
1

Antonia Strantzi

MSc Computer Animation and Visual Effects

i7611774

Masters Project

Fluid Simulation Using Smoothed Particle

Hydrodynamics (SPH)

National Centre for Computer Animation

Bournemouth University

22/08/2016

2

3

Contents

Abstract ………...5

1. Introduction ……6

2. Fluid Simulation ……………………………………………………………………………………………………8

 2.1 Previous Work ………………………………………………………………………………………………..8

 2.2 Fluid Simulation Theory ………………………………………………………………………………….9

 2.3 Navier-Stokes Equations …………………………………………………………………………………9

 2.4 Popular methods …………………………………………………………………………………………..10

 2.4.1 Marker and Cell Grid …….………………………………………………………………………..10

 2.4.2 Fluid Implicit Particle ………………………………………………………………………………11

3. Smoothed Particle Hydrodynamics …………………………………………………………………….12

 3.1 Particle Systems ……………………………………………………………………………………………12

 3.1.1 Particle System Properties ………………………………………………………………………12

 3.2 SPH Particle Properties …………………………………………………………………………………13

 3.3 Definition ……………………………………………………………………………………………………..13

 3.4 Smoothing Kernels ………………………………………………………………………………………..14

4. Implementation ………………………………………………………………………………………………….16

 4.1 Navier-Stokes for SPH ……………………………………………………………………………………16

 4.2 Mass and Mass-Density …………………………………………………………………………………16

 4.2.1 Mass ……………………………………………………………………………………………………….16

 4.2.2 Mass-Density ………………………………………………………………………………………….17

 4.3 Internal Forces ……………………………………………………………………………………………..18

 4.3.1 Pressure …………………………………………………………………………………………………18

 4.3.2 Pressure Force ………………………………………………………………………………………..18

 4.3.3 Viscosity …………………………………………………………………………………………………20

 4.4 External Forces ……………………………………………………………………………………………..21

 4.4.1 Gravity ……………………………………………………………………………………………………21

4

 4.4.2 Surface Tension ……………………………………………………………………………………...21

 4.4.3 Buoyancy ………………………………………………………………………………………………..22

 4.4.4 User Interaction ……………………………………………………………………………………..23

 4.5 Acceleration ………………………………………………………………………………………………….23

 4.6 Velocity ……23

 4.6.1 XSPH Velocity …………………………………………………………………………………………23

 4.7 Spatial Hashing ……………………………………………………………………………………………..24

 4.8 Collision Detection ………………………………………………………………………………………..26

 4.9 Physical Parameters ………………………………………………………………………………………27

 4.10 Classes and Pseudocode ……………………………………………………………………………..28

 4.11 UML Diagram ………………………………………………………………………………………………30

5. Results …….31

6. Conclusion …….33

 6.1 Known Issues ………………………………………………………………………………………………..33

 6.1.1 Time performance ………………………………………………………………………………….33

 6.1.2 Fluid restlessness ……………………………………………………………………………………35

 6.1.3 Volume changes ……………………………………………………………………………………..35

 6.1.4 Collision detection ………………………………………………………………………………….35

 6.2 Further Development ……………………………………………………………………………………36

References ………..37

5

Abstract

Smoothed Particle Hydrodynamics (SPH) is a widely used method of simulating fluids

in computer graphics. This paper explains this particular method, mentions previous

research that has been done one it, as well as comparing it to other methods,

especially the Fluid Implicit Particle (FLIP) method. Furthermore, an implementation

of SPH is analysed. The implementation was done in C++ and the resulting simulation

was imported to Houdini.

6

Chapter 1

Introduction

This paper follows the implementation of a Smoothed Particle Hydrodynamics solver

in C++ and the presentation of work and research that has been done on this

particular method.

Fluid simulations are a very sought after tool in today's graphics world. Widely used

in games and films, they have become more and more in demand, therefore

increasing the need for more accurate mathematical methods and representations.

There are two most common ways of representing fluids. Lagrangian and Eulerian

methods, and sometimes hybrid ones that combine features from both methods.

Lagrangian methods represent the fluid with particles, while Eulerian methods look

at the fluid through a grid structure that stores information about the fluid’s motion.

Hybrid methods are also used, because they combine the best parts of the previously

mentioned representations. The most popular Langrangian method is SPH, which is

the one implemented for this paper, while a very used Eulerian method is the

Staggered Marker and Cell Grid (MAC Grid). Lastly, there are hybrid methods, such as

the Fluid Implicit Particle (FLIP) and the Particle in Cell (PIC). FLIP is the most popular

method used in today’s graphics.

SPH is a particle-based method used to simulate fluids. The particles making up the

volume of the fluid have attributes like velocity, acceleration and mass, which are the

common attributes in all particle systems[10]. In SPH, additional attributes are

needed, such as density, pressure and forces affecting the motion[10].

The implementation of the SPH solver was done in C++ and the simulation was

visualized using the OpenGL[3] and ngl[4] libraries. Furthermore, the simulation was

also exported to Alembic[5] format and imported to Houdini[6] so that a scene could

7

be rendered out.

At the end, the results of the simulation are analysed and problems that rose during

the process are also discussed.

8

Chapter 2

Fluid Simulation

2.1 Previous Work

Over the last few decades, fluid behaviour has been a fascinating topic for

researchers. There have been hundreds of publications, papers and lectures on the

subject, as well as a lot of different approaches.

One of the first fluid simulation methods was developed back in the 1960’s by

Harlow. He led a group in the Los Alamos National Laboratory and developed the

particle-in-cell. The initial aim of the group was to develop numerical techniques that

would aid the USA’s national defense system[26]. The PIC method is still used to this

day, albeit more in hybrid methods.

In 1977, Gingold and Monaghan, and Lucy, invented smoothed particle

hydrodynamics in order to simulate nonaxisymmetric phenomena in astrophysics[27].

They found out that SPH suited their simulation needs and could be extended to

other physical phenomena. Since, then several approaches have been by researchers

and scientists, most of which focused on perfecting particular aspects of the

technique. In 1996, Desbrun and Gascuel proposed an alternative method of

calculating the pressure force, by combining the ideal gas law with the rest density,

and therefore symmetrizing the pressure force. In 2003, Muller et al.[16] proposed a

model for calculating the fluid’s surface tension by using colour fields. Spatial hashing

was a big step to the optimization of the method, since it provided a quick solution to

the neighbour search problem. It was developed by Teschner et al. in ETH, Zurich[20].

Micky Kelager’s project from 2006[13], is a very popular citation when it comes to

SPH, since he includes a lot of the new methods and offers a clear insight into the

SPH process. This is the paper that was mostly followed during this implementation.

9

2.2 Fluid Simulation Theory

According to Englesson (2011), in Lagrangian representations, the fluid is approached

as a collection of particles, or atoms, which make up the fluid's volume. Langrangian

methods have advantages in that they are understandable and all calculations are

performed on the particles. On the other hand, though, the calculations rely heavily

on the particles' density, therefore making the calculations, in areas with low density,

inaccurate[1].

This problem is not present when using Eulerian methods. For this kind of methods,

the fluid is observed through a number of cells that make up a grid. Because of this,

Eulerian representations are also called grid-based representations. The calculations

are performed on the cells of the grid, with no subsequent mathematical “gaps” in

low density areas. The disadvantage of Eulerian simulations is the fact that they need

a very big number of cells in order for the simulation to be as realistic as possible.

This number can easily rise to the millions, thus reaching high computational

complexity[1].

Hybrid methods provide a middle ground where we can still have the advantages of

particles, but inside a grid, which provides higher accuracy[1].

Three methods from each category are explained in the following pages.

2.3 Navier-Stokes Equations

The two fundamental equations that describe a fluid’s motion are called Navier-

Stokes equations, and they are used to describe the fluid’s velocity field over time.

The two equations are[10]:

ϽɳἽ π (1)

Ἵ
 ἽϽɳἽ ὴɳ Öɳ Ἵ ἐ (2)

The first equation ensures that the velocity field has zero divergence, therefore

conserving mass. This comes from the Helmholtz-Hodge Decomposition, which

10

states that any vector field × can be decomposed into the following form:

Ἷ Ἵ ɳή

Where Õ is a vector field whose divergence needs to be zero and Ñ is a scalar field.

This shows how any vector field is the sum of a mass conserving field and a gradient

one[11]. In other words, equation (1) says that the amount of fluid flowing into our

predefined volume must be equal to the amount of fluid that’s flowing out.

Equation (2) calculates the velocity field over time and sums up the following

terms[12]:

ἽϽɳἽ : the self-advection term, showing how the divergence affects the velocity

ὴɳ : the pressure term, which models how the particles move away from high

pressure areas

Öɳ Ἵ : the viscosity term, which captures the relationship between the velocity and

the viscosity variable v. The highest this variable is, the more viscous, namely thicker,

the fluid is.

ἐ : any external forces that are applied to the fluid, like gravity

2.4 Popular Methods

2.4.1 Marker and Cell Grid

The Marker and Cell (MAC) Grid method was introduced by Harlow and Welch in

1965[17]. They introduced a new way of tracking fluid motion through particles, called

marker particles and grid, called staggered grid. A staggered grid is different from

regular ones in that it stores quantities and their components in different parts of its

cells[1]. Particularly, in a 3D grid, the three components of each cell’s velocity vector

are stored on the cell faces, while the pressure is stored in the cell’s centre. Storing

the velocity on the cell faces provides more stable simulations, instead of storing it at

the centre. Besides the grid cells, marker particles are used to represent the fluid

volume and determine which cells contain fluid and which ones don’t[10]. The

following image illustrates a 3D MAC grid cell:

11

2.4.2 Fluid Implicit Particle

The Particle-in-Cell method was first described in Harlow’s 1962 paper[23]. The main

idea is that the quantities are stored in the particles and then transferred onto the

grid and then, after these quantities are updated, back onto the particles. Bridson[24]

explains that all the quantities, velocity included, are transferred to the grid. Then, all

the non-advection terms, such as gravity acceleration, pressure, etc. are calculated

on the grid, as with purely Eulerian representations. Then, using trilinear

interpolation (or bilinear, if the simulation is in 2D), the quantities are transferred

back to the particles, which are then advected in the grid velocity field. The FLIP

method is a variation of PIC and was developed by Brackbill and Ruppel in 1986[31].

The difference from PIC is that the particle quantities, after being calculated on the

grid, are not transferred back to the particles as they are, but they are added to the

particles’ previous values.

12

3. Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics is a method first introduced in 1977 by Gingold

and Monaghan, and Lucy[8][9], to simulate astrophysical phenomena. According to a

review on the theory and application of SPH by Monaghan (2005)[7] “smoothed

particle hydrodynamics is a method for obtaining approximate numerical solutions of

the equations of fluid dynamics by replacing the fluid with a set of particles. For the

mathematician, the particles are just interpolation points from which properties of

the fluid can be calculated. For the physicist, the SPH particles are material particles

which can be treated like any other particle system.”

According to Kelager[13] “SPH is an interpolation method to approximate values and

derivatives of continuous field quantities by using discrete sample points”. These

sample points are represented by particles that carry certain properties.

3.1 Particle Systems

Particle systems have been widely used nowadays, in order to create convincing

simulations of fuzzy phenomena, either related to real world situations or make-

believe ones, usually seen in motion pictures and games. The first major publication

on particle systems came with William T. Reeves’ paper (1983)[28] where he defines

particle systems as: “a method for modeling fuzzy objects such as fire, clouds, and

water. Particle systems model an object as a cloud of primitive particles that define

its volume. Over a period of time, particles are generated into the system, move and

change form within the system, and die from the system.” Based on this paper,

Reeves created a wall of fire effect in Star Trek: Wrath of Khan (1982)[29]. Fuzzy

objects do not consist of well-defined and rigid surfaces, but irregular and complex

ones[28]. They do not take up a specific amount of space and they are not constrained

within strict boundaries.

3.1.1 Particle System Properties

In every particle system, each particle has a specific set of attributes. These

attributes are[30]:

13

1. Initial position

2. Initial velocity

3. Initial size

4. Initial colour

5. Initial transparency (alpha)

6. Shape

7. Lifespan

The subsequent movement of the particle is defined by calculating its velocity, using

the acceleration parameter. The acceleration is usually defined by the gravity field

using Newton’s Second Law ἐ άἩ where m is the particle’s mass.

3.2 SPH Particle Properties

Besides the usual attributes that particles carry within a particle system, SPH

particles carry further physical quantities, like mass-density, pressure and

temperature[13].

3.3 Definition

As mentioned above, SPH is an interpolation method that uses kernels. These kernels

model a delta function, according to the particles’ positions. This integral interpolant

of any quantity function !Ø is given by the following formula[13]:

ὃ Ἲ ΅Ἲὡ Ἲ ἺȟὬὨἺᴂ

Where ɱ is the space in which the interpolation is calculated, 7 is a smooth kernel

weighting function with È as its width. The numerical equivalent to the integral is a

summation interpolant[15]:

ὃ Ἲ ά
ὃ

”
ὡ Ἲ ἺȟὬ

14

In fluid particle terms, !Ò represents an attribute of a certain particle in position Ò,

Í is the mass and ʍ is the particle’s mass-density.

When applying a gradient and a Laplacian operator to !Ò, the following equations

occur:

ὃ Ἲ ά
ὃ

”
ὡ Ἲ ἺȟὬ

ὃ Ἲ ά
ὃ

”
ὡ Ἲ ἺȟὬ

Therefore, the gradient and Laplacian operators are only applied to the kernel

function, because, according to the rules of differentiation, the ά part equals to

zero when differentiated.

3.4 Smoothing Kernels

A smoothing kernel is a weighting function which adjusts the particles’ quantities

according to the distance among them[14]. There are different smoothing kernels that

one can use for SPH approximations, depending on the quantity that needs to be

calculated. The two properties a smoothing kernel must have are[13]:

ὡ ἺȟὬὨἺ

ρ

ÌÉÍ
ᴼ
ὡ ἺȟὬ Ἲ

Furthermore, the kernel function must always be positive, and even. Namely:

ὡ ἺȟὬ π

15

ὡ ἺȟὬ ὡ ἺȟὬ

In this implementation three types of kernels are used, the 6th polynomial, the spiky

and the viscosity kernel, which will be explained in later chapters.

16

4. Implementation

For the implementation, a certain amount of particles was used, that stays fixed

throughout the duration of the simulation, therefore conserving the fluid’s mass.

4.1 Navier-Stokes for SPH

Given the fact that the amount of particles stays the same for the duration of the

simulation, and the mass also stays fixed, the first Navier-Stokes equation is

redundant, since mass conservation is already guaranteed. Furthermore, since we

are talking about Lagrangian fluid dynamics, and not Eulerian representations, the

advection term of the Navier-Stokes equations is redundant as well. This is due to

the fact that in Langrangian representations, it’s the particles that define the fluid,

and any field quantity only depends on time[13]. In conclusion, for Langrangian

representations, the Navier-Stokes equations become:

Ἵ

ὼ

ρ

ʍ
ὴɳ Öɳ Ἵ ἐ

4.2 Mass and Mass-Density

4.2.1 Mass

All the particles have an equal mass, that stays fixed throughout the simulation. The

mass is one of the most important attributes, since it is used to calculate the density

and the forces applied. Priscott[14], based on Kelager[13] uses the following equation

to calculate the mass of the particle, using the particle’s density, the fluid’s volume

and the number of particles making up the volume:

ά
ὠ

”
ὲ

However, the mass of the particles in this implementation is set to 0.02, because the

above equation resulted in large particle masses that brought instability to the

17

calculations. The volume of the fluid is set as a global parameter and its shape starts

off as either a sphere or a box.

4.2.2 Mass-Density

Mass-density is a vital term to have in order to make calculations on the particles. In

contrast to the mass, which can be user-defined, mass-density is a continuously

changing field, which needs to be calculated on every iteration of the simulation.

For the mass-density computation we have to use a smoothing kernel function. For

this computation Kelager[13] uses the 6th polynomial kernel as the default one.

The kernel is given by:

ὡ ἺȟὬ
σρυ

φτ“Ὤ

Ὤ ᴁἺᴁ ȟ π ᴁἺᴁ Ὤ

πȟ ᴁἺᴁ Ὤ

The gradient of the kernel is:

ὡɳ ἺȟὬ
ωτυ

σς“Ὤ
ἺὬ ᴁἺᴁ

The Laplacian of the kernel is:

ᶯὡ ἺȟὬ
ωτυ

σς“Ὤ
Ὤ ᴁἺᴁ σὬ χᴁἺᴁ

The mass-density is computed using the SPH approximation:

” ὶὩίὸᾨὩὲίὭὸώ”Ἲ

”Ἲ ὶὩίὸᾨὩὲίὭὸώά
”

”
ὡ Ἲ ἺȟὬ

Which turns into:

”Ἲ ὶὩίὸᾨὩὲίὭὸώά ὡ Ἲ ἺȟὬ

18

where j represents each particle in the “neighbourhood” of the particle whose mass-

density is currently being calculated. The method of finding the particle’s

neighbourhood is called spatial hashing and it is going to be explained in detail in a

later chapter.

4.3 Internal Forces

4.3.1 Pressure

The pressure is computed by using the ideal gas law[13]:

ὴὠ ὲὙὝ

ὠ is the volume per unit mass, n is the amount of particles inside the volume,

R is the universal gas constant and T is the temperature. If the temperature remains

stable, then the right hand side of the equation is a constant and can be replaced

with a gas stiffness constant k depending only on the number of particles used. After

replacing the right hand side with k, then the equation becomes:

ὴὠ Ὧ ᵼ ὴ
ρ

”
Ὧ ᵼ ὴ Ὧ”

According to Desbrun and Gascuel (1996)[18] liquids should have a constant mass-

density at rest. Therefore, the liquid should have some internal cohesion, resulting in

attraction-repulsion forces. For that reason, we use a modified version of the ideal

gas law:

ὖ ὖ ὠ Ὧ

where Po is an additional rest pressure: ὖ Ὧ”, where ρο is the rest density of the

fluid material.

4.3.2 Pressure Force

After calculating the pressure for each particle, the SPH approximation is used for

the pressure force:

19

Ἦ ὴɳἺ

Ἦ ὴ
ά

”
ὡɳ Ἲ ἺȟὬ

This equation, though, does not provide a symmetrical pressure force, since the

particle only uses the other particles’ pressures to compute its pressure force.

Consequently, this does not conserve the action-reaction law[13]. Symmetrizing the

pressure force, yields the following formula[18]:

Ἦ ά ά
ὴ

”

ὴ

”
ὡɳ Ἲ ἺȟὬ

Another faster and stable solution to symmetrizing the pressure force, proposed by

Muller et al. (2003), is:

Ἦ
ὴ ὴ

ς

ά

”
ὡɳ Ἲ ἺȟὬ

A smoothing kernel function is also needed to calculate the pressure force. The

default 6th polynomial is not used in this case, but a spiky kernel is preferred. The

spiky kernel is more suitable because when it comes to pressure force, particle

clusters need to be created in a more explicit and precise way[13].

The spiky kernel yields:

ὡ ἺȟὬ
ρυ

“Ὤ

Ὤ ᴁἺᴁ ȟ π ᴁἺᴁ Ὤ

πȟ ᴁἺᴁ Ὤ

The gradient of the kernel is:

ὡɳ ἺȟὬ
τυ

“Ὤ

Ἲ

ᴁἺᴁ
Ὤ ᴁἺᴁ

The Laplacian of the kernel is:

20

ᶯὡ ἺȟὬ
ωπ

“Ὤ
Ὤ ᴁἺᴁ Ὤ ςᴁἺᴁ

4.3.3 Viscosity

Viscosity is the tendency of a fluid to resist flow. The more viscous the fluid, the

more the molecules stay together. For instance, water is a low viscosity fluid, while

honey has higher viscosity. The coefficient μ defines the viscosity strength[13]. The

SPH approximation for the viscosity term is:

Ἦ ‘ɳ ἽἺ

Ἦ ‘ Ἵ
ά

”
ᶯὡ Ἲ ἺȟὬ

This term, like the pressure force term, is asymmetric. Muller[16] has proposed a

symmetrized equation, not using absolute velocities, but velocity differences, which

are the ones that viscosity forces depend on.

Ἦ ‘ Ἵ Ἵ
ά

”
ᶯὡ Ἲ ἺȟὬ

Since we don’t want the forces due to viscosity to increase the relative velocity and

destabilize the system, the Laplacian operator of the smoothing kernel needs to be

positive. A kernel that achieves this is the following one[13]:

ὡ ἺȟὬ
ρυ

ς“Ὤ

ᴁἺᴁ

ςὬ

ᴁἺᴁ

Ὤ

Ὤ

ςᴁἺᴁ
ρȟ π ᴁἺᴁ Ὤ

πȟ ᴁἺᴁ Ὤ

The gradient of the kernel is:

ὡɳ ἺȟὬ
ρυ

ς“Ὤ
Ἲ

σᴁἺᴁ

ςὬ

ς

Ὤ

Ὤ

ςᴁἺᴁ

The Laplacian of the kernel is:

21

ᶯὡ ἺȟὬ
τυ

“Ὤ
Ὤ ᴁἺᴁ

4.4 External Forces

The external forces are applied after all the internal forces are calculated. All the

external forces are combined into a sum.

4.4.1 Gravity

The gravity force is one that always has to be taken into account in particle systems.

Given g gravitational acceleration, where g = (0,-9.8,0), the gravitational force is[13]:

Ἦ ”Ἧ

4.4.2 Surface Tension

Inside the fluid volume, the particles are subject to attractive forces from

neighbouring particles. Inside the fluid these forces are equal in every direction, but

for particles close to the surface, these forces are unbalanced. Attraction forces

among the particles act in the direction of the surface normal of the particle, and

they also depend on the curvature of the surface, with higher curvature spots,

applying higher force[16]. Muller et al. (2003) explain how the surface tension is

calculated.

The fluid “area” can be tracked using a colour field, which is 1 inside the fluid, and 0

outside it[19]. The smoothed colour field is:

ὧ ὧἺ

ὧ ά
ρ

”

ὡ Ἲ ἺȟὬ

The surface normal field is found by applying a gradient operator on the colour field:

22

ἶ ὧɳ

ἶ
ά

”

ὡɳ Ἲ ἺȟὬ

The curvature of the surface depends on the divergence of the surface normal field:

‖
ᶯὧ

ᴁἶᴁ

The surface tension is calculated using the surface traction t and a normalized scalar

field ᴁἶᴁ which is positive only when the surface normal length exceeds a

certain value l, otherwise numerical errors may occur. The surface traction is:

Ἴ „‖
ἶ

ᴁἶᴁ

Where σ is the tension coefficient that depends on the fluids making up the

surface[13].

The surface tension is computer using the following equation, only when ᴁἶᴁ ὰ:

Ἦ „‖ἶ „ɳ ὧ
ἶ

ᴁἶᴁ

4.4.3 Buoyancy

Buoyancy needs to be taken into account when we want to simulate gaseous fluids.

Kelager explains that buoyancy is caused by diffusion of temperatures, but when

modeling isothermal fluids, an artificial buoyancy can be given using the following

equation[13]:

Ἦ ὦ” ” Ἧ

Where b is a positive parameter representing the artificial buoyancy diffusion. In

non-gaseous fluids, like water, parameter b is set to zero.

23

4.4.4 User Interaction

If a user can manipulate the motion of the fluid, then an extra external force is

added to the sum of forces. The user may have the ability to control the fluid itself,

its boundaries or throw obstacles in it. An example would be for the user to be able

to block the fluid’s movement by clicking on the fluid on-screen.

4.5 Acceleration

The acceleration derives from Newton’s second law of motion: ἐ άἩ, where the

sum of all the forces is divided by the density.

Ἡ
ἐ

”

4.6 Velocity

For the update of the velocity and then the position of the particle, the implicit Euler

scheme is used, as described by Kelager (2006)[13]:

Ἲ Ἲ ɝὸἽ

Ἵ Ἵ ɝὸἩ

4.6.1 XSPH Velocity

Priscott (2010) implements a particle velocity correction technique called XSPH, in

order to correct velocities that divert too much from an average amount. The

equation used is the following[14]:

Ἵ Ἵ ‐
ςά

” ”

ὡ Ἲ ἺȟὬ

In this implementation, the ε parameter is set to 0.1 so that the velocities don’t

change too much.

24

4.7 Spatial Hashing

A vital part of a Langrangian fluid simulation process is the neighbour search. All SPH

approximations are performed while taking into account the attributes of particles

that are located close to the particle in question.

When using thousands of particles, searching for neighbours for each particle among

all the others, will be extremely time-costly, since the computational complexity is

O(n2) , where n is the number of particles. That is why optimization methods are

needed. In this case, a method called “spatial hashing” is used. Spatial hashing is a

fast nearest neighbour search algorithm and has a computational complexity of

O(1) [13].

The way spatial hashing works is that every particle’s position is hashed to create a

key. This key specifies the cell in which the particle’s position is going to be stored in

the hash table. The hash function being used in this algorithm, assigns the same key

to particles located close to each other. Therefore, in order to find a particle’s

neighbours, all one has got to do is look up the hash table and get a list of the

particles hashed in the same cell.

Teschner (2003)[20] has proposed the following hash function:

ὬὥίὬἺ ØἺὴ ὼέὶ ØἺ ὴ ὼέὶ ØἺὴ ÍÏÄ ὲ

The numbers p1, p2 and p3 are large prime numbers[13]:

ὴ χσψυφπωσ

ὴ ρωστωφφσ

ὴ ψστωςχωρ

Kelager (2006) describes the discretizing Ø function, which takes a vector of floating

values and converts it to a vector of integers by rounding down the numbers,

according to a cell size l. Here, this cell size is assigned the smoothing length factor

h[13].

ØἺ
Ἲ

ὰ
ȟ
Ἲ

ὰ
ȟ
Ἲ

ὰ

25

Lastly, ὲ is the hash table size, a large prime number that is large enough to avoid

collisions among the positions hashed. Therefore, ὲ is defined as:

ὲ ὲὩὼὸῂὶὭάὩςὲ

The prime function returns the next prime number after 2n, where n is the number

of particles.

Every time the particles’ positions are updated, the hash table needs to be updates

as well, in order for the new positions to be hashed. The equation used to fill the

hash table for a particle p is[13]:

ὬὥίὬάὥὴὬὥίὬØἺ ὴ

When a particle p’s neighbours need to be found, all there is to be done is retrieve a

list of the cells hashed to the same key as p. However, it is possible that not all

particles located in close proximity are going to be hashed in the same cell.

For this reason, there needs to be an extra search for particles located around

particle p. Priscott (2010) describes a process of defining a bounding box around the

particle[14]. Then, we iterate over discretized positions (using the Ø function) inside

this box and retrieve their hash keys. For each hash key retrieved, we get the

positions hashed to that key and add them to a dynamic list. However, the particles

added to that list are not always guaranteed neighbours. Therefore, a final check

needs to be performed, so that the particles j in that list lie within the smoothing

length radius h around particle p:

Ἲ Ἲ Ὤ

Kelager gives the following equations to find the bounding box, by getting its two

further corner points[13].

ὄὄ ØἺ ὬȟὬȟὬ

ὄὄ ØἺ ὬȟὬȟὬ

26

4.8 Collision Detection

For this implementation, the collision detection was handled very simply and only for

a rectangular bounding box. The idea is that every time the particle hits a wall of the

boundary, it “bounces” back, by having its velocity reversed:

Ἵ Ἵ

This method caused problems, especially in cases where the fluid forces were large,

or where the fluid was thrown from a distance into the bounding box. In those cases,

fully reversing the velocity made the particles jump up and down uncontrollably. The

forces acting upon them could regulate the velocities, but there was not enough

time for that before the particles hit another wall and their velocities were reversed

once again.

For this reason, an energy loss parameter s is introduced, in order to decrease the

velocity once the particle hits a wall. This is based on the fact that the particle would

lose energy when colliding with the boundary and therefore would lose some of its

velocity. The equation used for this new approach is:

Ἵ ίἽȟ ί π

This approach, however, proved again problematic, because after continuously

multiplying with the s value, the particles had more and more decreasing velocities.

Because of this decrease, the velocities reach such small values that they end up

almost “sticking” to the boundary walls and creating clusters near them, leaving the

centre of the boundary very sparsely populated.

After encountering these problems, the s parameter was only used when the

particles collided with the floor, in order to make them more “grounded” to it and

not having them bounce straight off and fly away to the ceiling, while keeping the

velocity intact when the particles hit any of the other boundary walls.

27

4.9 Physical Parameters

The physical parameters used in this implementation are:

o Mass: 0.02

o Volume: the volume is manually set, and for the simulations it varied from

1.5 to 6 m3

o Particle size: 0.035 m3

o Number of particles: the number depends on the volume and the particle size

and is calculated from the following: ὲ ὠȾτ“ὴὥὶὸὭὧὰὩίͅὭᾀὩ

o Smoothing kernel radius: varied from 0.15 to 1

o Rest density: 998.2 for water

o K constant: 5, used for the pressure

o Viscosity μ: 3.5

o Surface tension σ: 0.0728

o Surface tension threshold l: 6

o Buoyancy constant b: 0, for water

The viscosity and surface tension constants are the same that Kelager (2006) uses for

his water simulation. He also proposes a way of finding the kernel size based on the

volume, the particle count and the maximum amount of neighbours for a particle[13]:

άὥῲὲὩὭὫὬὦέόὶί
ὸέὸὥὰ

ὠ

τ

σ
“Ὤ

 ᵼὬ
σ ὠ άὥῲὲὩὭὫὬὦέόὶί

τ “ ὸέὸὥὰῂὥὶὸὭὧὰὩί

This equation however made the kernel size too small, approximately 0.15 which is

too small of a number to get a good enough simulation. So the kernel size always has

a size more than 0.25.

28

4.10 Classes and Pseudocode

The implementation of the fluid simulation was done in C++ using Qt[21] and the

OpenGL[3] and ngl[4] libraries. For the purpose of that, 5 classes were created:

o Globals

o NGLScene

o System

o Particle

o Tank

Globals is a class where all the global variables used in the simulation are defined.

The class is included in all the other classes so the globals are usable in them.

NGLScene is the class that creates the scene, sets up and compiles the shaders and

creates the camera. Part of the class was taken from Macey’s[22] Simple Particles

demo. The System class, that creates the particle system, and the Tank class are

initialized inside NGLScene. Mouse and keyboard events are also handed through the

class. System is the class that creates the particles, updates them and stores the

particles inside a vector. It also stores the table needed for the spatial hashing, and

contains functions for updating the it. Particle stores all the particle data and

contains functions that perform all the calculations. Most of the main steps of the

simulation go through this class. Tank is a class aimed to visualize the boundary box

surrounding the fluid, by building a vertex array object.

The implementation is shortly described in the following pseudocode:

29

Set initial parameters and physical properties

Create system

Calculate size of hash table

For every particle p :

 Create p inside the ini tial volume

 Set põs mass

 Compute põs hash key

 Add põs id to the hash table

 Add particle p to the systemõs vector of particles

For every particle p :

 Set neighbours list

For every particle p :

 Calculate density

 Calculate pressure

For every particle p :

 Calculate internal forces

 Calculate external forces

 Sum up all forces

For every particle p :

 Update acceleration

 Update velocity

 Check boundary conditions and re -update ve locity

While simulation running :

 For every particle p :

 Update position

 Compute new hash key and update hash t able

 Set new neighbours list

 For every particle p :

 Calculate density

 Calculate pressure

 For every particle p :

 Calculate internal fo rces

 Calculate external forces

 Sum up all forces

 For every particle p :

 Update acceleration

 Update velocity

 Correct velocity using XSPH

 Check boundary conditions and re -update velocity

 For every parti cle p :

 Render p on screen

30

4.11 UML Diagram

31

Chapter 5

Results

Despite the multiple parameters and calculations, the factor that proved to be the

most important for the simulation is the smoothing kernel size. The quality of the

simulation depended largely on that parameter. Variations on the pressure and

viscosity parameters were also tested. Here are screenshots from some of the

simulations.

A falling cube:

Dam break:

A full tank with wind added:

Variations on the viscosity parameter:

32

Variations on the kernel size, low size (above), high size (below):

33

Chapter 6

Conclusion

Smoothed particle hydrodynamics is a really powerful technique to simulate fluids

and other similar phenomena. Part of its advantage is that the mathematics behind

it, are not particularly complicated, as it happens with other fluid simulation

techniques, like grid-based ones.

After this project, I have come to the conclusion, that the key to a good simulation

using SPH, is the parameters. It is vital to find the right values and the right balance

between the parameters as well, in order to have a simulation as realistic as

possible.

6.1 Known Issues

6.1.1 Time performance

The biggest issue with this implementation was time. The simulation was running too

slowly. As the amount of particles increased, the time needed to do all the

calculations increased dramatically. The simulation became even slower when the

smoothing kernel size increased. With a larger kernel size, each particle had to

iterate over more neighbours during the calculations.

The fact that it was slow, made it also difficult to visualize. The simulation works best

when it has several thousands of particles, above 7000-8000. But when the amount

of particles exceeded 3000, the simulation became quite slow. Therefore, not many

“test simulations” with 7000, or more, particles were done, in order to check which

parameters make the simulation work better.

34

For example, in earlier versions, a simulation of 5000 particles, a kernel size as little

as 0.2 would end up running for approximately 3 hours, in order to produce about 60

frames. Some optimization was done and the running time decreased a lot. One

thing I did to optimize the code was change the way vector lengths were calculated.

Vector lengths need a square root operation which is a costly one, so I tried to avoid

that operation in cases where I could, like when comparing a vector length with

another value. So instead of making this comparison:

ὀ ὀ ὀ ὥ

where ὀ ὀ ὀ ᴁὀᴁ , we have this comparison:

ὀ ὀ ὀ ὥ

which bypass the square root calculation, and has the same results, since we are

talking about non-negative values. This step can save time from calculations,

especially when calculating all the quantities involving kernel functions, which need

distances between particles.

Another step that proved to optimize the code more effectively, was switching some

class variables from private to public. Even though, in programming, it is considered

better practice to not have class variables set to public, making that switch, made

the simulation run faster. One particular variable that delayed the simulation a lot,

was the std::map representing the hash table. This map was called inside the

function that set neighbours for each particle. The table, which is a member of the

System class, was accessed in the Particle class and through a get function. Since the

neighbour setting class includes a lot of loops, the get function that retrieves the

hash table could be called dozens of times, eventually delaying the simulation by a

significant amount of time.

After these steps were taken, the aforementioned simulation example took about 10

minutes to run. When raising the smoothing kernel size from 0.2 to 0.35, it took

about 25 minutes, while also raising the particle count from 5000 to 8500 made the

simulation run for a little less than 1 hour, to produce 60 frames.

35

However, there was not enough time to optimize it further, and still some simulation

ran for an overly long time. For example, a 100 frame simulation with 8500 particles

and a kernel size of 0.45, took approximately 7 hours to run, whereas a simulation of

120 frames, 8500 frames but a kernel size of 0.35 took almost 3 and a half hours,

which shows the vast difference that the kernel size can make time-wise.

6.1.2 Fluid restness

Besides the time problems, another problem in the simulation is that the fluid

doesn’t rest, after reaching the boundary box floor. While it should experience some

sort of turmoil after landing properly on the floor, after a while, as long as there are

no external forces besides gravity, that turmoil should cease. In some cases, after

several frames have passed, the fluid stuck to the side of the boundary, probably

because one of the forces is acting on it more than it should.

Trying to solve this issue, I experimented with two parameters, the kernel size and

the k constant used for the pressure calculation. Too much pressure or too few

neighbours made the fluid very “restless”. Lowering the pressure constant made the

fluid not flow too vigorously but didn’t solve the problem completely. A larger kernel

size had the particles not separate that easily, but, as mentioned in the above

section, made the simulation very slow.

6.1.3 Volume changes

In the demo videos it can be seen that, before the fluid starts flowing into the tank,

its volume starts shrinking down. This happens because there are not enough

particles to fill the volume adequately, therefore they pull each other together,

before their pressure forces start acting and they burst and flow into the tank.

6.1.4 Collision detection

As mentioned in chapter 4.8, collision detection was not ideal in the implementation.

Decreasing the velocity when the particles were colliding with the boundary, made

them “stick” to the wall after a few iterations, while not decreasing the velocity, but

fully reversing it, made the particles move in an uncontrollable fashion.

36

6.2 Further Development

The implementation code has a lot of room for improvement. The first thing I would

like to look into further, is try to optimize the code so that it runs fairly quickly. I

would try to do that mostly by making the neighbour search more effective, since it

is the most time consuming process, and also a critical one for the effectiveness of

the simulation.

I would also like to look further into the particles’ collisions with objects, so that the

fluid interacts with spherical objects or other structures and not just a rectangular

one.

37

References

[1] Englesson, D., Kilby, J. and Ek, J., 2011. Fluid Simulation Using Implicit Particles.

[2] Braley, C. and Sandu, A., 2010. Fluid Simulation For Computer Graphics: A Tutorial in Grid
Based and Particle Based Methods. Blacksburg, Virginia, USA: Virginia Polytechnic Institute
and State University.

[3] Khronos Group, 06 August 2012. OpenGL. 4.3 [3D graphics API]. Oregon, USA: Khronos
Group.

[4] Macey, J., 2016. NGL. 6.5 [graphics library]. Bournemouth, UK: National Centre for
Computer Animation, Bournemouth University.

[5] Lucasfilm Ltd., Sony Pictures Imageworks Inc., 2016. Alembic. [file format]. San Fransisco,
California, USA: Lucasfilm Ltd., Vancouver, Canada: Sony Pictures Imageworks Inc..

[6] Side Effects Software, 2016. Houdini. 15.5 [computer program]. Toronto, Canada: Side
Effects Software.

[7] Monaghan, J. J., 2005. Smoothed Particle Hydrodynamics. Bristol, UK: IOP Publishing Ltd.
Available from: http://cg.informatik.uni-
freiburg.de/intern/seminar/particleFluids_Monaghan%20-%20SPH%20-%202005.pdf.

[8] Gingold, R. A. and Monaghan, J. J., 1977. Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181
(3), 375–389. Available from: http://mnras.oxfordjournals.org/content/181/3/375.full.pdf

[9] Lucy, L. B., 1977. A numerical approach to the testing of the fission hypothesis. The
Astronomical Journal, 82 (12), 1013–1024. Available from:
http://articles.adsabs.harvard.edu/cgi-bin/nph-
iarticle_query?1977AJ.....82.1013L&data_type=PDF_HIGH&whole_paper=YES&am
p;type=PRINTER&filetype=.pdf.

[10] Cline, D., Cardon, D. and Egbert, P. K., 2013. Fluid Flow for the Rest of Us: Tutorial of the
Marker and Cell Method in Computer Graphics. Provo, Utah, USA: Brigham Young University.

[11] Stam, J., 1999. Stable Fluids. SIGGRAPH ’99 Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, 121–128. Available from:
http://dl.acm.org/citation.cfm?id=311548.

[12] Dobek, S., 2012. Fluid Dynamics and the Navier-Stokes Equation (CMSC498A: Spring ’12
Semester). College Park, Maryland, USA: University of Maryland, College Park.

[13] Kelager, M., 2006. Lagrangian Fluid Dynamics Using Smoothed Particle Hydrodynamics.
Graduate Project. Department of Computer Science, University of Copenhagen.

[14] Priscott, C., 2010. 3D Lagrangian Fluid Solver using SPH approximations. Masters
Project. Bournemouth University.

http://cg.informatik.uni-freiburg.de/intern/seminar/particleFluids_Monaghan%20-%20SPH%20-%202005.pdf
http://cg.informatik.uni-freiburg.de/intern/seminar/particleFluids_Monaghan%20-%20SPH%20-%202005.pdf
http://mnras.oxfordjournals.org/content/181/3/375.full.pdf
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1977AJ.....82.1013L&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1977AJ.....82.1013L&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1977AJ.....82.1013L&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf

38

[15] Becker, M. and Teschner, M., 2007. Weakly compressible SPH for free surface flows.
SCA ’07 Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer
animation, 209–217. Available from: http://dl.acm.org/citation.cfm?id=1272719.

[16] Müller, M., Charypar, D. and Gross, M., 2003. Particle-Based Fluid Simulation for
Interactive Applications. SCA ’03 Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, 154–159. Available from:
http://dl.acm.org/citation.cfm?id=846298 [Accessed 21 August 2016].

[17] Harlow, F. H. and Welch, J. E., 1965. Numerical Calculation of Time-Dependent Viscous
Incompressible Flow of Fluid with Free Surface. The Physics of Fluids, 8 (12), 2182–2189.
Available from:
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S09/papers/harlow_welch.pdf

[18] Desbrun, M. and Gascuel, M.-P., 1996. Smoothed Particles: A new paradigm for
animating highly deformable bodies. Proceedings of the Eurographics workshop on
Computer animation and simulation ’96, 61–76. Available from:
http://dl.acm.org/citation.cfm?id=274981.

[19] Batty, C., 2011. Grid-Based Fluids. British Columbia, Canada: The University of British

Columbia. Available from:

http://www.cs.ubc.ca/~batty/teaching/COMS6998/GridFluids_overview.pdf

[20] Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D. and Gross, M., 2003.
Optimized Spatial Hashing for Collision Detection of Deformable Objects. Proceedings of
Vision, Modeling, Visualization VMV’03, 47–54. Available from: http://matthias-mueller-
fischer.ch/publications/tetraederCollision.pdf.

[21] The Qt Company, 01 July 2015. Qt. 5.5 [application framework]. Espoo, Finland: The Qt

Company.

[22] Macey, J., 2016, Alembic Export. [coding demo]. Bournemouth, UK: National Centre for

Computer Animation, Bournemouth University.

[23] Harlow, F. H., 1962. Computer Physics Communications. Los Alamos, New Mexico: The
University of California, Los Alamos Scientific Laboratory.

[24] Bridson, R., 2015. Fluid Simulation for Computer Graphics. 2nd edition. Boca Raton,

Florida, USA: CRC Press.

[25] fxguide, 2011. The science of Fluid Sims. fxguide. Available from:

https://www.fxguide.com/featured/the-science-of-fluid-sims/ [Accessed 22 August 2016].

[26] Harlow, F. H., 2004. Fluid dynamics in group T-3 Los Alamos national laboratory. Journal

of Computational Physics, 195 (2), 414–433. Available from:

http://dl.acm.org/citation.cfm?id=992975.

[27] Monaghan, J. J., 1992. Smoothed particle Hydrodynamics. Annual Review of Astronomy

and Astrophysics, 30 (1), 543–574. Available from:

http://www.astro.lu.se/~david/teaching/SPH/notes/annurev.aa.30.090192.pdf.

[28] Reeves, W.T., 1983. Particle Systems – A Technique for Modeling a Class of Fuzzy

Objects [online]. ACM Transactions on Graphics (TOG), Volume 2 Issue 2, Pages 91-108.

http://dl.acm.org/citation.cfm?id=1272719
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S09/papers/harlow_welch.pdf
http://www.cs.ubc.ca/~batty/teaching/COMS6998/GridFluids_overview.pdf

39

[29] Star Trek II: The Wrath of Khan, 1982. [film, DVD]. Directed by Nicholas Meyer. USA:

Paramount Pictures.

[30] Siggraph, 2000. Particle Systems [online]. Available from:

https://www.siggraph.org/education/materials/HyperGraph/animation/particle.htm

[Accessed 15 August 2016]

[31] Brackbill, J. U. and Ruppel, H. M., 1986. FLIP: A method for adaptively zoned,

particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational

Physics, 65 (2), 314–343. Available from: http://dl.acm.org/citation.cfm?id=9229

[Accessed 21 August 2016].

https://www.siggraph.org/education/materials/HyperGraph/animation/particle.htm

