
Position Based Fluid

MING-YEN KUO

Computer Animation and Visual Effects

Bournemouth University

August 2016

Abstract

Smoothed Particle Hydrodynamics (SPH) is a well known particle-based fluid simulation method,

and Position Based Dynamic(PBD) is a strategy working on the vertices position data with

unconditional stable feature. Position based fluid is a method combined with these two ideas,

and using SPH neighbors concept working on PBD position calculation. This paper explains all

the implementation details based on position based fluid.

i

Table of Contents

Abstract i

List of Figures v

List of Tables 1

1 Introduction 2

2 Previous Work 3

3 Fluid with Position Based Dynamic 5

3.1 Navier-Stoke Equation . 5

3.2 Particle and Grid Based Methods . 6

3.2.1 Eulerian Method . 6

3.2.2 Lagrangian Method . 7

3.3 Smoothed Particle Hydrodynamics . 7

3.4 Position Based Dynamic . 9

3.5 Position Based Fluid . 11

4 Implementation 13

4.1 Design . 13

4.2 Neighbors Search . 16

4.2.1 Spatial Hashing . 16

4.2.2 Neighbors Queries . 17

ii

4.3 Smoothing Kernel Function . 17

4.3.1 Poly6 . 18

4.3.2 Spiky . 19

4.4 Mass . 20

4.5 Density . 20

4.6 Constraints . 20

4.6.1 Calculate λ . 21

4.6.2 Calculate ∆p . 21

4.7 Tensile Instability . 22

4.8 Vorticity . 23

4.9 XSPH . 23

4.10 Boundary . 24

4.11 Initial Value . 24

5 Pipeline 25

5.1 Stand Alone Application . 25

5.2 Houdini Digital Asset . 26

6 Results 27

7 Conclusion 30

7.1 Future Work . 30

A XML File 31

A.1 XML File Layout . 31

B PBF HDA User Guide 32

B.1 PBF Initial HDA User Guide . 32

B.2 PBF Rendering HDA User Guide . 32

iii

Literature Cited 38

iv

List of Figures

3.1 One cell from 3D MAC grid . 6

3.2 Water in glass with rotational force field. 7

4.1 Class diagram - 1 . 14

4.2 Class diagram - 2 . 15

4.3 Kernel function effects in 3D space . 18

4.4 Poly6 kernel graph . 19

4.5 Spiky kernel graph . 19

4.6 Influence from artificial pressure term in position based fluid 22

4.7 Influence from vorticity in position based fluid 23

5.1 Position based fluid simulator. 26

6.1 Result 1: Single Dam Break . 28

6.2 Result 2: Dam Break . 28

6.3 Result 3: Transparent Dam Break . 29

6.4 Result: Bunny Drop . 29

A.1 PBF XML file layout . 31

B.1 PBF Initial HDA: Initial Value . 33

B.2 PBF Initial HDA: Particles Setup . 33

B.3 PBF Rendering HDA . 34

v

List of Tables

3.1 Advantages and Disadvantages with particle-based and grid-based in fluid sim-

ulation . 7

1

Chapter 1

Introduction

The field of computational fluid dynamics has been developed in computer graphics for several

years, from fire, smoke, gas, water, wave, high viscosity liquid, melting, multi-phases fluid,

from simple to complex fluid simulation, and these techniques also have been designed and

improved by numerous experts in physics, mathematical different background people. Looking

for realistic and efficient simulation is always the purpose for further researching.

Smoothed Particle Hydrodynamics(SPH) is one well known particle-based fluid simulation

method. It is useful in games because no need to fit the fluid simulation size within grid in

advance. Moreover, the concept is based on particle system. Comparing to grid-based method,

the idea and implementation knowledge are usually easily understood. However, SPH has one

issue that once the particle has not enough neighbors data, it causes the density incorrect then

negative pressure. This would lead to the simulation result not stable.

Position based dynamic(PBD) originally used for deformable object. Macklin and Müller

[2013] propose a different fluid simulation framework based on SPH and PBD, and he proved

that the incompressible flow could be simulated inside PBD. One characteristic in PBD is

unconditional stable, and this would improve the problem in SPH.

The next following chapter would introduce the related work in the recent years, and the

fluid and position based dynamic theory are in chapter 3. Main implementation work is ex-

plained in chapter 4, and the simulation pipeline is in chapter 5. The last ones are results and

conclusion with future work.

2

Chapter 2

Previous Work

”Computational Fluid Dynamics has a long time history, In 1822 Claude Navier and in 1845

George Stokes formulated the famous Navier-Stokes Equation” from Mller et al. [2003]. The

recent fluid simulation survey by Bridson [2015] and Bridson and Müller-Fischer [2007] give

us a brief introduction in fluid dynamics.

Smoothed Particle Hydrodynamics(SPH) was first introduced by Lucy [1977]. Since Reeves

[1983] designed the particle system, and it was highly been used in physics dynamic in computer

graphics. SPH with particle system has become one of important simulation method in fluid

dynamic. Later on, many researchers started to work on and improve the drawback of particle-

based method. Mller et al. [2003] already improve it into real time fluid simulation interactively

in games. The traditional SPH and weakly compressible SPHBecker and Teschner [2007] both

require the stiff equation due to incompressibility issue. Predictive-corrective incompressible

SPH Solenthaler and Pajarola [2009] used Jacobi method to accumulate pressure changes and

apply forces until convergence for stability, and this also solved the limit of time step size.

Position based dynamic was been found that has been used in the last decades. For example,

Provot [1995] and Desbrun et al. both use the constraints idea in mass spring system to prevent

over-stretching problem. It is a strategy to limit the stretch force too large, not like the pure

position based solution as a function in calculation. Jakobsen [2001] designed his physics

engine on position based called ”Fysix”, however, it only focused on distance constraint by

manipulating position directly. Müller et al. [2005] proposed a solution working on deformable

objects by moving vertices to a specific position satisfied the state condition. Clavet et al.

[2005] used position based dynamic for simulating viscoelastic fluid, however, their approach is

3

4 CHAPTER 2. PREVIOUS WORK

conditional stable because of the time-step integration. Until Müller et al. [2007], he organized

and built position based dynamic into a structural framework.

In the recent year, Macklin et al. [2014] modified the fluid constraint function from equality

to inequality, and the purpose is to clamp the density constraint to be non-negative. So this

would influence the separate particles. Alduán et al. [2015] also design a fluid simulator for

VFX production pipelines based on position based fluid, and it is efficient, robust and scalable.

In this project, we mainly focus on Macklin and Müller [2013] for the fluid dynamic calcu-

lation and Mller et al. [2003] for kernel function design.

Chapter 3

Fluid with Position Based Dynamic

This chapter shows the mathematical fluid theory knowledge combined with position based

dynamic.

3.1 Navier-Stoke Equation

When speaking about fluid movement, it always reminds us about the physics background

knowledge. In Bridson [2015], it introduced the derivation from Newtons equation: ~F = m~a

to Navier-Stoke equation in (3.1). It mentions that the forces cause the fluid flowing mainly

because of internal forces: like pressure, viscosity; external force: gravity. Pressure(−V∇p),

viscosity(V µ∇ · ∇~u) and gravity(m~g) in (3.3) are original version of Navier-Stoke equation.

These three terms are the values that we have to compute when doing fluid simulation in

computer graphics.

∂~u

∂t
+ ~u+

1

ρ
∇p = F + ν∇ · ∇~u (3.1)

∇ · ~u = 0 (3.2)

m
D~u

Dt
= m~g − V∇p+ V µ∇ · ∇~u (3.3)

After knowing the basic physics calculation in fluid, how is it work in the real simulation?

According to Bridson [2015], Algorithm1 gives us the idea of simulation structure. The flowing

5

6 CHAPTER 3. FLUID WITH POSITION BASED DYNAMIC

fluid is a continuous sequence of movement by time. In this algorithm, every iteration accumu-

late attribute values in fluid. For instance, forces cause velocity updating, and velocity causes

position updating. This is also called advection.

Algorithm 1 Navier-Stokes algorithm
1: Initial velocity field ~u(0)

2: for time step n = 0 , 1 , 2 , ... do
3: Determine ∆t from tn to tn+1

4: Set ~uA = advect(~un,∆t, ~un)
5: Add ~uB = ~uA + ∆t~g
6: Set ~un+1 = project(∆t, ~uB)
7: end for

3.2 Particle and Grid Based Methods

To compute those values in fluid, there are two different methods based on different math-

ematical model. One is called Eulerian, Grid-Based, while the other is named Lagrangian,

Particle-Based.

3.2.1 Eulerian Method

In Eulerian method, fluid is fix in a limited volume in space. In Figure3.1, it is an individual cell

in 3D grid. The u means velocity in six direction, p is the pressure, and δh is the cell size. This

is called MAC grid, (Marker-and-Cell), staggered grid. Each grid has the velocity and pressure

attribute values. All the calculation is based on those cells. In other words, fluid simulation in

grid based method is limited by the grid size.

Figure 3.1: One cell from 3D MAC grid.

3.3. SMOOTHED PARTICLE HYDRODYNAMICS 7

Particle-Based Grid-Based
Advantages Could be used in multiphases simulation. Higher numerical accuracy.
Disadvantages Need more particles for realistic result.

Hard to track fluid surface.
Simulation is fixed by grid size.

Table 3.1: Advantages and Disadvantages with particle-based and grid-based in fluid simulation

3.2.2 Lagrangian Method

On the other hand, in Lagrangian method, the fluid is formed by tiny individual element, usually

called particle. As a result, it could be said that Lagrangian fluid simulation is a special case

in a particle system. Each particle exists with its own values, such as pressure, velocity, and

position.

Figure 3.2 shows the simulation result in Mller et al. [2003], full of particles in container

and the rendering image.

Figure 3.2: Water in glass with rotational force field.Mller et al. [2003]

Grid-based and particle-based are both have pros and cons in different perspectives, and

this would leave to user to choose depends on the situation in simulation. In table 3.1Priscott

[2010], listed a basic idea of comparison between these two methods.

3.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics(SPH) is an interpolation method used for quantifying the

value relation between the particles with their neighbors strategy. In equation (3.4), it is the

core meaning in SPH. A(r) is a scalar quantity at location r by a weighted sum of contributions

from other particles filter by W (r, h) smoothing kernel with raduis h. The h is usually called

8 CHAPTER 3. FLUID WITH POSITION BASED DYNAMIC

smoothing length or kernel size, and this value is mainly used for adjusting the particles neigh-

bors number. mj is the particle mass, ρj is the density, and Aj is field quantity at rj . Equation

(3.5) and (3.6) is the gradient and Laplacian representation respectively. They would usually be

used base on different type of kernel function. More detail will be explained in 4.3.

AS(r) =
∑
j

mj
Aj
ρj
W (r− rj, h) (3.4)

5 AS(r) =
∑
j

mj
Aj
ρj
5W (r− rj, h) (3.5)

52 AS(r) =
∑
j

mj
Aj
ρj
52 W (r− rj, h) (3.6)

Algorithm2 shows the basic iteration of SPH fluid simulation. Firstly, find the nearby

neighbors by kernel size h, secondly, use kernel function W (r, h) to calculate the local density.

Then compute the pressure by density. High density area causes high pressure, and this become

the force on particles. Lastly, accumulating pressure, viscosity, and external force together.

Updating particles position and velocity. Ihmsen et al. [2014]

Algorithm 2 SPH Algorithm
1: for all particle i do
2: find neighbors j
3: end for
4: for all particle i do
5: ρi =

∑
jmjWij

6: computepi using ρi
7: end for
8: for all particle i do
9: F i

pressure = −mi

ρi
∇pi

10: F i
viscosity = miν∇2vi

11: F i
other = mig

12: F i(t) = F i
pressure + F i

viscosity + F i
other

13: end for
14: for all particle i do
15: vi(t+ ∆t) = vi(t) + ∆tFi(t)/mi

16: xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t)
17: end for

3.4. POSITION BASED DYNAMIC 9

3.4 Position Based Dynamic

Position based dynamic(PBD) is officially introduced by [Müller et al., 2007], and main idea

is not using the traditional physics dynamic. External or internal forces cause the acceleration,

then comes to updating the velocity by time, following the position. The acceleration and

velocity is accumulated by time. On the other hand, PBD only apply the force at the first time

for each step of simulation with the initial force value. Next, using the predicted position and

the old position to calculate the relative velocity fit into the constraint function. From [Müller

et al., 2007], he mentions that the advantages of PBD is the stability and controllability by user.

Compared with the traditional physics dynamic, sometimes it would be difficult to remain the

expected result. This characteristic becomes important in some area, like computer game, as it

is ideally to control the expected result even plausible instead of looking for accuracy result.

Furthermore, from Bender et al. [2015] There are many different types of constraint in

position based dynamic used in different conditions, and fluid is one of them.

• Stretching

• Bending

• Isometric Bending

• Collisions

• Volume Conservation

• Long Range Attachments

• Strands

• Continuous Materials

• Rigid Body Dynamics

• Fluids

• Shape Matching

There are two types of constraint, one is called equality constraint in(3.7), while the other is

called inequality in (3.8). All type of constraints will belong to either equality or inequality.

Cj(xi1 , ..., xinj
) = 0 (3.7)

Cj(xi1 , ..., xinj
) ≥ 0 (3.8)

10 CHAPTER 3. FLUID WITH POSITION BASED DYNAMIC

Main issue in PBD is moving a set of points to satisfy the constraint function, and the most

important condition is the linear and angular momentum should be conserved. In equation 3.9,

it is the condition should satisfied:

∑
i

mi∆pi = 0 (3.9)

Because the momenta should be conserved, according to Müller et al. [2007], we need to

find ∆p such that C(p + ∆p) = 0, in equation 3.10.

C(p + ∆p) ≈ C(p) +5pC(p) ·∆p = 0 (3.10)

In physic theory, to satisfy equation3.10, and it means that the ∆p should be kept in the

same direction as5pC(p). Hence, it exists a scalar value λ such that:

∆p = λ5 pC(p) (3.11)

Substituting equation3.11 into equation3.10, solving λ and substituting it back to equa-

tion3.11, ∆p becomes as in equation 3.12:

∆p = − C(p)∣∣∣∣∣OpC(p)

∣∣∣∣∣ 2

5 pC(p) (3.12)

Equation 3.12 could be simplified by scalar value s into equation 3.13. Now the value s is the

scaling factor for position correction, shown in equation 3.14. This is also the most important

part in PBD.

∆pi = −s5 pi
C(p1, ...,pn) (3.13)

s =
C(p1, ...,pn)∑

j

∣∣∣∣∣Opj
C(p1, ...,pn)

∣∣∣∣∣ 2

(3.14)

3.5. POSITION BASED FLUID 11

Above are the general PBD should be computed equations, and it assumes that all the points

are with same mass. For position based fluid, each particle we assume that they are with same

mass. If it becomes to more complex geometry, there are some weighted scalar should be

considered. For more detail about different mass PBD please reference [Müller et al., 2007].

Algorithm 3 is the general position based dynamic algorithm. The core computation in PBD

algorithm is shown in line (10), line (15)-(17) , and line (19)-(20). The predicted new position

in line (10) is calculated by Euler integration step. From line (15) to (17), it is the iteration

for estimating new position satisfied the constraint function. Then points position could be

optimized and the velocity could be updated in line (19) to (20).

Algorithm 3 PBD Algorithm
1: for all vertices i do
2: initialize xi = xi

0,vi = vi
0, wi = 1

mi

3: end for
4: for Simulation do
5: for all vertices i do
6: vi ← vi + ∆twif ext(xi)
7: end for
8: dampVelocities(v1, ...,vN)
9: for all vertices i do

10: pi ← xi + ∆tvi
11: end for
12: for all vertices i do
13: generateCollisionConstraints (xi → pi)
14: end for
15: for SolverIteration do
16: projectConstraints(C1, ..., CM+Mcoll

,pi, ...,pN)
17: end for
18: for all vertices i do
19: vi ← (pi − xi)/∆t
20: xi ← pi
21: end for
22: velocityUpdate(v1, ...,vN)
23: end for

3.5 Position Based Fluid

From the last section, we know that the essence of PBD is to find the vertices new location and

fit into the constraint conditions. Fluid constraint is one of the constraint in PBD. Luckily, in

12 CHAPTER 3. FLUID WITH POSITION BASED DYNAMIC

position based fluid, there is only one constraint that we have to deal with: density constraint. In

equation 3.15, it is the fluid density constraint function. It is not necessary to calculate pressure,

viscosity, etc in SPH. Moreover, the collision constraint is ignored in position based fluid. In

the other words, collision detection could be covered by the original SPH boundary condition

method.

Ci(p1, ...,pn) =
ρi
ρ0

− 1 (3.15)

In algorithm 4 PBF algorithm, it would look familiar now because it is a combination of

SPH and PBD algorithm. From line (1)-(4), to initial velocity and position for each particle

by default external force. Same as SPH in line(5)-(7), neighbors searching should be computed

before the real simulation calculation. The most important part in PBF is from line(8) to line(19)

based on the neighbor particles, as each iteration would calculate the ∆p. Using ∆p to get new

position, then update the correct velocity. This will be explained step by step in chapter 4.

Algorithm 4 PBF Simulation Loop
1: for all particle i do
2: apply forces vi ⇐ vi + ∆tf ext(xi)
3: predict position xi ⇐ xi + ∆txi
4: end for
5: for all particle i do
6: find neighboring particles N i(xi

∗)
7: end for
8: while iter < solverIteration do
9: for all particle i do

10: calculate λi
11: end for
12: for all particle i do
13: calculate ∆pi
14: perform collision detection and response
15: end for
16: for all particle i do
17: update position xi

∗ ⇐ xi
∗ + ∆pi

18: end for
19: end while
20: for all particle i do
21: update velocity vi ⇐ 1

∆t
(xi

∗ − xi)
22: apply vorticity confinement and XSPH viscosity
23: update position xi ⇐ xi

∗

24: end for

Chapter 4

Implementation

In chapter 4. We will demonstrate how to implement position based fluid based on Macklin and

Müller [2013].

4.1 Design

In this project, considering about whole pipeline for user, it is necessary to design a quick

importing and exporting framework. Flexibility and efficiency has become the main direction

in this project, and it is also inspired by Ertekin [2015], Rajiv [2011] and Priscott [2010].

There are some requirements we need in this project, as listed in the following:

• User friendly interface to modify simulation parameters.

• A wide range of flexibility of test model for simulation.

• Simulation could be the interaction of multiple fluids.

• Easy to estimate the final simulation result.

Class diagram are shown in Figure 4.1 and Figure 4.2. MainWindow class in charge of

all GUI work, including parse XML file, load .obj file. After loading and setting done all the

initial data then the Draw class could start visualization on screen. Class Simulation take the

responsibility of the whole simulation iteration, and in Figure 4.2 it shows the relation between

other classes. Position based fluid calculations are in class PBD. As for class Definition, it stores

all global variables from the XML file parsed by MainWindow.

13

14 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Class diagram 1.

4.1. DESIGN 15

Figure 4.2: Class diagram 2.

16 CHAPTER 4. IMPLEMENTATION

4.2 Neighbors Search

In particle-based fluid simulation, each iteration is based on the particle and its neighbors, as a

result, this become the first bottleneck in simulation. In the trivial way is comparing the distance

for each particle, so the time complexity will be O(n2). Obviously, this is not efficient enough

for particle-based fluid simulation. How to find neighbors efficiently has become another topic

for many experts. For instance, Onderik and Durikovic [2008] compared different methods

between spatial hashing and cell indexing while Domnguez et al. [2011] made an experiment

between cell-linked list(CLL) and verlet list(VL) methods.

According to Ihmsen et al. [2014], there are five different methods: Uniform Grid, Index

Sort, Z-index Sort, Hashing, and Compact Hashing for neighbors searching in SPH. In this

project, we use spatial hashing. From equation 4.1 to equation 4.4 all are the calculation process

for spatial hashing. At the first look, it would look complicated. Conkerjo provided a very good

explanation for better understanding spatial hashing. Here, the neighbors search is implemented

and referencing from Kelager [2006] explanation.

4.2.1 Spatial Hashing

Spatial Hash is a mapping from a point in 3D space into a 1D hash index key, and it is defined

in equation 4.1:

hash(x̂) = (x̂xp1 xor x̂yp2 xor x̂zp3) mod nH (4.1)

Where nH is the hash table size, and p1 = 73, 856, 093, p2 = 19, 349, 663, p3 = 83, 492, 791

in equation 4.1, and

x̂(x) = (bxx/lc , bxy/lc , bxz/lc)T (4.2)

is the point in 3D space after discretization, divided by l. As for the value for l, because of

W (r− rj, h) = 0 if ‖r− rj‖ > h, thus

l = h (4.3)

4.3. SMOOTHING KERNEL FUNCTION 17

In equation 4.4, prime(x) is the function return the next prime ≥ x, and n is the number of

particle total amount.

nH = prime(2n) (4.4)

4.2.2 Neighbors Queries

After building the hash table, each particle is mapping with a key value. Then need to use

kernel function for filtering those particles distance larger than the kernel size, and it means that

the distance less than the kernel size particles belongs to its neighbors. Here, we use a simple

algorithm run through the nearby cell unit, and each cell unit with its own position. Cell position

x̂(x) is divided by l of point position, as shown in equation4.2. Running through a 3 × 3 × 3

grid in 3D (3× 3 in 2D case). This part is implemented in class NeighborsSearch.

Algorithm 5 Finding Neighbors Algorithm
1: for all particle i do
2: Calculation cellPos
3: for intx = −1;x <= 1;x+ + do
4: for inty = −1; y <= 1; y + + do
5: for intz = −1; z <= 1; z + + do
6: nearPos.x = cellPos.x+ x
7: nearPos.y = cellPos.y + y
8: nearPos.z = cellPos.z + z
9: get particle list - L from table

10: for all particle j in L do
11: Compare distance
12: end for
13: end for
14: end for
15: end for
16: end for

4.3 Smoothing Kernel Function

Smoothing kernel functions are used for gathering the particle neighbors based on kernel size h

comparing with the distance between two particles. It could be one of the most important part

in particle based fluid. The idea of kernel function could be visualized in Figure4.3.

18 CHAPTER 4. IMPLEMENTATION

Figure 4.3: Kernel function effects in 3D space.Sampath et al. [2016]

According to PukiWiki, this gives us a brief concept of all kind of kernel functions, listed in

the following:

• Poly6

• Spiky

• Viscosity

• Spline

• Super Gaussian

• Fourth-order weighting

Different kernel functions were designed for different purposes. According to Macklin and

Müller [2013], poly6 used for calculating density estimation, while spiky is used for the gradient

calculation. As a result, in this project, we only implement these two kernel functions. It is

implemented in class Kernel. For both poly6 and spiky, the input data is a vector difference by

two particles position and the kernel size h. The difference of poly6 and spiky effects is shown

in Figure4.4 and Figure4.5.

4.3.1 Poly6

Poly6 kernel function is used for calculating density, and it is also called 6th degree polynomial

kernel. Defined in equation 4.5:

4.3. SMOOTHING KERNEL FUNCTION 19

Wpoly6(r, h) =
315

64πh9


(h2 − r2)3 0 ≤ r ≤ h

0 otherwise

(4.5)

Figure 4.4: Poly6 kernel graph. From PukiWiki

4.3.2 Spiky

In SPH, spiky is designed for solving the particle clustering problem, calculating pressure force.

However, in position based fluid, it is not necessary to compute it. Gradient kernel was used

when calculating the gradient constraint function and vorticity confinement. Gradient spiky

kernel function is defined in equation4.6:

5Wspiky(r, h) =
−45

πh6


(h− r)2 0 ≤ r ≤ h

0 otherwise

(4.6)

Figure 4.5: Spiky kernel graph. From PukiWiki

20 CHAPTER 4. IMPLEMENTATION

4.4 Mass

In particle-based fluid, each particle holds its own mass value. In this project, we assume that

each particle with the same mass value, and it is a user defined constant. Although the mass

is the same for each particle, the density is different according to the surrounding neighbors.

Equation4.7 is from Kelager [2006], it shows the relation between particle size with mass, ρ0 is

the rest density, V is the volume of particle, n is the particle count. Kelager [2006] mentions

about the mass value should be calculated automatically in stead of user defined due to the

unbalance initial value would cause unstable result. However, mass value still leave for the

flexibility for user in this project.

ρ0 =
m

V
n (4.7)

4.5 Density

Density would change during the simulation time depends on the neighbors data at each time

step. From Macklin and Müller [2013], use equation4.8 for calculating the density with poly6

kernel function is the first step in the iteration solver. Each particle owns its density value, and

density should be used in the calculation of density constraint function, as mentioned in the last

chapter. Because this function is really important, the equation repeated again in equation4.9.

ρi =
∑
j

mjW (pi − pj, h) (4.8)

Ci(p1, ...,pn) =
ρi
ρ0

− 1 (4.9)

4.6 Constraints

The most important part in position based fluid is the constraints calculation. In PBD, calcu-

lating ∆pi is the key value to correct the position. As introduced in Section 3.4, equation 3.11,

to get the ∆pi value, and it must solves the gradient constraint function. Equation 4.10 is the

gradient of equation 4.9 with respect to a particle k:

4.6. CONSTRAINTS 21

OpkCi =
1

ρ0

∑
j

OpkW (pi − pj, h) (4.10)

There is one thing should be noticed from Macklin and Müller [2013]. Equation4.10 should

be separate in two cases. Whether k is a neighboring or not:

OpkCi =
1

ρ0


∑

j OpkW (pi − pj, h) if k = i

−OpkW (pi − pj, h) if k = i

(4.11)

4.6.1 Calculate λ

Now reference equation 3.14 in Section 3.4, solving the scaling factor by equation 4.12

λi = −Ci(p1, ...,pn)∑
k

∣∣∣∣∣OpkCi

∣∣∣∣∣ 2

(4.12)

Macklin and Müller [2013] combined the idea with constraint force mixing(CFM)Smith to

soften the constraint. Now the equation 4.12 becomes to equation 4.13. ε is a user defined

constant, and it could be define from the user.

λi = − Ci(p1, ...,pn)∑
k

∣∣∣∣∣OpkCi

∣∣∣∣∣ 2 + ε

(4.13)

4.6.2 Calculate ∆p

After run through all the particle with above calculation. Each particle has its own scaling factor

λi, then ∆p value of each particle unit could be evaluated by equation4.14.

∆pi =
1

ρ0

∑
j

(λi + λj)OW (pi − pj, h) (4.14)

22 CHAPTER 4. IMPLEMENTATION

4.7 Tensile Instability

From Figure 4.6 Top: It could be seen that the particles clumping together because of the

neighbor deficiencies. This problem happened when particle has few neighbors. Once particle

has not enough neighbors, it would cause the negative pressure then could not satisfy the the

rest density. To solve this problem, Macklin and Müller [2013] claims that by adding the

artificial pressure in terms of smoothing kernel itself. This value is in equation 4.15. Next,

in the equation4.14 for calculating ∆p, scorr is added into it. The new equation become in

equation 4.16.

scorr = −k(
W (pi − pj, h)

W (∆q, h)
)n (4.15)

Where |∆q| = 0.1h, ..., 0.3h, k = 0.1, and n = 4 works well in Macklin and Müller [2013].

∆pi =
1

ρ0

∑
j

(λi + λj + scorr)OW (pi − pj, h) (4.16)

Figure 4.6: Top: PBF without artificial pressure term. Bottom: With artificial pressure
term.Macklin and Müller [2013]

In this project, tensile instability is implemented, however, it is not obvious to see the

differences with or without scorr value, due to the whole simulation is not efficient enough.

4.8. VORTICITY 23

4.8 Vorticity

From Macklin and Müller [2013], he proposed a method to replace the lost energy with water

splash. It is called vorticity confinement. The implemented equation are listed as following:

ωi = 5× v =
∑
j

vij ×5pjW (pi − pj, h) (4.17)

fvorticityi = ε(N× ωi) (4.18)

In Figure 4.7, it shows the difference between with or without vorticity influence from

Macklin and Müller [2013].

Figure 4.7: Left: PBF without vorticity. Right: With vorticity. From Macklin and Müller
[2013]

Vorticity is not implemented in this project, due to the time limitation. This would leave to

as future work.

4.9 XSPH

In Macklin and Müller [2013], it does not mention how to implementation XSPH. So Schechter

and Bridson [2012] becomes the main resources for XSPH algorithm. According to Schechter

and Bridson [2012], XSPH method is shown in equation 4.19:

vnewi = vi + c
∑
j

vij ·W (pi − pj, h) (4.19)

24 CHAPTER 4. IMPLEMENTATION

He redefined the XSPH functionality as ”Noise in the raw particle velocities”. The main

purpose for adding XSPH is for adding some noise value into velocity, this would let each

particle keep its velocity differ from its neighbors. From Macklin and Müller [2013], c is set to

0.01. c could set as a user-tuned constant, from Schechter and Bridson [2012].

4.10 Boundary

Boundary condition is also an important part for fluid simulation. As mentioned before, the

collision constraints is ignored in position based fluid. The boundary condition we only need to

focus on the original solution in particle-based fluid simulation method.

From Macklin and Müller [2013], he mentioned that one of the future work is the particle

clustering problem near the high density boundary area. He suggest Akinci et al. [2012] method

for solving this problem.

In this project, due to the time limitation, boundary condition is implemented by reversing

the velocity with a scale factor and set the particle position at the boundary position. In this

case, the boundary position is the water container size(tank size).

4.11 Initial Value

The relation between mass and volume is shown in equation4.7. With another relation between

particle raduis and particle volume is shown in equation 4.20. With these two conditions, it

could be roughly estimated fluid simulation initial values. All the values seem to with relatively

scale.

4

3
πr3 = Vi (4.20)

As for the amount of particle neighbors, from Macklin and Müller [2013], the average

particle neighbors count must be around 30-40 for preventing clustering problem.

Chapter 5

Pipeline

5.1 Stand Alone Application

This project is developed by C++ and used NGL library by Macey based on Macklin and Müller

[2013]. In Figure 5.1, it shows the stand alone application in this project. The user interface is

straight forward and easy to use. In this application, the following listed are the basic step for

simulation:

• Step 1: Load XML file.

• Step 2: Load Particle.obj file.

• Step 3: Export Simulation.

• Step 4: Start Simulation.

• Step 5: End simulation or Reset.

Firstly, loading a XML file for initializing the parameters for simulation. Secondly, import-

ing the initial particles data, and this is also could be done by Houdini digital asset provided in

this project. For a quick check of simulation results, this application is not working efficiently

once particles number increase to over 20k. As a result, exporting the simulation result for a

quick review is necessary. The reason why exporting simulation result comes before the start

simulation is because once start simulation, the application would become really slow. Export

first to make sure with whole simulation process. Here, using the source code provided by

Macey exporting alembic file. The exported alembic file is named particlesOut.abc. It would

locate within the Qt project folder. During the simulation run time, user can pause simulation by

25

26 CHAPTER 5. PIPELINE

clicking the button ”Start/Pause Simulation”, and vice versa. Lastly, after the whole simulation

finish, user could reset all data. Then repeat from step 1, do another time new simulation.

Figure 5.1: Position based fluid simulator - stand alone application.

5.2 Houdini Digital Asset

As mentioned in the last section, Houdini digital asset was designed for user could set up the

data before simulation. There are two digital asset, PBF Initial HDA and PBF Rendering HDA.

Obviously, one is used before simulation, and the other is for visualizing simulation result. In

PBF Initial HDA, using python for creating a xml file located on the data path when user create,

and this idea comes from Priscott [2010]. In Houdini, node point from volume could create

a numerous points data based on geometry, and it provides the parameters to change the point

density. For example, input a bunny.obj model, then the particles would form a numerous points

as a shape of bunny. For more Houdini digital asset user guide please reference the appendix

document.

Chapter 6

Results

This chapter would show different type of dam break fluid simulation result based on one set of

parameters:

• Tank size = 2

• Smoothing kernel size= 0.1

• Rest density = 1000

• Particle raduis = 0.025

• Particle mass = 0.1

• Gravity = −9.81

• Max iteration = 5

• Time step = 0.03

• Epo = 1e− 06

Tank size is the size value of boundary. Max iteration is the value in PBF algorithm solver

iteration. Epo is the relaxation parameter in equation 4.13.

In this project, mainly focusing on the simulation result correctness,so the visualization

is not important. From Figure 6.1 to Figure 6.4 are the simulation results after rendering by

Houdini. For further fluid rendering knowledge, van der Laan et al. [2009] provided a efficient

method for only rendering the particles could be seen from the camera.

27

28 CHAPTER 6. RESULTS

Figure 6.1: Simulation result - Single Dam Break(particle number: 10k)

Figure 6.2: Simulation result - Dam Break (particle number: 10k)

29

Figure 6.3: Simulation result - Transparent Dam Break (particle number: 10k)

Figure 6.4: Simulation result - Bunny Drop (particle number: 14k)

Chapter 7

Conclusion

The goal in this project is to design and implement the paper from Macklin and Müller [2013].

Integrating the simulator with other 3D software is another aim in the initial design. Overall,

the implementation in this project has basic fluid features in the limited of time. If looking for

a better realistic simulation result, more suitable set of parameters, more efficient algorithm,

speed up the simulation process, it would take some time to satisfy the expected result. Ideally,

most of methods, equations from SPH and PBD are implemented, such as neighbors search,

kernel functions, fluid density calculation, computing gradient constraint function, XSPH, fluid

advection. At the end of this project, due to the code is without optimization, the running time

should take some time to see the simulation result.

7.1 Future Work

As mentioned before about the boundary condition, particle-based fluid simulation disadvantage

is the particle clustering problem. To solve this issue, Akinci et al. [2012] adjust the density

calculation, and the results seems work well. In addition, the fluid with other rigid body

interaction is another subject that we are interested. The initial values are really important in

fluid simulation. For instance, once the smoothing kernel size changes, the simulation could

become unstable cause like explosion effect. Different sets of parameter for tweaking the

simulation result. Lastly, for most of the fluid simulation papers are working on real-time,

paralleling with openMP or GPU calculation. It is essential to update the information in this

area especially in computer graphics.

30

Appendix A

XML File

A.1 XML File Layout

Figure A.1: PBF XML file layout, written and exported from Houdini and parsed into C++ Qt
project.

31

Appendix B

PBF HDA User Guide

From Chapter 5, Houdini digital assets are used to assist the stand alone application for initial

set up and visualization. This appendix would go through a quick look into these assets.

B.1 PBF Initial HDA User Guide

In PBF Initial HDA, there are two tabs: Initial Value and Particles Setup, and are shown in

Figure B.1 and B.2. The user interface in Houdini is straight forward and user friendly than

QtGUI. Firstly, in tab Initial Value, the xml file should be assigned to a location and saved, and

the rest parameters could be adjust from times to times for each simulation. Once creating the

format of XML file, user could only changes the values in XML file for quick loading. Saving

different set of XML files could compare the different simulation result.

As for tab Particles Setup, maximum two objects could be loaded into this framework.

Result from Chapter 6, all are created by default.bgeo or bunny.obj. Basic translation ,rotation,

and scale could change by user as the expected particles position data.

B.2 PBF Rendering HDA User Guide

This one is really simple, purely for viewing the export simulation result. In Figure B.3, the

viewing is at node alembic. For quick review of the simulation result, import the simulation

result particlesOut.abc exported from stand alone application.

32

B.2. PBF RENDERING HDA USER GUIDE 33

Figure B.1: Initial Value tab in PBF Initial HDA.

Figure B.2: Particles Setup tab in PBF Initial HDA.

34 APPENDIX B. PBF HDA USER GUIDE

Figure B.3: PBF Rendering HDA.

Literature Cited

Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner.

Versatile rigid-fluid coupling for incompressible sph. ACM Trans. Graph., 31(4):62:1–62:8,

July 2012. ISSN 0730-0301. doi: 10.1145/2185520.2185558. URL http://doi.acm.

org/10.1145/2185520.2185558.

Iván Alduán, ngel Tena, and Miguel A. Otaduy. Efficient and robust position-based fluids for

vfx. In Proc. of Congreso Español de Informática Gráfica, 2015. URL http://www.

gmrv.es/Publications/2015/ATO15.

Markus Becker and Matthias Teschner. Weakly compressible sph for free surface flows.

In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, SCA ’07, pages 209–217, Aire-la-Ville, Switzerland, Switzerland, 2007.

Eurographics Association. ISBN 978-1-59593-624-0. URL http://dl.acm.org/

citation.cfm?id=1272690.1272719.

Jan Bender, Matthias Müller, and Miles Macklin. Position-based simulation methods in

computer graphics. In EUROGRAPHICS 2015 Tutorials. Eurographics Association, 2015.

R. Bridson. Fluid Simulation for Computer Graphics, Second Edition. Taylor & Francis,

2015. ISBN 9781482232837. URL https://books.google.co.uk/books?id=

7MySoAEACAAJ.

Robert Bridson and Matthias Müller-Fischer. Fluid simulation: Siggraph 2007 course

notesvideo files associated with this course are available from the citation page. In ACM

SIGGRAPH 2007 Courses, SIGGRAPH ’07, pages 1–81, New York, NY, USA, 2007. ACM.

ISBN 978-1-4503-1823-5. doi: 10.1145/1281500.1281681. URL http://doi.acm.

org/10.1145/1281500.1281681.

35

http://doi.acm.org/10.1145/2185520.2185558
http://doi.acm.org/10.1145/2185520.2185558
http://www.gmrv.es/Publications/2015/ATO15
http://www.gmrv.es/Publications/2015/ATO15
http://dl.acm.org/citation.cfm?id=1272690.1272719
http://dl.acm.org/citation.cfm?id=1272690.1272719
https://books.google.co.uk/books?id=7MySoAEACAAJ
https://books.google.co.uk/books?id=7MySoAEACAAJ
http://doi.acm.org/10.1145/1281500.1281681
http://doi.acm.org/10.1145/1281500.1281681

36 LITERATURE CITED

Simon Clavet, Philippe Beaudoin, and Pierre Poulin. Particle-based viscoelastic fluid

simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, SCA ’05, pages 219–228, New York, NY, USA, 2005. ACM. ISBN

1-59593-198-8. doi: 10.1145/1073368.1073400. URL http://doi.acm.org/10.

1145/1073368.1073400.

Conkerjo. Spatial hashing implementation for fast 2d collisions.

https://conkerjo.wordpress.com/2009/06/13/spatial-hashing-implementation-for-fast-2d-

collisions/.

Mathieu Desbrun, Peter Schröder, and Alan Barr. Interactive animation of structured

deformable objects.

J. M. Domnguez, A. J. C. Crespo, M. Gmez-Gesteira, and J. C. Marongiu. Neighbour lists in

smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids,

67(12):2026–2042, 2011. ISSN 1097-0363. doi: 10.1002/fld.2481. URL http://dx.

doi.org/10.1002/fld.2481.

Burak Ertekin. Fluid simulation using smoothed particle hydrodynamics. Master’s thesis,

Bournemouth University, Bournemouth, UK, 8 2015. An optional note.

Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner.

SPH Fluids in Computer Graphics. In Sylvain Lefebvre and Michela Spagnuolo, editors,

Eurographics 2014 - State of the Art Reports. The Eurographics Association, 2014. doi:

10.2312/egst.20141034.

T Jakobsen. Advanced character physics u the fysix engine, 2001.

Micky Kelager. Lagrangian fluid dynamics using smoothed particle hydrodynamics. Master’s

thesis, University of Copenhagen, Copenhagen, Denmark, 1 2006. An optional note.

Leon B Lucy. A numerical approach to the testing of the fission hypothesis. The astronomical

journal, 82:1013–1024, 1977.

Jon Macey. Ngl library. https://github.com/NCCA/NGL.

Miles Macklin and Matthias Müller. Position based fluids. ACM Trans. Graph., 32(4):104:1–

104:12, July 2013. ISSN 0730-0301. doi: 10.1145/2461912.2461984. URL http://doi.

acm.org/10.1145/2461912.2461984.

http://doi.acm.org/10.1145/1073368.1073400
http://doi.acm.org/10.1145/1073368.1073400
http://dx.doi.org/10.1002/fld.2481
http://dx.doi.org/10.1002/fld.2481
http://doi.acm.org/10.1145/2461912.2461984
http://doi.acm.org/10.1145/2461912.2461984

LITERATURE CITED 37

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified particle

physics for real-time applications. ACM Trans. Graph., 33(4):153:1–153:12, July 2014. ISSN

0730-0301. doi: 10.1145/2601097.2601152. URL http://doi.acm.org/10.1145/

2601097.2601152.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. Meshless

deformations based on shape matching. ACM Transactions on Graphics (TOG), 24(3):471–

478, 2005.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based

dynamics. J. Vis. Comun. Image Represent., 18(2):109–118, April 2007. ISSN 1047-3203.

doi: 10.1016/j.jvcir.2007.01.005. URL http://dx.doi.org/10.1016/j.jvcir.

2007.01.005.

Matthias Mller, David Charypar, and Markus Gross. Particle-based fluid simulation for

interactive applications, 2003.

Juraj Onderik and ROMAN Durikovic. Efficient neighbor search for particle-based fluids.

Journal of the Applied Mathematics, Statistics and Informatics (JAMSI), 4(1):29–43, 2008.

Chris Priscott. 3d langrangian fluid solver using sph approximations. Master’s thesis,

Bournemouth University, Bournemouth, UK, 8 2010. An optional note.

Xavier Provot. Deformation constraints in a mass-spring model to describe rigid cloth

behaviour. In Graphics interface, pages 147–147. Canadian Information Processing Society,

1995.

PukiWiki. Sph. http://www.slis.tsukuba.ac.jp/ fujisawa.makoto.fu/cgi-bin/wiki/index.php?SPH

Perseedoss Rajiv. Lagrangian liquid simulation using sph. Master’s thesis, Bournemouth

University, Bournemouth, UK, 8 2011. An optional note.

W. T. Reeves. Particle systems—a technique for modeling a class of fuzzy objects. ACM

Trans. Graph., 2(2):91–108, April 1983. ISSN 0730-0301. doi: 10.1145/357318.357320.

URL http://doi.acm.org/10.1145/357318.357320.

Ramprasad Sampath, Niels Montanari, Nadir Akinci, Steven Prescott, and Curtis Smith.

Large-scale solitary wave simulation with implicit incompressible sph. Journal of Ocean

Engineering and Marine Energy, 2(3):313–329, 2016.

http://doi.acm.org/10.1145/2601097.2601152
http://doi.acm.org/10.1145/2601097.2601152
http://dx.doi.org/10.1016/j.jvcir.2007.01.005
http://dx.doi.org/10.1016/j.jvcir.2007.01.005
http://doi.acm.org/10.1145/357318.357320

38 LITERATURE CITED

Hagit Schechter and Robert Bridson. Ghost sph for animating water. ACM Transactions on

Graphics (Proceedings of SIGGRAPH 2012), 31(4), 2012.

Russell Smith. Open dynamics engine v0.5 user guide. http://www.ode.org/ode-latest-

userguide.html.

B. Solenthaler and R. Pajarola. Predictive-corrective incompressible sph. ACM Trans. Graph.,

28(3):40:1–40:6, July 2009. ISSN 0730-0301. doi: 10.1145/1531326.1531346. URL http:

//doi.acm.org/10.1145/1531326.1531346.

Wladimir J. van der Laan, Simon Green, and Miguel Sainz. Screen space fluid rendering with

curvature flow. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and

Games, I3D ’09, pages 91–98, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-429-4.

doi: 10.1145/1507149.1507164. URL http://doi.acm.org/10.1145/1507149.

1507164.

http://doi.acm.org/10.1145/1531326.1531346
http://doi.acm.org/10.1145/1531326.1531346
http://doi.acm.org/10.1145/1507149.1507164
http://doi.acm.org/10.1145/1507149.1507164

	Abstract
	List of Figures
	List of Tables
	Introduction
	Previous Work
	Fluid with Position Based Dynamic
	Navier-Stoke Equation
	Particle and Grid Based Methods
	Eulerian Method
	Lagrangian Method

	Smoothed Particle Hydrodynamics
	Position Based Dynamic
	Position Based Fluid

	Implementation
	Design
	Neighbors Search
	Spatial Hashing
	Neighbors Queries

	Smoothing Kernel Function
	Poly6
	Spiky

	Mass
	Density
	Constraints
	Calculate
	Calculate p

	Tensile Instability
	Vorticity
	XSPH
	Boundary
	Initial Value

	Pipeline
	Stand Alone Application
	Houdini Digital Asset

	Results
	Conclusion
	Future Work

	XML File
	XML File Layout

	PBF HDA User Guide
	PBF Initial HDA User Guide
	PBF Rendering HDA User Guide

	Literature Cited

