
1 
 

 

 

 

Antonia Strantzi 

MSc Computer Animation and Visual Effects 

i7611774 

 

Masters Project 

Fluid Simulation Using Smoothed Particle 

Hydrodynamics (SPH) 

 

 

 

 

National Centre for Computer Animation 

Bournemouth University 

 

22/08/2016 

  



2 
 

  



3 
 

Contents 

 
Abstract …………………………………………………………………………………………………………………...5 

 
1. Introduction …………………………………………………………………………………………………………6 

 
2. Fluid Simulation ……………………………………………………………………………………………………8 

    2.1 Previous Work ………………………………………………………………………………………………..8 

    2.2 Fluid Simulation Theory ………………………………………………………………………………….9 

    2.3 Navier-Stokes Equations …………………………………………………………………………………9 

    2.4 Popular methods …………………………………………………………………………………………..10 

        2.4.1 Marker and Cell Grid …….………………………………………………………………………..10 

        2.4.2 Fluid Implicit Particle ………………………………………………………………………………11 

 
3. Smoothed Particle Hydrodynamics …………………………………………………………………….12 

    3.1 Particle Systems ……………………………………………………………………………………………12 

        3.1.1 Particle System Properties ………………………………………………………………………12 

    3.2 SPH Particle Properties …………………………………………………………………………………13 

    3.3 Definition ……………………………………………………………………………………………………..13 

    3.4 Smoothing Kernels ………………………………………………………………………………………..14 

 
4. Implementation ………………………………………………………………………………………………….16 

    4.1 Navier-Stokes for SPH ……………………………………………………………………………………16 

    4.2 Mass and Mass-Density …………………………………………………………………………………16 

        4.2.1 Mass ……………………………………………………………………………………………………….16 

        4.2.2 Mass-Density ………………………………………………………………………………………….17 

    4.3 Internal Forces ……………………………………………………………………………………………..18 

        4.3.1 Pressure …………………………………………………………………………………………………18 

        4.3.2 Pressure Force ………………………………………………………………………………………..18 

        4.3.3 Viscosity …………………………………………………………………………………………………20 

    4.4 External Forces ……………………………………………………………………………………………..21 

        4.4.1 Gravity ……………………………………………………………………………………………………21 



4 
 

        4.4.2 Surface Tension ……………………………………………………………………………………...21 

        4.4.3 Buoyancy ………………………………………………………………………………………………..22 

        4.4.4 User Interaction ……………………………………………………………………………………..23 

    4.5 Acceleration ………………………………………………………………………………………………….23 

    4.6 Velocity …………………………………………………………………………………………………………23 

        4.6.1 XSPH Velocity …………………………………………………………………………………………23 

    4.7 Spatial Hashing ……………………………………………………………………………………………..24 

    4.8 Collision Detection ………………………………………………………………………………………..26 

    4.9 Physical Parameters ………………………………………………………………………………………27 

    4.10 Classes and Pseudocode ……………………………………………………………………………..28 

    4.11 UML Diagram ………………………………………………………………………………………………30 

 
5. Results ……………………………………………………………………………………………………………….31 

 
6. Conclusion ………………………………………………………………………………………………………….33 

    6.1 Known Issues ………………………………………………………………………………………………..33 

        6.1.1 Time performance ………………………………………………………………………………….33 

        6.1.2 Fluid restlessness ……………………………………………………………………………………35 

        6.1.3 Volume changes ……………………………………………………………………………………..35 

        6.1.4 Collision detection ………………………………………………………………………………….35 

    6.2 Further Development ……………………………………………………………………………………36 

 
References ……………………………………………………………………………………………………………..37  



5 
 

Abstract 

 

Smoothed Particle Hydrodynamics (SPH) is a widely used method of simulating fluids 

in computer graphics. This paper explains this particular method, mentions previous 

research that has been done one it, as well as comparing it to other methods, 

especially the Fluid Implicit Particle (FLIP) method. Furthermore, an implementation 

of SPH is analysed. The implementation was done in C++ and the resulting simulation 

was imported to Houdini. 
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Chapter 1 

Introduction 

 

This paper follows the implementation of a Smoothed Particle Hydrodynamics solver 

in C++ and the presentation of work and research that has been done on this 

particular method. 

 

Fluid simulations are a very sought after tool in today's graphics world. Widely used 

in games and films, they have become more and more in demand, therefore 

increasing the need for more accurate mathematical methods and representations. 

 

There are two most common ways of representing fluids. Lagrangian and Eulerian 

methods, and sometimes hybrid ones that combine features from both methods. 

Lagrangian methods represent the fluid with particles, while Eulerian methods look 

at the fluid through a grid structure that stores information about the fluid’s motion. 

Hybrid methods are also used, because they combine the best parts of the previously 

mentioned representations. The most popular Langrangian method is SPH, which is 

the one implemented for this paper, while a very used Eulerian method is the 

Staggered Marker and Cell Grid (MAC Grid). Lastly, there are hybrid methods, such as 

the Fluid Implicit Particle (FLIP) and the Particle in Cell (PIC). FLIP is the most popular 

method used in today’s graphics. 

 

SPH is a particle-based method used to simulate fluids. The particles making up the 

volume of the fluid have attributes like velocity, acceleration and mass, which are the 

common attributes in all particle systems[10]. In SPH, additional attributes are 

needed, such as density, pressure and forces affecting the motion[10]. 

 

The implementation of the SPH solver was done in C++ and the simulation was 

visualized using the OpenGL[3] and ngl[4] libraries. Furthermore, the simulation was 

also exported to Alembic[5] format and imported to Houdini[6] so that a scene could 
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be rendered out. 

 

At the end, the results of the simulation are analysed and problems that rose during 

the process are also discussed. 
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Chapter 2 

Fluid Simulation 

 

2.1 Previous Work 

Over the last few decades, fluid behaviour has been a fascinating topic for 

researchers. There have been hundreds of publications, papers and lectures on the 

subject, as well as a lot of different approaches. 

One of the first fluid simulation methods was developed back in the 1960’s by 

Harlow. He led a group in the Los Alamos National Laboratory and developed the 

particle-in-cell. The initial aim of the group was to develop numerical techniques that 

would aid the USA’s national defense system[26]. The PIC method is still used to this 

day, albeit more in hybrid methods. 

In 1977, Gingold and Monaghan, and Lucy, invented smoothed particle 

hydrodynamics in order to simulate nonaxisymmetric phenomena in astrophysics[27]. 

They found out that SPH suited their simulation needs and could be extended to 

other physical phenomena. Since, then several approaches have been by researchers 

and scientists, most of which focused on perfecting particular aspects of the 

technique. In 1996, Desbrun and Gascuel proposed an alternative method of 

calculating the pressure force, by combining the ideal gas law with the rest density, 

and therefore symmetrizing the pressure force. In 2003, Muller et al.[16] proposed a 

model for calculating the fluid’s surface tension by using colour fields. Spatial hashing 

was a big step to the optimization of the method, since it provided a quick solution to 

the neighbour search problem. It was developed by Teschner et al. in ETH, Zurich[20]. 

Micky Kelager’s project from 2006[13], is a very popular citation when it comes to 

SPH, since he includes a lot of the new methods and offers a clear insight into the 

SPH process. This is the paper that was mostly followed during this implementation. 
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2.2 Fluid Simulation Theory 

According to Englesson (2011), in Lagrangian representations, the fluid is approached 

as a collection of particles, or atoms, which make up the fluid's volume. Langrangian 

methods have advantages in that they are understandable and all calculations are 

performed on the particles. On the other hand, though, the calculations rely heavily 

on the particles' density, therefore making the calculations, in areas with low density, 

inaccurate[1]. 

This problem is not present when using Eulerian methods. For this kind of methods, 

the fluid is observed through a number of cells that make up a grid. Because of this, 

Eulerian representations are also called grid-based representations. The calculations 

are performed on the cells of the grid, with no subsequent mathematical “gaps” in 

low density areas. The disadvantage of Eulerian simulations is the fact that they need 

a very big number of cells in order for the simulation to be as realistic as possible. 

This number can easily rise to the millions, thus reaching high computational 

complexity[1]. 

Hybrid methods provide a middle ground where we can still have the advantages of 

particles, but inside a grid, which provides higher accuracy[1]. 

Three methods from each category are explained in the following pages. 

 

2.3 Navier-Stokes Equations 

The two fundamental equations that describe a fluid’s motion are called Navier-

Stokes equations, and they are used to describe the fluid’s velocity field over time. 

The two equations are[10]: 

 

ϽɳἽ π  (1) 

 

Ἵ
   ἽϽɳἽ  ὴɳ  Öɳ Ἵ  ἐ (2) 

 

The first equation ensures that the velocity field has zero divergence, therefore 

conserving mass. This comes from the Helmholtz-Hodge Decomposition, which 
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states that any vector field × can be decomposed into the following form: 

 

Ἷ  Ἵ  ɳή 

 

Where Õ is a vector field whose divergence needs to be zero and Ñ is a scalar field. 

This shows how any vector field is the sum of a mass conserving field and a gradient 

one[11]. In other words, equation (1) says that the amount of fluid flowing into our 

predefined volume must be equal to the amount of fluid that’s flowing out. 

Equation (2) calculates the velocity field over time and sums up the following 

terms[12]: 

ἽϽɳἽ : the self-advection term, showing how the divergence affects the velocity 

ὴɳ : the pressure term, which models how the particles move away from high 

pressure areas 

Öɳ Ἵ : the viscosity term, which captures the relationship between the velocity and 

the viscosity variable v. The highest this variable is, the more viscous, namely thicker, 

the fluid is. 

ἐ : any external forces that are applied to the fluid, like gravity 

 

2.4 Popular Methods 

2.4.1 Marker and Cell Grid 

The Marker and Cell (MAC) Grid method was introduced by Harlow and Welch in 

1965[17]. They introduced a new way of tracking fluid motion through particles, called 

marker particles and grid, called staggered grid. A staggered grid is different from 

regular ones in that it stores quantities and their components in different parts of its 

cells[1]. Particularly, in a 3D grid, the three components of each cell’s velocity vector 

are stored on the cell faces, while the pressure is stored in the cell’s centre. Storing 

the velocity on the cell faces provides more stable simulations, instead of storing it at 

the centre. Besides the grid cells, marker particles are used to represent the fluid 

volume and determine which cells contain fluid and which ones don’t[10]. The 

following image illustrates a 3D MAC grid cell: 
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2.4.2 Fluid Implicit Particle 

The Particle-in-Cell method was first described in Harlow’s 1962 paper[23]. The main 

idea is that the quantities are stored in the particles and then transferred onto the 

grid and then, after these quantities are updated, back onto the particles. Bridson[24] 

explains that all the quantities, velocity included, are transferred to the grid. Then, all 

the non-advection terms, such as gravity acceleration, pressure, etc. are calculated 

on the grid, as with purely Eulerian representations. Then, using trilinear 

interpolation (or bilinear, if the simulation is in 2D), the quantities are transferred 

back to the particles, which are then advected in the grid velocity field. The FLIP 

method is a variation of PIC and was developed by Brackbill and Ruppel in 1986[31]. 

The difference from PIC is that the particle quantities, after being calculated on the 

grid, are not transferred back to the particles as they are, but they are added to the 

particles’ previous values. 
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3. Smoothed Particle Hydrodynamics 

 

Smoothed Particle Hydrodynamics is a method first introduced in 1977 by Gingold 

and Monaghan, and Lucy[8][9], to simulate astrophysical phenomena. According to a 

review on the theory and application of SPH by Monaghan (2005)[7] “smoothed 

particle hydrodynamics is a method for obtaining approximate numerical solutions of 

the equations of fluid dynamics by replacing the fluid with a set of particles. For the 

mathematician, the particles are just interpolation points from which properties of 

the fluid can be calculated. For the physicist, the SPH particles are material particles 

which can be treated like any other particle system.” 

According to Kelager[13] “SPH is an interpolation method to approximate values and 

derivatives of continuous field quantities by using discrete sample points”. These 

sample points are represented by particles that carry certain properties. 

 

3.1 Particle Systems 

Particle systems have been widely used nowadays, in order to create convincing 

simulations of fuzzy phenomena, either related to real world situations or make-

believe ones, usually seen in motion pictures and games. The first major publication 

on particle systems came with William T. Reeves’ paper (1983)[28] where he defines 

particle systems as: “a method for modeling fuzzy objects such as fire, clouds, and 

water. Particle systems model an object as a cloud of primitive particles that define 

its volume. Over a period of time, particles are generated into the system, move and 

change form within the system, and die from the system.” Based on this paper, 

Reeves created a wall of fire effect in Star Trek: Wrath of Khan (1982)[29]. Fuzzy 

objects do not consist of well-defined and rigid surfaces, but irregular and complex 

ones[28]. They do not take up a specific amount of space and they are not constrained 

within strict boundaries. 

 

3.1.1 Particle System Properties 

In every particle system, each particle has a specific set of attributes. These 

attributes are[30]: 
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1. Initial position 

2. Initial velocity 

3. Initial size 

4. Initial colour 

5. Initial transparency (alpha) 

6. Shape 

7. Lifespan 

The subsequent movement of the particle is defined by calculating its velocity, using 

the acceleration parameter. The acceleration is usually defined by the gravity field 

using Newton’s Second Law ἐ άἩ where m is the particle’s mass. 

 

3.2 SPH Particle Properties 

Besides the usual attributes that particles carry within a particle system, SPH 

particles carry further physical quantities, like mass-density, pressure and 

temperature[13]. 

 

3.3 Definition 

As mentioned above, SPH is an interpolation method that uses kernels. These kernels 

model a delta function, according to the particles’ positions. This integral interpolant 

of any quantity function !Ø is given by the following formula[13]: 

 

ὃ Ἲ ΅Ἲὡ Ἲ ἺȟὬὨἺᴂ
 

  

 

Where ɱ is the space in which the interpolation is calculated, 7 is a smooth kernel 

weighting function with È as its width. The numerical equivalent to the integral is a 

summation interpolant[15]: 

ὃ Ἲ ά
ὃ

”
ὡ Ἲ ἺȟὬ 
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In fluid particle terms, !Ò represents an attribute of a certain particle in position Ò, 

Í is the mass and ʍ is the particle’s mass-density. 

When applying a gradient and a Laplacian operator to !Ò, the following equations 

occur: 

 

ὃ Ἲ ά
ὃ

”
ὡ Ἲ ἺȟὬ 

ὃ Ἲ ά
ὃ

”
ὡ Ἲ ἺȟὬ 

 

Therefore, the gradient and Laplacian operators are only applied to the kernel 

function, because, according to the rules of differentiation, the ά   part equals to 

zero when differentiated. 

 

3.4 Smoothing Kernels 

A smoothing kernel is a weighting function which adjusts the particles’ quantities 

according to the distance among them[14]. There are different smoothing kernels that 

one can use for SPH approximations, depending on the quantity that needs to be 

calculated. The two properties a smoothing kernel must have are[13]: 

 

ὡ ἺȟὬὨἺ
 

ρ 

 

ÌÉÍ
ᴼ
ὡ ἺȟὬ  Ἲ

 

Furthermore, the kernel function must always be positive, and even. Namely: 

 

ὡ ἺȟὬ π 
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ὡ ἺȟὬ ὡ ἺȟὬ 

 

In this implementation three types of kernels are used, the 6th polynomial, the spiky 

and the viscosity kernel, which will be explained in later chapters. 
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4. Implementation 

 

For the implementation, a certain amount of particles was used, that stays fixed 

throughout the duration of the simulation, therefore conserving the fluid’s mass. 

 

4.1 Navier-Stokes for SPH 

Given the fact that the amount of particles stays the same for the duration of the 

simulation, and the mass also stays fixed, the first Navier-Stokes equation is 

redundant, since mass conservation is already guaranteed. Furthermore, since we 

are talking about Lagrangian fluid dynamics, and not Eulerian representations, the 

advection term of the Navier-Stokes equations is redundant as well. This is due to 

the fact that in Langrangian representations, it’s the particles that define the fluid, 

and any field quantity only depends on time[13]. In conclusion, for Langrangian 

representations, the Navier-Stokes equations become: 

Ἵ

ὼ
  
ρ

ʍ
ὴɳ  Öɳ Ἵ  ἐ 

 

4.2 Mass and Mass-Density 

4.2.1 Mass 

All the particles have an equal mass, that stays fixed throughout the simulation. The 

mass is one of the most important attributes, since it is used to calculate the density 

and the forces applied. Priscott[14], based on Kelager[13] uses the following equation 

to calculate the mass of the particle, using the particle’s density, the fluid’s volume 

and the number of particles making up the volume: 

ά
ὠ

”
ὲ 

However, the mass of the particles in this implementation is set to 0.02, because the 

above equation resulted in large particle masses that brought instability to the 
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calculations. The volume of the fluid is set as a global parameter and its shape starts 

off as either a sphere or a box. 

4.2.2 Mass-Density 

Mass-density is a vital term to have in order to make calculations on the particles. In 

contrast to the mass, which can be user-defined, mass-density is a continuously 

changing field, which needs to be calculated on every iteration of the simulation. 

For the mass-density computation we have to use a smoothing kernel function. For 

this computation Kelager[13] uses the 6th polynomial kernel as the default one. 

The kernel is given by: 

ὡ ἺȟὬ  
σρυ

φτ“Ὤ

Ὤ ᴁἺᴁ ȟ π ᴁἺᴁ Ὤ

πȟ ᴁἺᴁ Ὤ
 

The gradient of the kernel is: 

ὡɳ ἺȟὬ
ωτυ

σς“Ὤ
ἺὬ ᴁἺᴁ  

The Laplacian of the kernel is: 

ᶯὡ ἺȟὬ
ωτυ

σς“Ὤ
Ὤ ᴁἺᴁ σὬ χᴁἺᴁ  

 

The mass-density is computed using the SPH approximation: 

” ὶὩίὸᾨὩὲίὭὸώ”Ἲ  

”Ἲ ὶὩίὸᾨὩὲίὭὸώά
”

”
ὡ Ἲ ἺȟὬ 

Which turns into: 

”Ἲ ὶὩίὸᾨὩὲίὭὸώά ὡ Ἲ ἺȟὬ 
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where j represents each particle in the “neighbourhood” of the particle whose mass-

density is currently being calculated. The method of finding the particle’s 

neighbourhood is called spatial hashing and it is going to be explained in detail in a 

later chapter. 

 

4.3 Internal Forces 

4.3.1 Pressure 

The pressure is computed by using the ideal gas law[13]: 

ὴὠ ὲὙὝ 

ὠ     is the volume per unit mass, n is the amount of particles inside the volume, 

R is the universal gas constant and T is the temperature. If the temperature remains 

stable, then the right hand side of the equation is a constant and can be replaced 

with a gas stiffness constant k depending only on the number of particles used. After 

replacing the right hand side with k, then the equation becomes: 

ὴὠ Ὧ ᵼ ὴ
ρ

”
Ὧ ᵼ ὴ Ὧ” 

According to Desbrun and Gascuel (1996)[18] liquids should have a constant mass-

density at rest. Therefore, the liquid should have some internal cohesion, resulting in 

attraction-repulsion forces. For that reason, we use a modified version of the ideal 

gas law: 

ὖ ὖ ὠ Ὧ 

where Po is an additional rest pressure: ὖ Ὧ”, where ρο is the rest density of the 

fluid material. 

4.3.2 Pressure Force 

After calculating the pressure for each particle, the SPH approximation is used for 

the pressure force: 
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Ἦ ὴɳἺ 

Ἦ ὴ
ά

”
ὡɳ Ἲ ἺȟὬ 

This equation, though, does not provide a symmetrical pressure force, since the 

particle only uses the other particles’ pressures to compute its pressure force. 

Consequently, this does not conserve the action-reaction law[13]. Symmetrizing the 

pressure force, yields the following formula[18]: 

Ἦ ά ά
ὴ

”

ὴ

”
ὡɳ Ἲ ἺȟὬ 

Another faster and stable solution to symmetrizing the pressure force, proposed by 

Muller et al. (2003), is: 

Ἦ
ὴ ὴ

ς

ά

”
ὡɳ Ἲ ἺȟὬ 

A smoothing kernel function is also needed to calculate the pressure force. The 

default 6th polynomial is not used in this case, but a spiky kernel is preferred. The 

spiky kernel is more suitable because when it comes to pressure force, particle 

clusters need to be created in a more explicit and precise way[13]. 

The spiky kernel yields: 

ὡ ἺȟὬ  
ρυ

“Ὤ

Ὤ ᴁἺᴁ ȟ π ᴁἺᴁ Ὤ

πȟ ᴁἺᴁ Ὤ
 

The gradient of the kernel is: 

ὡɳ ἺȟὬ
τυ

“Ὤ

Ἲ

ᴁἺᴁ
Ὤ ᴁἺᴁ  

The Laplacian of the kernel is: 
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ᶯὡ ἺȟὬ
ωπ

“Ὤ
Ὤ ᴁἺᴁ Ὤ ςᴁἺᴁ 

4.3.3 Viscosity 

Viscosity is the tendency of a fluid to resist flow. The more viscous the fluid, the 

more the molecules stay together. For instance, water is a low viscosity fluid, while 

honey has higher viscosity. The coefficient μ defines the viscosity strength[13]. The 

SPH approximation for the viscosity term is: 

Ἦ ‘ɳ ἽἺ  

Ἦ ‘ Ἵ
ά

”
ᶯὡ Ἲ ἺȟὬ 

 

This term, like the pressure force term, is asymmetric. Muller[16] has proposed a 

symmetrized equation, not using absolute velocities, but velocity differences, which 

are the ones that viscosity forces depend on. 

Ἦ ‘ Ἵ Ἵ
ά

”
ᶯὡ Ἲ ἺȟὬ 

Since we don’t want the forces due to viscosity to increase the relative velocity and 

destabilize the system, the Laplacian operator of the smoothing kernel needs to be 

positive. A kernel that achieves this is the following one[13]: 

ὡ ἺȟὬ  
ρυ

ς“Ὤ

ᴁἺᴁ

ςὬ

ᴁἺᴁ

Ὤ

Ὤ

ςᴁἺᴁ
ρȟ π ᴁἺᴁ Ὤ

πȟ ᴁἺᴁ Ὤ

 

The gradient of the kernel is: 

ὡɳ ἺȟὬ
ρυ

ς“Ὤ
Ἲ

σᴁἺᴁ

ςὬ

ς

Ὤ

Ὤ

ςᴁἺᴁ
 

The Laplacian of the kernel is: 
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ᶯὡ ἺȟὬ
τυ

“Ὤ
Ὤ ᴁἺᴁ 

 

4.4 External Forces 

The external forces are applied after all the internal forces are calculated. All the 

external forces are combined into a sum. 

 

4.4.1 Gravity 

The gravity force is one that always has to be taken into account in particle systems. 

Given g gravitational acceleration, where g = (0,-9.8,0), the gravitational force is[13]: 

Ἦ ”Ἧ 

4.4.2 Surface Tension 

Inside the fluid volume, the particles are subject to attractive forces from 

neighbouring particles. Inside the fluid these forces are equal in every direction, but 

for particles close to the surface, these forces are unbalanced. Attraction forces 

among the particles act in the direction of the surface normal of the particle, and 

they also depend on the curvature of the surface, with higher curvature spots, 

applying higher force[16]. Muller et al. (2003) explain how the surface tension is 

calculated.  

The fluid “area” can be tracked using a colour field, which is 1 inside the fluid, and 0 

outside it[19]. The smoothed colour field is: 

ὧ ὧἺ 

ὧ ά
ρ

”
 

ὡ Ἲ ἺȟὬ 

The surface normal field is found by applying a gradient operator on the colour field: 
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ἶ ὧɳ 

ἶ
ά

”
 

ὡɳ Ἲ ἺȟὬ 

The curvature of the surface depends on the divergence of the surface normal field:  

‖
ᶯὧ

ᴁἶᴁ
 

The surface tension is calculated using the surface traction t and a normalized scalar 

field  ᴁἶᴁ which is positive only when the surface normal length exceeds a 

certain value l, otherwise numerical errors may occur. The surface traction is: 

Ἴ „‖
ἶ

ᴁἶᴁ
 

Where σ is the tension coefficient that depends on the fluids making up the 

surface[13]. 

The surface tension is computer using the following equation, only when ᴁἶᴁ ὰ: 

Ἦ „‖ἶ „ɳ ὧ
ἶ

ᴁἶᴁ
 

4.4.3 Buoyancy 

Buoyancy needs to be taken into account when we want to simulate gaseous fluids. 

Kelager explains that buoyancy is caused by diffusion of temperatures, but when 

modeling isothermal fluids, an artificial buoyancy can be given using the following 

equation[13]: 

Ἦ ὦ” ” Ἧ 

Where b is a positive parameter representing the artificial buoyancy diffusion. In 

non-gaseous fluids, like water, parameter b is set to zero. 
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4.4.4 User Interaction 

If a user can manipulate the motion of the fluid, then an extra external force is 

added to the sum of forces. The user may have the ability to control the fluid itself, 

its boundaries or throw obstacles in it. An example would be for the user to be able 

to block the fluid’s movement by clicking on the fluid on-screen. 

 

4.5 Acceleration 

The acceleration derives from Newton’s second law of motion: ἐ άἩ, where the 

sum of all the forces is divided by the density. 

Ἡ
ἐ

”
 

 

4.6 Velocity 

For the update of the velocity and then the position of the particle, the implicit Euler 

scheme is used, as described by Kelager (2006)[13]: 

Ἲ Ἲ ɝὸἽ 

Ἵ Ἵ ɝὸἩ 

4.6.1 XSPH Velocity 

Priscott (2010) implements a particle velocity correction technique called XSPH, in 

order to correct velocities that divert too much from an average amount. The 

equation used is the following[14]: 

Ἵ Ἵ ‐
ςά

” ”
 

ὡ Ἲ ἺȟὬ 

In this implementation, the ε parameter is set to 0.1 so that the velocities don’t 

change too much. 
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4.7 Spatial Hashing 

A vital part of a Langrangian fluid simulation process is the neighbour search. All SPH 

approximations are performed while taking into account the attributes of particles 

that are located close to the particle in question. 

When using thousands of particles, searching for neighbours for each particle among 

all the others, will be extremely time-costly, since the computational complexity is 

O(n2) , where n is the number of particles. That is why optimization methods are 

needed. In this case, a method called “spatial hashing” is used. Spatial hashing is a 

fast nearest neighbour search algorithm and has a computational complexity of 

O(1) [13]. 

The way spatial hashing works is that every particle’s position is hashed to create a 

key. This key specifies the cell in which the particle’s position is going to be stored in 

the hash table. The hash function being used in this algorithm, assigns the same key 

to particles located close to each other. Therefore, in order to find a particle’s 

neighbours, all one has got to do is look up the hash table and get a list of the 

particles hashed in the same cell. 

Teschner (2003)[20] has proposed the following hash function: 

ὬὥίὬἺ ØἺὴ ὼέὶ ØἺ ὴ ὼέὶ ØἺὴ  ÍÏÄ ὲ  

The numbers p1, p2 and p3 are large prime numbers[13]: 

ὴ χσψυφπωσ 

ὴ ρωστωφφσ 

ὴ ψστωςχωρ 

Kelager (2006) describes the discretizing Ø function, which takes a vector of floating 

values and converts it to a vector of integers by rounding down the numbers, 

according to a cell size l. Here, this cell size is assigned the smoothing length factor 

h[13]. 

ØἺ
Ἲ

ὰ
ȟ
Ἲ

ὰ
ȟ
Ἲ

ὰ
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Lastly, ὲ  is the hash table size, a large prime number that is large enough to avoid 

collisions among the positions hashed. Therefore, ὲ  is defined as: 

ὲ ὲὩὼὸῂὶὭάὩςὲ 

The prime function returns the next prime number after 2n, where n is the number 

of particles. 

Every time the particles’ positions are updated, the hash table needs to be updates 

as well, in order for the new positions to be hashed. The equation used to fill the 

hash table for a particle p is[13]: 

ὬὥίὬάὥὴὬὥίὬØἺ ὴ 

When a particle p’s neighbours need to be found, all there is to be done is retrieve a 

list of the cells hashed to the same key as p. However, it is possible that not all 

particles located in close proximity are going to be hashed in the same cell. 

For this reason, there needs to be an extra search for particles located around 

particle p. Priscott (2010) describes a process of defining a bounding box around the 

particle[14]. Then, we iterate over discretized positions (using the Ø function) inside 

this box and retrieve their hash keys. For each hash key retrieved, we get the 

positions hashed to that key and add them to a dynamic list. However, the particles 

added to that list are not always guaranteed neighbours. Therefore, a final check 

needs to be performed, so that the particles j in that list lie within the smoothing 

length radius h around particle p: 

Ἲ Ἲ Ὤ 

Kelager gives the following equations to find the bounding box, by getting its two 

further corner points[13]. 

ὄὄ ØἺ ὬȟὬȟὬ  

ὄὄ ØἺ ὬȟὬȟὬ   
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4.8 Collision Detection 

For this implementation, the collision detection was handled very simply and only for 

a rectangular bounding box. The idea is that every time the particle hits a wall of the 

boundary, it “bounces” back, by having its velocity reversed: 

Ἵ Ἵ 

This method caused problems, especially in cases where the fluid forces were large, 

or where the fluid was thrown from a distance into the bounding box. In those cases, 

fully reversing the velocity made the particles jump up and down uncontrollably. The 

forces acting upon them could regulate the velocities, but there was not enough 

time for that before the particles hit another wall and their velocities were reversed 

once again. 

For this reason, an energy loss parameter s is introduced, in order to decrease the 

velocity once the particle hits a wall. This is based on the fact that the particle would 

lose energy when colliding with the boundary and therefore would lose some of its 

velocity. The equation used for this new approach is: 

Ἵ ίἽȟ ί π 

This approach, however, proved again problematic, because after continuously 

multiplying with the s value, the particles had more and more decreasing velocities. 

Because of this decrease, the velocities reach such small values that they end up 

almost “sticking” to the boundary walls and creating clusters near them, leaving the 

centre of the boundary very sparsely populated. 

After encountering these problems, the s parameter was only used when the 

particles collided with the floor, in order to make them more “grounded” to it and 

not having them bounce straight off and fly away to the ceiling, while keeping the 

velocity intact when the particles hit any of the other boundary walls. 
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4.9 Physical Parameters 

The physical parameters used in this implementation are: 

o Mass: 0.02 

o Volume: the volume is manually set, and for the simulations it varied from 

1.5 to 6 m3 

o Particle size: 0.035 m3 

o Number of particles: the number depends on the volume and the particle size 

and is calculated from the following: ὲ ὠȾτ“ὴὥὶὸὭὧὰὩίͅὭᾀὩ 

o Smoothing kernel radius: varied from 0.15 to 1 

o Rest density: 998.2 for water 

o K constant: 5, used for the pressure 

o Viscosity μ: 3.5 

o Surface tension σ: 0.0728 

o Surface tension threshold l: 6 

o Buoyancy constant b: 0, for water 

The viscosity and surface tension constants are the same that Kelager (2006) uses for 

his water simulation. He also proposes a way of finding the kernel size based on the 

volume, the particle count and the maximum amount of neighbours for a particle[13]: 

άὥῲὲὩὭὫὬὦέόὶί
ὸέὸὥὰ

ὠ

τ

σ
“Ὤ 

             ᵼὬ
σ ὠ άὥῲὲὩὭὫὬὦέόὶί

τ “ ὸέὸὥὰῂὥὶὸὭὧὰὩί
 

This equation however made the kernel size too small, approximately 0.15 which is 

too small of a number to get a good enough simulation. So the kernel size always has 

a size more than 0.25. 
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4.10 Classes and Pseudocode 

The implementation of the fluid simulation was done in C++ using Qt[21] and the 

OpenGL[3] and ngl[4] libraries. For the purpose of that, 5 classes were created: 

o Globals 

o NGLScene 

o System 

o Particle 

o Tank 

Globals is a class where all the global variables used in the simulation are defined. 

The class is included in all the other classes so the globals are usable in them. 

NGLScene is the class that creates the scene, sets up and compiles the shaders and 

creates the camera. Part of the class was taken from Macey’s[22] Simple Particles 

demo. The System class, that creates the particle system, and the Tank class are 

initialized inside NGLScene. Mouse and keyboard events are also handed through the 

class. System is the class that creates the particles, updates them and stores the 

particles inside a vector. It also stores the table needed for the spatial hashing, and 

contains functions for updating the it. Particle stores all the particle data and 

contains functions that perform all the calculations. Most of the main steps of the 

simulation go through this class. Tank is a class aimed to visualize the boundary box 

surrounding the fluid, by building a vertex array object. 

The implementation is shortly described in the following pseudocode: 
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Set initial parameters and physical properties  

Create system  

Calculate size of hash table  

For every particle p : 

    Create p inside the ini tial volume  

    Set põs mass 

    Compute põs hash key 

    Add põs id to the hash table  

    Add particle p to the systemõs vector of particles 

For every particle p : 

    Set neighbours list  

For every particle p : 

    Calculate density  

    Calculate pressure  

For every particle p : 

    Calculate internal forces  

    Calculate external forces  

    Sum up all forces  

For every particle p : 

    Update acceleration  

    Update velocity  

    Check boundary conditions and re -update ve locity  

While simulation running  : 

    For every particle p : 

        Update position  

        Compute  new hash key and update hash t able 

        Set new neighbours list  

    For every particle p : 

        Calculate  density  

        Calculate  pressure 

    For every particle p : 

        Calculate  internal fo rces 

        Calculate  external forces  

        Sum up all forces  

    For every particle p : 

        Update acceleration  

        Update velocity  

        Correct velocity using XSPH  

        Check boundary conditions and re -update velocity  

    For every parti cle p : 

        Render p on screen 
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4.11 UML Diagram 
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Chapter 5 

Results 

 

Despite the multiple parameters and calculations, the factor that proved to be the 

most important for the simulation is the smoothing kernel size. The quality of the 

simulation depended largely on that parameter. Variations on the pressure and 

viscosity parameters were also tested. Here are screenshots from some of the 

simulations. 

A falling cube: 

 

 

 

 

Dam break: 

 

 

 

A full tank with wind added: 

Variations on the viscosity parameter: 
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Variations on the kernel size, low size (above), high size (below): 
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Chapter 6 

Conclusion 

 

Smoothed particle hydrodynamics is a really powerful technique to simulate fluids 

and other similar phenomena. Part of its advantage is that the mathematics behind 

it, are not particularly complicated, as it happens with other fluid simulation 

techniques, like grid-based ones. 

After this project, I have come to the conclusion, that the key to a good simulation 

using SPH, is the parameters. It is vital to find the right values and the right balance 

between the parameters as well, in order to have a simulation as realistic as 

possible. 

 

6.1 Known Issues 

6.1.1 Time performance 

The biggest issue with this implementation was time. The simulation was running too 

slowly. As the amount of particles increased, the time needed to do all the 

calculations increased dramatically. The simulation became even slower when the 

smoothing kernel size increased. With a larger kernel size, each particle had to 

iterate over more neighbours during the calculations. 

The fact that it was slow, made it also difficult to visualize. The simulation works best 

when it has several thousands of particles, above 7000-8000. But when the amount 

of particles exceeded 3000, the simulation became quite slow. Therefore, not many 

“test simulations” with 7000, or more, particles were done, in order to check which 

parameters make the simulation work better. 
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For example, in earlier versions, a simulation of 5000 particles, a kernel size as little 

as 0.2 would end up running for approximately 3 hours, in order to produce about 60 

frames. Some optimization was done and the running time decreased a lot. One 

thing I did to optimize the code was change the way vector lengths were calculated. 

Vector lengths need a square root operation which is a costly one, so I tried to avoid 

that operation in cases where I could, like when comparing a vector length with 

another value. So instead of making this comparison: 

ὀ ὀ ὀ ὥ 

where ὀ ὀ ὀ ᴁὀᴁ , we have this comparison: 

ὀ ὀ ὀ ὥ 

which bypass the square root calculation, and has the same results, since we are 

talking about non-negative values. This step can save time from calculations, 

especially when calculating all the quantities involving kernel functions, which need 

distances between particles. 

Another step that proved to optimize the code more effectively, was switching some 

class variables from private to public. Even though, in programming, it is considered 

better practice to not have class variables set to public, making that switch, made 

the simulation run faster. One particular variable that delayed the simulation a lot, 

was the std::map representing the hash table. This map was called inside the 

function that set neighbours for each particle. The table, which is a member of the 

System class, was accessed in the Particle class and through a get function. Since the 

neighbour setting class includes a lot of loops, the get function that retrieves the 

hash table could be called dozens of times, eventually delaying the simulation by a 

significant amount of time. 

After these steps were taken, the aforementioned simulation example took about 10 

minutes to run. When raising the smoothing kernel size from 0.2 to 0.35, it took 

about 25 minutes, while also raising the particle count from 5000 to 8500 made the 

simulation run for a little less than 1 hour, to produce 60 frames. 
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However, there was not enough time to optimize it further, and still some simulation 

ran for an overly long time. For example, a 100 frame simulation with 8500 particles 

and a kernel size of 0.45, took approximately 7 hours to run, whereas a simulation of 

120 frames, 8500 frames but a kernel size of 0.35 took almost 3 and a half hours, 

which shows the vast difference that the kernel size can make time-wise. 

6.1.2 Fluid restness 

Besides the time problems, another problem in the simulation is that the fluid 

doesn’t rest, after reaching the boundary box floor. While it should experience some 

sort of turmoil after landing properly on the floor, after a while, as long as there are 

no external forces besides gravity, that turmoil should cease. In some cases, after 

several frames have passed, the fluid stuck to the side of the boundary, probably 

because one of the forces is acting on it more than it should. 

Trying to solve this issue, I experimented with two parameters, the kernel size and 

the k constant used for the pressure calculation. Too much pressure or too few 

neighbours made the fluid very “restless”. Lowering the pressure constant made the 

fluid not flow too vigorously but didn’t solve the problem completely. A larger kernel 

size had the particles not separate that easily, but, as mentioned in the above 

section, made the simulation very slow. 

6.1.3 Volume changes 

In the demo videos it can be seen that, before the fluid starts flowing into the tank, 

its volume starts shrinking down. This happens because there are not enough 

particles to fill the volume adequately, therefore they pull each other together, 

before their pressure forces start acting and they burst and flow into the tank. 

6.1.4 Collision detection 

As mentioned in chapter 4.8, collision detection was not ideal in the implementation. 

Decreasing the velocity when the particles were colliding with the boundary, made 

them “stick” to the wall after a few iterations, while not decreasing the velocity, but 

fully reversing it, made the particles move in an uncontrollable fashion. 
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6.2 Further Development 

The implementation code has a lot of room for improvement. The first thing I would 

like to look into further, is try to optimize the code so that it runs fairly quickly. I 

would try to do that mostly by making the neighbour search more effective, since it 

is the most time consuming process, and also a critical one for the effectiveness of 

the simulation. 

I would also like to look further into the particles’ collisions with objects, so that the 

fluid interacts with spherical objects or other structures and not just a rectangular 

one. 
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