artists wouldn’t have been able to do. This meant 
that the particle system couldn’t be polished to the 
standard of everything else in the game.  
 

Figure 37 Particles within the scene. (Left) And without particles (Right)  



       33 | P a g e  

 Candle Light 

 

Figure 38 Candle Light Particle System Set up 

The candle light particle simulation uses a single emit-
ter as seen in figure 38. The flame itself is simply an im-
age (Adona 2011), and the image is spawned roughly 3-
5 particles at any one time. The size changes randomly 
on spawn which gives the flame the flickering, while 
also the lights brightness is sharply switched between 0 
and 1 to give it the flickering we so desired. The light 
gives a soft orange glow that really adds to the light. In-
spiration and assistance for this particle system came 
from the tutorial by Epic Games (2004). 

Why it didn’t make it in 
This didn’t make it to the game because of the 
environment. The candle light works best in darker 
environments which in testing was what was being 
worked with. This can be seen in figure 39, the light is 
just subtle enough and has a nice glow to add the 
atmosphere of the environment. As you can see in 
figure 40 in production the environment was far too 
bright for this to be noticeable and made the particle 
effect redundant. To solve this a torch light was 
implanted instead, which had a larger flame.   
 

Figure 39 Candle light in dark environment 

Figure 40 Environment 



       34 | P a g e  

WORKING WITH ARTISTS 
Restricting the artists was one of the more difficult areas within this project as there’s no definitive list of “This is how many 
polys a model should have” or “This is the texture size map it should have”. The list below was generated based on previous 
experience and suggestions from other game developers from a forum post on the epic games official forums (Whammy 
2014). As this game will not be optimised with Level of Detail (LOD) the poly counts of items should remain quite low. Luckily 
Mip-Map generation of the textures is automatic, however still having 4K textures everywhere can be very expensive and aims 
and limitations where still added.  

Poly Counts & Textures sizes 
 Models (K = 1000) Textures LOD 

Item Aim  MAX Aim MAX Required? To What Level? 

AVA 15K 35K 2048 X 2048 4096 X 4096 No 0 

Weasel 10K 20K 1024 X 1024 2048 X 2048 No 0 

Antelope 10K 20K 1024 X 1024 2048 X 2048 No 0 

Grass 10 20 128 X 128 512 X 512 No 0 

Rocks 200 500 256 X 256 512 X 512 Yes 2 

Trees 500 1500 512 X 512 1024 X 1024 Yes 2 

Mountains 200 500 512 X 512 1024 X 1024 No 0 

Decorative Assets 200 500 256 X 256 512 X 512 Yes 2 

Buildings Assets 500 1000 512 X 512 1024 X 1024 Yes 2 

Palace (Whole) 2000 5000 1024 X 1024 2048 X 2048 Yes 2 

 
LOD means that the model requires it to be halved and exported X level amount. For example, with Rocks: 
LOD0 would be a 500-poly model 
LOD1 would be a 300-poly model 
LOD2 would be a 50-poly model 
This would then save performance with rendering when these items are in the background and too far to see the detail. 

Sounds Specifications 
PCM, ADPCM, DVI ADPCM 
Format: .WAV 
Bit Rate: 16 
Speaker Channels: Mono, Stereo, 2.1, 4.1, 5.1 6.1, 7.1 

Communications between Artists and Programmers. 
During the project, it was found that there is an issue with the communication between artists and programmers and the 
misunderstanding of one another’s jobs. There was a lot of “Can you just” statements without realising the implications of the 
request that was asked. An example of this from programming to artist, would be the programmer asking the artists to “Just” 
change a model so that it fit with the push and pull animation, this meant that the artist had to re-design the model and that 
the weighting of the model wouldn’t work in the design. To a programmer it was simply adding a handle to the mesh and 
solve a large issue with a small change, however to the artist it was destroying their work. The same can be done in reverse, 
asking a programmer to “Just” implement a push and pull system. To an artist it is simply attaching the item to the player, to 
the programmer however there are issues with collisions, bugs, work arounds, restrictions in the implementation, it took time 
and it wasn’t understood that it would cause a lot of different issues within the game mechanics.  



       35 | P a g e  

CONCLUSION & EVALUATION  
The overall game environment was polished with plenty of objects to fill a room and keep the rooms alive. Beautifully detailed 
textures were applied to walls, pillars and floors to make the rooms more colourful and keep the user interested. The 
animation of the character was smooth and transitioned very nicely from pose to pose, this included the weasel and how he 
was animated alongside this. The weasel added some extra life to the game as a companion to the player making the game 
seem less lonely and a bit fuller of life. The cinematic sequences animations all worked very nicely to give some story and life 
to the character, Ava. The design work, murals and beginning video added some past to our game giving the user some 
purpose to play the game. The design work itself was pretty and detailed and followed similar themes to that of the 
environment. The game mechanics all integrated the Tibetan culture as much as it could along with providing simple but fun 
puzzles for the player to do.  Cut scenes themselves added to the story as the player progressed through the game. 
The team has worked successfully together in producing a short game but in quite a large environment. The environment is 
not overly empty and with all the cut scenes the game doesn’t feel like the player would be playing on their own either. The 
aim was to produce a game, and as a team, accomplished that. The game plays from beginning to end, the team have all 
learned different things, and on an individual basis have blossomed and learnt as the project progressed.   
The planning out of the game was quite a success as the initial goal was overly ambitious and with mistakes made and issues 
arising time was lost. Having the ABC plan allowed the quick dropping of items and could still produce a high-quality game.   
There was an issue during crunch time with the shaders as one of the artists made a mistake with parenting of shaders, whilst 
the programmer made a mistake in the shader itself by mixing up the blue and green channels of a normal. This caused a lot of 
issues with lighting as well as the UE4’s “Brush” objects not calculating static lighting, all the walls and floors had to be 
converted to static meshes due to UV’s being odd, the issue 
is still unclear, only the culprit was known.  
This game could be improved by finishing the final garden 
(Figure 41) which the player could run around in before going 
through a final door instead. However, time did not allow for 
this to be finished as the rest of the palace had to be 
polished. Initially an external environment leading up to the 
palace was desired, which would have plenty of animals 
through AI, foliage and a training part on how to do all the 
puzzles, again, this was overly ambitious and only tests 
where implemented. Somethings that where desired but 
wasn’t originally in the plan would be things such as IK 
(Inverse Kinematics) which places the actors foot in the right 
place, for example going up a slope and the foot match to 
the slope. This could also be done to attach a hand to a push 
and pull item.  
This project has not necessarily been overly complex, 
although still very difficult at times, but certainly has a lot of content for 11 weeks. The project was an overall success however 
the last push to finish it was very difficult as the level had to be separated out into multiple maps and optimised as there was 
too much within it. This term was called level streaming and mean that the only rooms that where processed was the room in 
front of the player, the room the player is in, and the room that the player is going too. This helped reduce processing power 
and lighting calculations freeing up space on the CPU and GPU and allowing the artists more freedom with their lighting. After 
this the final build was done which took 18 hours to get started as unreals packaging system is at acceptable standard, 
however some errors are not very clear, and are most of the time blank making it very hard to track down issues. Once this 
was completed and tests where done, the final stage was building lighting which took close to 4 hours at half the quality the 
team wanted.  
 

Figure 41 Unfinished Garden 



       36 | P a g e  

REFERENCES 
2017. Keyboard PNG. PNG. Clip Art All. Available from: http://clipartall.com/clipart/1472-keyboard-clipart.html [Accessed 16 
May 2017]. 

Adona, N., 2011. Candle Light Tutorial Using VraySU 1.48.66 up. Photogrpah. Blogspot. Available from: 
http://nomeradona.blogspot.co.uk/2011/04/candle-light-tutorial-using-vraysu.html [Accessed 10 August 2017].  

Ahkâm, 2017. Mouse Png. PNG. Free Icons Png. Available from: http://www.freeiconspng.com/img/23280 [Accessed 16 May 
2017]. 

Bourrelly, F, 2016. How to create movies in Unreal engine 4.12. *New* Sequencer Tutorial. Video. YouTube. Available from: 
https://www.youtube.com/watch?v=RqWaa08V_dw [Accessed 31 July 2017]. 

Cinebeast, 2016. Transitioning from a Sequence into gameplay. UE4 Answer hub. 26 September 2016. Available from: 
https://answers.unrealengine.com/questions/495697/transitioning-from-a-sequence-into-gameplay.html [Accessed 1 August 
2017]. 

Davidson, M. J., 2014. How do I implement Pure Virtual Methods?. UE4 Answer hub. 11 April 2014. Available from: https://an-
swers.unrealengine.com/questions/28225/pure-virtual-methods.html [Accessed 20 July 2017]. 

DokipenTech, 2015. Unreal Engine 4 Atmospheric Fog FX Setup demo. Video. Unreal Engine: Youtube. Available from: 
https://www.youtube.com/embed/sc7Jj_9fNYs [Accessed 14 June 2017]. 

Epic Games, 2017. Sequencer Overview. Unreal Engine. Available from: https://docs.unrealengine.com/latest/INT/Engine/Se-
quencer/Overview/ [Accessed 2 August 2017]. 

Eric, 2017. Xbox Controller PNG Free Download. PNG. PNG Mart. Available from: http://www.pngmart.com/image/32169 
[Accessed 16 May 2017]. 

Looman, T., 2015. Survival Sample Game: Section 3. Epic Games. Available from: https://wiki.unrealengine.com/Survival_Sam-
ple_Game:_Section_3 [Accessed 12 July 2017]. 

Rogers, S., 2014. Level Up! The Guide to Great Video Game Design. 2nd ed. USA: Wiley. 

Unreal Engine, 2004. Candle Fire Particle - Video. Video. Epic Games. Available from: https://wiki.unrealengine.com/Can-
dle_Fire_Particle_-_Video [Accessed 10 August 2017]. 

Whammy, 2014. Thread: Recommended poly count for player models and weapons. Epic Games Forums. 07 December 2014. 
Available from: https://forums.unrealengine.com/showthread.php?18120-Recommended-poly-count-for-player-models-and-
weapons&highlight=character+count [Accessed 11 May 2017]. 

 
 
 
 



       37 | P a g e  

APPENDIX 
External Document A – The GDD 

External Document B – ABC Plan 

External Document C – Gantt Chart 

External Document D – Production Diary (Post) 

External Document E – Initial Thoughts and Worries 

External Document F - Full Puzzle UML Diagram 

Code Snippet G –  

static ConstructorHelpers::FObjectFinder<UCurveFloat> Curvy(TEXT("/Game/TemporaryContent/DoorSwing.DoorSwing")); 
if (Curvy.Object) 
{ 
 fCurve = Curvy.Object; 
 ScoreTimeline = CreateDefaultSubobject<UTimelineComponent>(TEXT("TimelineScore")); 
 InterpFunction.BindUFunction(this, FName{ TEXT("TimelineFloatReturn") }); 
} 

Code Snippet H 

void ADoor::TimelineFloatReturn(float val) 
{ 
 designatedMesh->SetRelativeRotation(FRotator(0 , val, 0)); 
} 

Code snippet I –  

TArray <AActor*> overlappingActors; 
overlappingSphere->GetOverlappingActors(overlappingActors); 
for (int32 overlappingActorIndex = 0; overlappingActorIndex < overlappingActors.Num(); overlappingActorIndex++) 
{ 
 AStatueObject* const overlappingTestSO = Cast<AStatueObject>(overlappingActors[overlappingActorIndex]); 
  
 if (overlappingTestSO && overlappingTestSO->bCanPlayerPray) 
 { 
  overlappingTestSO->bCanPlayerPray = false; 
  overlappingTestSO->isPlayerPraying = true; 
  bIsPraying = true; 
 } 
} 

 

Code snippet J – 

for (size_t i = 0; i < pushPullObjects.Num(); i++) 
{ 
 TArray <AActor*> overlappingActors; 
 pushPullObjectsTargets[i]->GetOverlappingActors(overlappingActors); 
 for (size_t index = 0; index < overlappingActors.Num(); index++) 
 { 
  APushPullItem* const overlappingTest = Cast<APushPullItem>(overlappingActors[index]); 
  if (overlappingTest && overlappingTest == pushPullObjects[i]) 
  { 
   overlaps[i] = true; 
  } 



       38 | P a g e  

 } 
} 
if (checkOverlaps()) 
{ 
 bPuzzleComplete = true; 
} 

 

Code Snippet K –  

void AMainCharacter::PushPull() 
{ 

attachedPushPullItem = Cast<APushPullItem>(results.GetActor()); 
 if (attachedPushPullItem) 
 { 
  GetCharacterMovement()->MaxWalkSpeed = pushPullSpeed; 
  FAttachmentTransformRules attachRules = FAttachmentTransformRules(EAttachmentRule::KeepWorld, false); 
  attachedPushPullItem->AttachToActor(this, attachRules); 
  MoveIgnoreActorAdd(attachedPushPullItem); 
  GetCharacterMovement()->bOrientRotationToMovement = false; 
  bIsPushPulling = !bIsPushPulling; 
 } 
 if (!bIsPushPulling) 
 { 
  StopPushPull(); 
 } 
} 

 

Code Snippet L – 

FRotator tempRot = GetActorRotation(); 
FRotator tempYaw = FRotator(0, tempRot.Yaw, 0); 
FVector tempFV = FRotationMatrix(tempYaw).GetUnitAxis(EAxis::X); 
FVector tempActorLocation = FVector(GetActorLocation().X, GetActorLocation().Y, GetActorLocation().Z + characterArmHeight); 
FVector end = (tempActorLocation + (tempFV * pushPullTraceCheckDistance)); 
FHitResult results; 
FCollisionQueryParams query = FCollisionQueryParams(FName(TEXT("trace")), false, this); 
bool hit = GetWorld()->LineTraceSingleByChannel(results, tempActorLocation, end, ECC_Visibility, query); 
 

Code Snippet M – 

ItemData a;  
a.Add(ItemDataVariables::itemDescription," A symbol of the infinite connections in life that bind us all together."); 
a.Add(ItemDataVariables::itemEnumIdentifier, "Scroll01"); 
a.Add(ItemDataVariables::itemMeshFilepath, "/Game/Ava/Modelling/Interactives/Scroll1.Scroll1"); 
a.Add(ItemDataVariables::itemSpriteFilepath, "/Game/Ava/UI/Knot.Knot"); 
a.Add(ItemDataVariables::itemSelectedSpriteFilepath, "/Game/Ava/UI/Knot_Hovered.Knot_Hovered"); 
a.Add(ItemDataVariables::itemName, "The Endless Knot"); 
tItems.Add(Item::Scroll01, a); 
 

Code Snippet N – 

APickUpItem* const overlappingTest = Cast<APickUpItem>(overlappingActors[overlappingActorIndex]); 
if (overlappingTest && overlappingTest->itemType == requiredItem) 
{ 
 bItemOffered = true; 
 ItemData e = ADataFactory::Items[requiredItem]; 



       39 | P a g e  

UStaticMesh* mesh = Cast <UStaticMesh>(StaticLoadObject(UStaticMesh::StaticClass(), NULL, e[ItemDataVariables::itemMesh-
Filepath].GetCharArray().GetData())); 
 OfferingItem->SetStaticMesh(mesh); 
 overlappingTest->Destroy(); 
} 

Code Snippet O – 

bool characterFound = false; 
TArray <AActor*> overlappingActors; 
overlappingSphere->GetOverlappingActors(overlappingActors);  
for (size_t overlappingActorIndex = 0; overlappingActorIndex < overlappingActors.Num(); overlappingActorIndex++) 
{ 
 AMainCharacter* const overlappingTest = Cast<AMainCharacter>(overlappingActors[overlappingActorIndex]); 
 if (overlappingTest) 
 { 
  characterFound = true; 
  currentRemaingTime -= 0.1; 
  if (currentRemaingTime <= 0.f) 
  { 
   overlappingTest->Inventory.Add(ThroneItem->itemType); 
   ThroneItem->Destroy(); 
   bPuzzleComplete = true; 
  } 
 } 
} 
if (!characterFound) 
{ 
 currentRemaingTime = requiredWaitingTime; 
} 

 

Code Snippet P – 

APickUpItem* const overlappingTestPUI = Cast<APickUpItem>(overlappingActors[overlappingActorIndex]); 
if (overlappingTestPUI && !overlappingTestPUI->IsPendingKill() && overlappingTestPUI->bCanPlayerPickUp) 
{ 
 bIsPickingUp = true; 
 bPlaySoundPickup = true; 
 Inventory.Add(overlappingTestPUI->itemType); 
 overlappingTestPUI->Destroy(); 
 bIsPickingUp = false; 
} 

 


