
Cel-Shading with OSL in RenderMan 21 for Maya

Francesca Galluzzi

August, 2017

Bournemouth University

MSc Computer Animation and Visual Effects

Cel-Shading with OSL in RenderMan 21 for Maya

Francesca Galluzzi

August, 2017

Francesca Galluzzi

Cel-Shading with OSL in RenderMan 21 for Maya

August, 2017

Bournemouth University

MSc Computer Animation and Visual Effects

Abstract

Cel-shading is a particular type of non-photorealistic rendering that consists of
representing a 3D scene in a 2D style similar to the comic books or animes one.
After an in-depth analysis of previous research in the field and currently available
technologies, a practical solution is proposed for a simple and efficient shader written
in OSL and integrated into the RenderMan for Maya environment.

v

Contents

1 Introduction 1

2 Previous Work 3

3 Technical Background 5
3.1 OSL . 5
3.2 RenderMan for Maya (RfM) . 6

4 Proposed Solution 7
4.1 OSL Code . 7
4.2 Shading network setup . 8

5 Conclusion 11
5.1 Improvements . 11
5.2 Further Developments . 12

References 15

vi

1
Introduction

Non-photorealistic rendering (NPR) has been subject of studying for numerous year.
As opposed to photorealistic rendering, the goal of NPR is to produce a stylised
image, whether it is in the style of a drawing, a painting, a comic book or any other
art style. Generally, photorealistic rendering is the preferred choice in productions
which caused the research in NPR rendering to be slowed down. In later years,
however, great advances have been made in this field so that NPR can finally be
considered a valid option for a quality productions. The main problems that need to
be solved when working with stylised images are the possibility for artists to fully
customise their style, without any sort of limitations, while, at the same time, keep
the process as automated as possible in order to have affordable production times.
This last aspect is what caused NPR to fall in the background for a long period of
time, as there is not yet a complete technology that responded to such needs.

Cel-shading is a particular type of non-photorealistic rendering that consists of
representing a 3D model, or any 3D scene, as a flat plain surface, using two or three
tones to describe the shape of the represented objects, namely a basic tone that
represent the general colour of the object, a darker tone for the shadows and, even-
tually, a lighter tone for the highlights. This shading technique is often paired with
an edge detection system that defines the outline and all the necessary lineart that is
required to complete the final look. Therefore, cel-shading is used to reproduce the
style of comic books or traditional 2D animations, like animes.

The goal of this project is to create a simple tool for cel-shading that easily in-
tegrates into the RenderMan environment, specifically into RenderMan for Maya,
as this is one of the most commonly used softwares for 3D animation. The main
requirements on which the entire development will focus are simplicity of use for
the end user, mainly the look-dev artist, and efficiency in terms of render quality and
render times.

In the next section, it will be presented some previous research in the field of
NPR and cel-shading followed by a section dedicated to the explanation of the tech-
nology related to the project itself. Afterwards, an entire section will be dedicated to
the description and analysis of the produced project and finally there will be some

1

concluding thoughts on the project, on some current problems to be fixed and on
how it can be expanded with more functionalities.

2 Chapter 1 Introduction

2Previous Work

Initial research in NPR can be traced back as far as 1999, in the paper proposed by
Costa Sousa M. and Buchanan J. W. [SB99]. Starting from previous works in the
modeling of traditional artistic media and styles, they proposed a graphite pencil
3D rendering system defined in four steps. The first one is simulating the drawing
material, like the effect of the graphite on the paper. Secondly, they focused on
modeling the drawing primitives, such as the individual types of strokes and marks,
in order to create the basic texture. Third step is simulating the basic techniques used
by artists and illustrators for creating art pieces in pencil and finally they modeled a
control mechanism for the final drawing composition.

A new framework for image processing was later proposed by Hertzmann A. et.
al. [Her+01], using a process called “image analogies”. The objective of this frame-
work is to produce a wide variety of filters for image manipulation based on some
input images defined by the user. These input images represent the desired initial
state and end result so that the same end result can be applied to other images
in similar initial states. The final effects that can be produced vary from tradition
blurring to high quality texture production, from artistic filters to the production of
higher resolution images.

DeCarlo D. et. al. [DeC+03], on the other hand, focused their research on how
to better convey shapes using lines. They proposed the use of suggestive contour
in addition to the basic contours and creases. Suggestive contour is defined as the
set of lines drawn on clearly visible parts of the surface, as an extension of the true
contours of the object. The paper presents two methods for computing these lines,
in particular an algorithm that finds the zero crossings of the radial curvature

Some years later, Barla P. et. al. [Bar+06] developed a toon shading technique
based on 2D textures. These textures contains the traditional information about
colours and lights in one dimension and the desired tone detail, that depends on the
depth or surface orientation, in the second dimension. The result is the possibility
to simulate effects such as levels-of-abstraction, aerial perspective, depth-of-field,
backlighting, and specular highlights. Moreover, they presented a solution for the
simplification of the normals by interpolating the original normal field with the one
generated by an abstraction of the original shape.

3

Bringing the focus back to the implementation of the optimal edge definition, Lee,
Y. et. al. [Lee+07] described a GPU-based algorithm for rendering a 3D model as
a line drawing, based on the insight that a line drawing can be understood as an
abstraction of a shaded image. The basic idea is to use the tone boundaries obtained
with the toon shading to define where to draw the highlight lines and the dark
boundaries. The lines produced by the method can include silhouettes, creases, and
ridges, along with a generalization of suggestive contours that responds to lighting
as well as viewing changes.

Whited B. et. al. [Whi+12] from Walt Disney Studios broke down barriers in
the NPR filed when they presented the Meander Animation Tool. This system was
designed to combine the strengths of CG animation, like temporal coherence, spatial
stability, and precise control, with traditional animation’s expressive and pleasing
line-based aesthetic. The power of this tool is the ability for artists to draw over
simple renders a set of lines that are then automatically animated to match the initial
3D animation using vector fields derived from the animation itself.

Bénard P. et. al. [Bén+13] around the same time proposed a different tool for the
production of stylised animations. The main problem that their research focused on
was keeping temporal coherence during the animation of stylised scenes. Extend-
ing the work proposed by Hertzmann A. et. al. [Her+01], the final tool allowed
the artist to manually paint a set of keyframes of an animation and then automat-
ically interpolate the intermediate frames in order to still maintain stylistic continuity.

Continuing the research on the subject of stylised animations, Bénard P. et. al.
[Bén+14] also proposed a method for accurately computing the visible contours of
a smooth 3D surface. The proposed approach is to generate, for each viewpoint, a
new triangle mesh with contours that are topologically equivalent and geometrically
close to those of the original smooth surface. The main problem tackled in this paper
is the consistency of contours, so a new type of triangle is introduced to solve it.

4 Chapter 2 Previous Work

3Technical Background

3.1 OSL

The code for the shader has been developed following the official Open Shading
Language 1.8 language specification, released in February 2017 [Gri17].
Both the OSL files are shaders of type surface, which is a type of shader that
determines the basic material properties of a surface and how it reacts to light. In
the particular case of this project, it was necessary to compute the orientation of
the surface in relation to the light direction or the viewing direction in order to
determine the final colouring of the surface itself.

OSL comes with a set of predefined variables and functions that easily allowed
to define and implement the computation algorithm.
The table is Figure 3.1 shows the list of global variables available inside the
shaders.

Fig. 3.1: The Figure shows the setup of the shading network in Maya

5

The variable normal N, being the normal of the surface in each shading point,
represents the orientation of the surface and can be directly compared with the light
direction vector. The variable vector I, instead, represents the camera vector, that
is the viewing vector also to be compared with the surface normals.
In terms of predefined functions, two are particularly noteworthy.

float dot (vector A, vector B)
Returns the inner product of the two vectors, i.e., A · B = Ax Bx + Ay By + AzCz

The dot function is used to compute the dot product between two vectors. When
comparing a surface normal with the light direction vector, for example, this function
allows to verify how similar or different the two vectors are.

type step (type edge, type x)
Returns 0 if x < edge and 1 if x ≥ edge.

Once the dot product is defined, the obtained values is then compare to a threshold
value using the step function to determine which category the surface belongs to.

3.2 RenderMan for Maya (RfM)

From the official RenderMan documentation [Stu17], it reads that RenderMan for
Maya (RfM) provides easy access to RenderMan features via either a Maya-centric
workflow (including Maya-style pattern nodes, etc.) or in conjunction with the
other tools. The plugin also connects Maya with RenderMan Pro Server, through
its RIB-out functionality and advanced integration with the renderer. RfM provides
seamless access to RenderMan’s speed, power, and stability for Maya users, who
can maintain a simple, Maya-centric workflow, or take advantage of the plugins’
flexibility to create an optimal, customized pipeline.

The main most interesting feature, in the case of this project, is the possibility
of easily integrating OSL shaders into the shading network and take advantage of
the predefined Maya nodes to take care of the more tedious aspects of the look
development process. This allows to focus the attention on the development of the
core of the shading algorithm rather than understanding and developing the correct
tools for the deployment of the shader onto the desired geometry.

6 Chapter 3 Technical Background

4Proposed Solution

The goal of the project was to offer an easy to use tool for toon shading, with few
key parameters accessible to the end users for refinements, but also to guarantee
efficiency and low render times.
To achieve the first requirement, the core technology of the shader has been devel-
oped using OSL. OSL shaders can be integrated into various renderers, but with
the latest release of RenderMan for Maya, version 21.5, it is actually possible to
register OSL files as Maya nodes and access them in the material presets. Moreover,
by registering the node, it is possible to take advantage of the shader metadata to
create a custom user interface for the plug-in. Unfortunately, the latest version that
was available on the local machine while developing this project was RenderMan
for Maya version 21.3, so the OSL code has not been registered in Maya. The entire
procedure, however, is described in detail by Christos Obretenov in the Official RIS
Tech Series - Course #2 - Class 07 on the RenderMan Community Forum [Obr17].
For the second requirement, instead, of all the techniques discussed above for stylised
rendering, the most simple ones have been chosen to be developed. The end result is
not completely clean, but rendering times are noticeably short and could presumably
be considered for a real time rendering environment.

4.1 OSL Code

The final look is defined by two OSL surface shader: one for the base colour and
shading, that represent the actual cel-shading, and another for the black outline, to
complete the comic like look.

For the first shader, the basic structure follows the one described by Junya Christo-
pher Motomura used in the look development of the game Guilty Gear Xrd [Mot15].
A simple step function is used to evaluate whether a point on the surface of the
object is lit by the light in the scene of not. The comparison is done by calculating
the dot product of the normal of the surface at that point and the light direction
vector. The result is then compared to a threshold value set by the user so that the
shaded area can be customised in width. The smaller the threshold, the bigger the
shaded area is.
Furthermore, the same dot product is used to identify the areas on the surface whose

7

normal is similar in direction with the light vector. Those areas are the highlighted
areas and, as well as with the shaded areas, the user can personalise the threshold
between a standard surface and an highlighted one. The smaller the threshold,
the smaller the highlighted area is. Below it is presented the pseudo code for the
cel-shader.

1: if STEP(highlightThreshold,DOT(LightDirection, N)) then
2: Cout← (1− BaseColor) ∗ HighlightIntensity
3: else
4: if STEP(shadowThreshold,DOT(LightDirection, N)) then
5: Cout← BaseColor
6: else
7: Cout← BaseColor ∗ ShadeIntensity

The outline shader is constructed following the idea proposed by Michel Anders
on his blog [And12] on how to write a simple toon shader in OSL. Similarly to the
base colour shader, the outline is generated by comparing each surface normal to
the incident ray vector, represented by the global variable vector I. If the angle
between the normal of the surface in a point and the camera vector is greater than
a threshold value set by the user, then the shading point is considered part of the
outline and is coloured in black. Otherwise, the original colour of the surface is used.
Below it is presented the pseudo code for the outline shader.

1: if STEP(OutThreshold,DOT(-I, N)) then
2: Cout← BaseColor
3: else
4: Cout← 0

4.2 Shading network setup

The final step to complete the toon shading is integrating the OSL files into the Maya
scene using the RenderMan infrastructure.
As shown in Figure 4.1, the OSL files are loaded into the shading network using
the PxrOSL plug-in. This utility node automatically reads inputs and outputs of
the shader and adapts the interface accordingly. The two shaders are then mixed
together using the PxrBlend node. The inputs are fused in one single colour output
using the multiply operation so that the black outline prevails over the base colour
whereas everything else remains unaltered. A valid alternative to obtain the same
result could have been connecting the Cout output of the base colour shader to
the Base Color input of the outline shader and then using the Cout output of the
outline shader as the final RGB result.
Either way, the final result is then connected to the PxtConstant material plug-in.
The reason for choosing this material is that any path tracing computation of the

8 Chapter 4 Proposed Solution

Fig. 4.1: The Figure shows the setup of the shading network in Maya

light in the scene is unwanted since only the global light direction in the scene is
necessary and it is already used inside the OSL file.
In case of a texture being prepared for the 3D model, it can be used to map the base
colour of each shading point of the object when computing the cel-shading. The
texture can be brought in the shading network with a standard File node and then
connected to the Base Color input of the toon shader. The shader will automatically
brighten up or darken the necessary areas using the texture as its starting point.

4.2 Shading network setup 9

5Conclusion

The final product respects the original goals set for the project, that were simplicity
of use and efficiency. Moreover, the final aesthetics is comic book like, as expected
from a toon shader. The images below demonstrate the results achieved on a plain
3D model, in Figure 5.1, and on a textured 3D model, in Figure 5.2.

Fig. 5.1 Fig. 5.2

The shader has been tested on simple animations as well and the results are demon-
strated in the attached video.

5.1 Improvements

The most obvious improvement that can be applied to project is to update to the
latest version of RenderMan for Maya in order to be able to register the shader as
a plug-in amongst the RenderMan materials. The advantages of this operation are
that it becomes easier to set up the scene with the toon shader and that it would
be possible to customise the interface of the plug-in. Thus, the OSL code should be
updated to include the metadata required to produce the desired user interface.

A second improvement can be applied in regard to the control of the light di-

11

rection vector. Currently, it is only possible to manually enter the values of the
vector’s components, which is not intuitive from the user point of view. A simple
workaround for this problem can be connecting the values of the light direction
vector’s components to the values of the amounts of rotation around the axis of
a light placed in the scene. However, this process is quite tedious and requires
particular attention in correctly matching the values. For these reasons, automating
the process of reading the light direction vector directly in the shader code is an
advancement in the usability of the tool itself.

5.2 Further Developments

New functionalities can also be considered to be implemented inside the shader to
further expand the tool and obtain cleaner results.

One problem consists of having an unwanted amount of details in the shaded
areas. Very often it is desired that the shadows have a simpler shape even if the
shaded object has a complex geometry.
This issue has been dealt with in the development of the the game Guilty Gear Xrd
[Mot15]. Their solution can be narrowed down to manually control the direction of
the surface normals in each point of the geometry until the desired result is achieved.
Another more automated solution has been proposed by Gulbrandsen O.[Gul10]. It
consists of creating an invisible and more simple geometry around the object that
has to be shaded and using the surface normals of the shell geometry to average the
directions of the original surface normals. The result is shown in Figure 5.3 and the
referenced paper also proposes a practical implementation in OSL.

Fig. 5.3

A second aspect that heavily influences the aesthetic of the end result is the quality of
the 2D-like lineart. The current project only traces the external outline, also defined
as the general silhouette, of the shaded object, but often this is not enough to fully

12 Chapter 5 Conclusion

describe the shape of the object itself so internal lines need to be defined.
There are various possible solutions available to solve this problem. In the game
Guilty Gear Xrd [Mot15] they decided to map a texture for the lineart to the UV
space of the model so that the artist could manually modulate the line in each point
by controlling its width in each point. Using the texture in the UV space instead of
directly applying it to the model also removes the need for a high resolution texture
necessary for close ups. As before, this solution is heavily based on the manual
tweaking of the parameters from the artists, which is very time consuming and
tedious.
There have been studies that focused on the development of automated algorithms
for extracting the internal lines and some of these algorithms have been presented
in the 2008 SIGGRAPH Line Drawing class [Rus+08]. However, Davies M. [Dav15]
conducted an in-depth research on the subject and produced a RIS Integrator that
is capable of detecting edges. Being a project developed in the same framework as
the toon shader proposed in this thesis, it would be interesting to integrate the two
projects into one and further expand toon shading in the RenderMan environment.

5.2 Further Developments 13

References

[And12] Michel Anders. A Toon OSL Shader For Blender. http://blog.michelanders.
nl/2012/11/a-toon-osl-shader-for-blender_93.html. [Online; accessed
21-August-2017]. 2012 (cit. on p. 8).

[Bar+06] Pascal Barla, Joëlle Thollot, and Lee Markosian. „X-toon: an extended toon
shader“. In: Proceedings of the 4th international symposium on Non-photorealistic
animation and rendering. ACM. 2006, pp. 127–132 (cit. on p. 3).

[Bén+13] Pierre Bénard, Forrester Cole, Michael Kass, et al. „Stylizing animation by ex-
ample“. In: ACM Transactions on Graphics (TOG) 32.4 (2013), p. 119 (cit. on
p. 4).

[Bén+14] Pierre Bénard, Aaron Hertzmann, and Michael Kass. „Computing smooth surface
contours with accurate topology“. In: ACM Transactions on Graphics (TOG) 33.2
(2014), p. 19 (cit. on p. 4).

[Dav15] Martin Davies. „A Practical Investigation of RenderMan RIS API“. MA thesis.
Bournemouth University, 2015 (cit. on p. 13).

[DeC+03] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella.
„Suggestive contours for conveying shape“. In: ACM Transactions on Graphics
(TOG) 22.3 (2003), pp. 848–855 (cit. on p. 3).

[Gri17] Larry Gritz. Open Shading Language 1.8 - Language Specification. Sony Pictures
Imageworks Inc., et al. 2017 (cit. on p. 5).

[Gul10] Ole Gulbrandsen. „Controlling the dark side in toon shading.“ In: SIGGRAPH
Posters. 2010, pp. 121–1 (cit. on p. 12).

[Her+01] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David
H Salesin. „Image analogies“. In: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. ACM. 2001, pp. 327–340 (cit. on
pp. 3, 4).

[Lee+07] Yunjin Lee, Lee Markosian, Seungyong Lee, and John F Hughes. „Line drawings
via abstracted shading“. In: ACM Transactions on Graphics (TOG). Vol. 26. 3.
ACM. 2007, p. 18 (cit. on p. 4).

[Mot15] Junya Christopher Motomura. GuiltyGearXrd’s Art Style : The X Factor Between 2D
and 3D. http://www.gdcvault.com/play/1022031/GuiltyGearXrd-s-Art-
Style-The. [Online; accessed 21-August-2017]. 2015 (cit. on pp. 7, 12, 13).

15

http://blog.michelanders.nl/2012/11/a-toon-osl-shader-for-blender_93.html
http://blog.michelanders.nl/2012/11/a-toon-osl-shader-for-blender_93.html
http://www.gdcvault.com/play/1022031/GuiltyGearXrd-s-Art-Style-The
http://www.gdcvault.com/play/1022031/GuiltyGearXrd-s-Art-Style-The

[Obr17] Christos Obretenov. Official RIS Tech Series - Course #2. https://community.
renderman.pixar.com/article/1770/ris-educational-series-course-
2.html. [Online; accessed 21-August-2017]. 2017 (cit. on p. 7).

[Rus+08] Szymon Rusinkiewicz, Forrester Cole, Doug DeCarlo, and Adam Finkelstein. SIG-
GRAPH 2008 Class: Line Drawings from 3D Models. http://gfx.cs.princeton.
edu/proj/sg08lines/. [Online; accessed 21-August-2017]. 2008 (cit. on p. 13).

[SB99] Mario Costa Sousa and John W Buchanan. „Computer-Generated Graphite Pencil
Rendering of 3D Polygonal Models“. In: Computer Graphics Forum. Vol. 18. 3.
Wiley Online Library. 1999, pp. 195–208 (cit. on p. 3).

[Stu17] Pixar Animation Studios. RenderMan for Maya. https://rmanwiki.pixar.com/
display/REN/RenderMan+for+Maya. [Online; accessed 21-August-2017]. 2017
(cit. on p. 6).

[Whi+12] Brian Whited, Eric Daniels, Michael Kaschalk, Patrick Osborne, and Kyle Oder-
matt. „Computer-assisted animation of line and paint in Disney’s Paperman“. In:
ACM SIGGRAPH 2012 Talks. ACM. 2012, p. 19 (cit. on p. 4).

16 References

https://community.renderman.pixar.com/article/1770/ris-educational-series-course-2.html
https://community.renderman.pixar.com/article/1770/ris-educational-series-course-2.html
https://community.renderman.pixar.com/article/1770/ris-educational-series-course-2.html
http://gfx.cs.princeton.edu/proj/sg08lines/
http://gfx.cs.princeton.edu/proj/sg08lines/
https://rmanwiki.pixar.com/display/REN/RenderMan+for+Maya
https://rmanwiki.pixar.com/display/REN/RenderMan+for+Maya

	Cover
	Titlepage
	Abstract
	1 Introduction
	2 Previous Work
	3 Technical Background
	3.1 OSL
	3.2 RenderMan for Maya (RfM)

	4 Proposed Solution
	4.1 OSL Code
	4.2 Shading network setup

	5 Conclusion
	5.1 Improvements
	5.2 Further Developments

	References

