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Abstract

The ability to create su�ciently detailed natural phenomena is important for building

virtual environments, unfortunately this is a laborious task. Although various procedural

techniques are available, new techniques that can ease the burden on digital artists are

highly sought after. The use of path planning techniques that originate from arti�cial

intelligence is a viable avenue for the generation of models resembling natural phenomena

characterized by their dendritic nature such as plants, coral, trees and lightning. The

technique involves �nding the least-cost paths through a weighted graph from a single

source to a number of destination points. This work presents a new method of informing

the behaviour of the path planner through images in order to build models that emulate

certain familiar objects. The e�ectiveness of the method is shown in three examples, two

for trees and one for coral.

Keywords: path-planning, arti�cial intelligence, image based weighting, dendrites, nat-

ural phenomena, procedural modeling
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Chapter 1

Introduction

It is quite common to see objects that may be familiar or fantastical in computer games

and computer animated �lms. Creating a su�cient number of detailed models for a virtual

environment is a very laborious task. Although various procedural techniques are avail-

able, new techniques are highly sought after with the intention of easing the burden on

digital artists. The use of arti�cial intelligence techniques in computer graphics is quite a

recent research area. Computer graphics practitioners are realizing the rich possibilities of

implementing such techniques in order to solve di�cult problems [13].

In this work, we investigate the use of path planning which is a well-studied area in

the �eld of arti�cial intelligence. The research presented here is heavily based on the

work of Xu and Mould ([22]) who introduced path planning as a means of procedurally

modeling natural phenomena. The technique involves �nding the least-cost paths through

a randomly weighted graph from a source to a number of destination points. Here, we

have attempted to implement some extensions and improvements.

Our main contribution is a new and controlled way of automatically assigning weights

to a graph through the use of images. Every edge in the graph is assigned a cost that

corresponds to a pixel in the image. A minor contribution is a method of providing more

control in the selection of the goal destinations used by the path planner to generate

branching structures from a single source. Our results show that these improvements

considerably aid in informing the behaviour of the path planning algorithm and the general

shape of the model. The technique was applied to model trees and coral.

The remainder of the document is organized into �ve chapters. Chapter 2 provides

an overview of the relevant works with respect to natural phenomena modeling and an

overview of path planning in the context of arti�cial intelligence. The application of path

planning for this problem is described in detail in Chapter 3 after which, Chapter 4 presents

implementation speci�cs. In Chapter 5, we show and our results in the form of reference

images and renderings of the generated models and discuss the advantages and disadvant-

ages of this method. Finally, we conclude with a few recommendations for future work.

7



Chapter 2

Background

This chapter gives some background on the relevant areas related to this project. First

we present the established methods for procedurally modelling natural phenomena such as

L-Systems and DLA. This is followed by a detailed look at the relevant literature for the

method that we have focused on in this project which is path �nding. Finally, we provide

a brief overview of how arti�cial intelligence techniques have developed in order to tackle

the problem of path �nding.

2.1 Established Methods for Modelling Natural Phenomena

We start by presenting some common methods for procedurally modeling of natural phe-

nomena with a dendritic nature. We say procedurally because as mentioned in [7], this

provides for a �exible and parametric approach to building structures instead of storing

vast numbers of low level primitives. Dendrites, as mentioned in [21], are characterized by

individual branching and erratic winding travels as can be found in natural objects such as

trees, coral and lightning. They cite two common approaches to obtaining such structures;

L-Systems and Di�usion Limited Aggregation (DLA). While our solution does not make

direct use of these, it is worth mentioning their underlying logic as part of a snapshot

through the literature.

Figure 2.1: Figures of dendritic structures in nature

In 1968, Aristid Lindenmayer introduced L-Systems as a formalism for simulating the
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development of multicellular organisms. Further work by Lindenmayer and Prusinkiewicz

in [15] presents replacement grammar L-Systems, where a combination of grammar and

rules are used to describe how 'tokens' are subsequently changed to sequences of tokens.

As part of a modeling system, these can be used to describe geometric shapes such as

dendrites by mapping each token in the string to an action or movement such as forward,

backward, left or right. L-systems resemble fractals in their self-similarity aspect although

not being as well mathematically de�ned [7].

Deussen et al [5] built a system for automatically generating realistic natural scenes

and ecosystems, making use of such L-Systems for the modeling. The framework provided

a very powerful means for generating trees and plants, but lacked in artistic control. Talton

et al present an approach that deals with this problem, providing some measure of artistic

control [19]. There has also been further work on augmenting L-Systems with exten-

sions to create stochastic L-Systems, open L-Systems [12] and environmentally-sensitive

L-systems[14]. The main advantage provided by open L-Systems is that the grammar

provides for two-way communication between the system and the environment, thereby

allowing the system to consider information about its surroundings.

Figure 2.2: L-System examples [15]

L-systems have also been taken further to generate virtual creatures that evolve over

time. Hornby and Pollack in [9] present a method where such systems are used as the en-

coding structure for an evolutionary algorithm, resulting in creatures with a more natural
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look. The interest to arti�cial intelligence researchers here is that the creature is built pro-

gressively through L-System development and guided by a �tness function that evaluates

how well the creature moves and recon�gures the L-System accordingly.

The next modeling method, Di�usion-limited aggregation (DLA) refers to the gradual

process whereby matter clusters to form dust, soot and other phenomena of a dendritic

nature. The algorithm for DLA was �rst pioneered by Witten and Sandler in [20] who

have extensively studied the growth, gelation and structure factor of such phenomena.

The model is governed by very simple rules akin to those seen in a number of natural

objects. It starts o� with a seed particle at the origin of a lattice. As part of an iterative

process, other particles are allowed to undergo a random walk due to Brownian motion

from a distance until they �nally reach a point that is adjacent to another one which is

occupied [20]. This method yields large attractive structures similar to Figure 2.3.

The DLA algorithm has been used in graphics because of the rich set of phenomena

that can be modeled using this method such as frost as presented by Kim and Lin in

[10] or lightning presented by Reed and Wyvill in [16]. As with other physically based

simulations, the major drawback of this approach is the computational time required to

get highly intricate models. Having said that, despite the wide applicability in chemistry

and botany, there still seems to be limited use for DLA in graphics, prompting graphics

practitioners to seek alternative procedural methods to represent these complex models

[21].

Figure 2.3: DLA structure [20]

Another avenue of exploration into the modeling of dendritic structures was through

the use of arti�cal intelligence (AI) techniques in the form of path planning. Path planning

attempts to model such structures by applying AI algorithms such as Djikstra over weighted

lattices. This technique has been shown to yield good results, with trees and lightning as
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examples shown in [22]. Xu and Mould present a number of works ( [21, 22, 23] ) relating

to this area, which serve as the main references for our work. In this regard, further detail

on path planning is presented in the next section.

2.2 Path Planning for Modeling Natural Phenomena

The use of path planning techniques to model dendritic natural phenomena was �rst presen-

ted by Xu and Mould in [21]. Their method generates a regular lattice with randomly

weighted edges. Consequently, it is possible to generate paths from a single starting point

to a number of destinations using an algorithm such as Dijkstra [22]. The resulting dend-

rites (Figure 2.4) are then converted to geometry (Figure 2.5) for which the authors have

provided a number of approaches. The simplest way is to directly convert the lines by

placing spheres at each pixel. However, in a previous work they also propose converting

the nodes remaining in the acyclic graph into an iso-surface using the Marching Cubes

algorithm [21].

Figure 2.4: Dendrites produced by Xu and Mould [22]

Figure 2.5: Models created by Xu and Mould using path planning [22]

By employing an iterative approach, the authors succeeded in producing models highly

resembling coral or other types of marine life. Moreover, they boast very attractive com-

putational times in contrast to the costly DLA simulation required to get similar results.

Their algorithm is shown in Algorithm 2.1.
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Algorithm 2.1 Path Planning [22]

1. Create a regular square lattice of nodes: 4-connected in 2D, 6-connected in 3D
2. Choose edge weights for the graph
3. Choose a node to be the root of the structure
4. Apply Dijkstra's algorithm to �nd path costs to all nodes from the root
5. Choose path endpoints
6. Use a greedy algorithm to backtrack from the endpoints to the root, giving the paths
7. Render the paths

They also investigate a more sophisticated way of distributing the weights in the graph

in order to be able to control the shape of the dendrite.

They recommend that every edge should be assigned a weight value of e which would

be

e = Rα

where R is a uniformly drawn random positive value and α is a parameter controlling

the amount of path variation. The authors proved that the larger theα, the greater the

disparity between the cheapest and most expensive edges. Therefore, there is greater

incentive for the path planning algorithm to seek paths that are made up of a lot of cheap

edges rather than considerably few edges which may be more expensive. This improvement

contributed towards better aesthetics, however it was critiqued that the structures that

were generated from a single graph were still overly simple.

In their most recent publication ([23]) the model has been extended so that it becomes

hierarchical. This means that the paths are generated in a recursive fashion mimicking

fractal behaviour. This was implemented by introducing the concept of a `lifespan' which

is synonymous to the number of levels in the structure.

Figure 2.6: Dendrite built iteratively [23]
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Furthermore, Xu and Mould have investigated the task of the lattice building, which

according to them, is the step that in�uences the general shape of the model. They have

come up with a generic way of building irregular lattices that can be shaped either by

a composite of primitive geometries or by processing a sketched curve to determine the

dendrite outline boundary. This requires additional computational e�ort although it was a

small trade-o� considering that the results they were able to get look much more intricate

and detailed.

To conclude, path �nding techniques traditionally used in arti�cial intelligence are

plausibly a good and e�cient approach to create almost life like dendritic models without

having much prior knowledge about the morphology. Xu and Mould have shown that

this technique is more versatile than other traditional methods. Moreover, there are so

many components in this method that is remains rich ground for further exploration and

extension.

2.3 Arti�cial Intelligence Techniques for Path Planning

Path planning is a problem much studied in the context of arti�cial intelligence, with many

applications such as robotics, navigation systems and computer games. As of currently, it

is still the most used method to determine how a prede�ned destination can be reached

from a particular con�guration [22]. In general, the algorithm is designed to minimize a

particular factor which may or may not be distance [3]. In fact, this could take the form

of danger or perhaps fuel consumption. This type of planning is relatively simple for us

humans [3]; we do not realize that in reality there are many facets of the problem and

representing them formally for a robot is particularly challenging. Hence, path planning

has been a very important topic of research in the realm of arti�cial intelligence. Several

algorithms have been developed to tackle this problem and many of them are optimal and

so can be done in real time [1].

As Algfoor et al explain, path �nding consists of two major aspects: the construction of

the navigation environment and the path �nding algorithm. The most convenient method

of representing the navigation environment is by de�ning a graph, which may also be

termed as a grid or lattice

G = (V,E)

where V is the set of vertices that maps to a coordinate space and E is the set of edges

connecting the vertices that are in the line-of-sight of one another. Normally a grid is

described as either being regular or irregular with regards to its tessellation (Figure 2.7).

Since both kinds each have their unique set of desirable properties, the decision of whether

to use one or the other hugely depends on the problem at hand and the behavior being

sought which brings about the mention of the path �nding algorithm itself [1].
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Figure 2.7: Regular and irregular tessellations [23]

All path �nding processes aim to return the most optimal path in an e�cient manner

and a variety of techniques are available [3]. The most popular group of path planning

algorithms are based on Dijkstra's algorithm ([6]), which was developed by Edsger Dijkstra

in 1959 and is the path planning algorithm of choice for this project. Taking into consid-

eration a grid as de�ned previously, the sole objective of the algorithm is to return an

ordered list of vertices which constitute the least-cost path. This works under the premise

that every traversal possible between two vertices incurs a cost of a positive value which

directly depends on the problem at hand. This requires the iterative maintenance of the

list of vertices which need to be evaluated, each time selecting the one with the lowest cost

and calculating the score for its neighbours [3]. The evaluation process is repeated until

either the goal is reached or no more vertices remain. The latter case is an indication that

a path with a �nite cost could not be found. If the goal is reached however, then the path

can be easily traced by backtracking from the goal and repeatedly jumping to the most

inexpensive point. In this document we have provided the pseudo code for this algorithm

in Chapter 3.

In just under ten years since Dijkstra was introduced, the A* algorithm emerged and it

is considered to be the founder algorithm for modern path planning [3]. Both algorithms

are in actual fact similar with the exception of the additional heuristic element whereby

the e�ort required to reach the goal from a vertex is taken into account alongside the cost.

According to Bell, under most circumstances A* performs better than its father algorithm.

More importantly, the heuristic element is completely con�gurable so that various types of

behaviour can be supported making the algorithm suitable for a wider range of tasks [3].

Even though in the context of this project the heuristic element is set as a constant, the

assignment of cost is realized to be a very important part of the project which is investigated

in order to have more control over the behavior of the path planning algorithm.
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Chapter 3

Path Planning for Natural

Phenomena

The objective of this project is to make use of simple path planning techniques to create

geometric models that are characterized by the dendritic appearance. These structures are

akin to various types of natural phenomena that exist for example plants, trees, coral and

lightning. For the purpose of this project, trees were used as the main subject matter for

emulation and discussion. As part of this investigation into path planning for dendrites,

we attempt to make certain improvements over Xu and Mould's method, particularly in

the ability for the user to in�uence the resulting dendrite through image based weighting

and improved endpoint selection.

In this chapter we present the di�erent parts of the method and concepts as applied

to our pipeline. While the pipeline itself is described in Chapter 4, at this stage it helps

the reader to know that it is made up of two parts; the path generation module built as

an application based on the approach �rst introduced by Xu and Mould in [21]; and a

geometry generation part that converts the exported paths into a detailed model. Most of

the content in this chapter focuses on the former, showing the graph generation, weighting

and path generation processes. In particular, this project investigates the distribution of

the cost in order to inform the behaviour of the path planning algorithm and in turn the

general shape of the model. Alongside the original formula by Xu and Mould, we also

present an alternative way of assigning weights for 2D graphs through user created images.

This is in contrast to their approach of using user sketches to determine the outline of

the resulting dendrite. In our method for weight distribution, every vertex in the lattice

corresponds to a pixel in the input image and the value of the colour pixel is assigned as

the cost. In the cases that we present, the path planning algorithm is directly encouraged

to seek paths that correspond to the darker regions within the image. Furthermore, we

explore the use of irregular lattices as well as a simpe method to improve endpoint selection

such that the user may shape a dendrite by selecting only endpoints from desired regions.
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The last sub-section touches on the aspect of modeling after a dendrite has been gen-

erated as a set of paths, including how the paths can be re�ned individually with some

post-processing using an acceptable amount of computation and resources. In [22], the

authors proposed an iterative re�nement approach by constructing a new higher resolution

lattice in the region of interest. Our take on this problem is to use procedural noise in

order to enhance the erratic aesthetic of the model, thereby saving on computation and

memory.

3.1 Graph Generation

In the graph generation step, our application allows a user to choose between a number of

tesselation option for lattices. Figure 3.1 shows two of the lattice types provided; square

and hexagon. The 2D square lattice is generated using a basic algorithm which uses an

outer and an inner loop to set values for the x and y position for each node based on

a input number of steps. To explain, a step value of 2 would result in a four by four

lattice, and so on. The order in which nodes are generated can be seen in the node indices

superimposed on the lattices shown in Figure 3.1, built with a step value of 2. The hexagon

lattice was implemented to address one of the drawbacks of the square lattice in that such

lattices produce no slanting edges, which may be undesirable for cases such as modeling

of lightning. Hexagon lattices produce more available edges from each node, resulting in

more slanting lines available.

Figure 3.1: 2D lattice types - square (left) and hexagon (right)

One of the limitations mentioned by Xu and Mould in [22] is that for regular lattices,

the resulting path may look more uniform than desired due to the right angle path changes.

Their own improvement to the regular lattice was to use point clouds instead of a procedu-

ral lattice generation method. We have attempted a di�erent approach whereby a regular

lattice built using the previously mentioned method would be skewed such that each uni-
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form point would be moved by a random margin less than the edge length in the x and y

axes. This greatly reduces the chance of having too many right angle or straight long path

sections, at very little cost as the skewing can be done in one pass after the initial lattice

generation. This can be seen in the side by side comparison in Figure 3.2.

Figure 3.2: Regular (left) vs irregular (right) lattice

A natural extension of the simple 2D square lattice is the use of the z-axis to create

a 3D cube shaped lattice. This allows paths to be generated in 3D space which produces

more realistic models later in the pipeline. An example of such a 3D lattice is shown in

Figure 3.3.

Figure 3.3: 3D Square lattice

3.2 Weight Distribution

A key step in the path planning process is the application of weights to the edges in the

lattice. These are ultimately required to be able to apply an algorithm to �nd a path

through the network, such as the Dijkstra algorithm (mentioned in the next section).

These weights should be synonymous to the e�ort required to traverse that edge. Having
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said that, in the problem we are trying to solve, we would prefer that the path planner

does not choose the most direct route to the end point, thereby resulting in a more erratic

path resembling the dendritic structure we would like to emulate.

We have initially implemented the original costing function put forward by Xu and

Mould in [22] as a benchmark. This uses the following formula to assign random weights

to each edge. They recommend that every edge should be assigned a weight value of e

which would be

e = Rα (3.1)

where R is a uniformly drawn random positive value and α is a parameter controlling

the amount of path variation. One of the contributions of this project is an alternative

weight distribution function, which makes use of an image to assign weights to the edges.

To be clear, this di�ers from Xu and Mould's sketch approach, as that was used to inform

the outline of the dendrite rather than the internal weights. The basic idea here is that

this would enable a better measure of control over the resulting dendrite, moving away

from randomness.

For this to be possible, the image provided is scaled to the aspect ratio of the lattice,

such that each edge on the lattice corresponds to a pixel in the image. By mapping the

colour value of the individual pixel to a grayscale value, a weight can be assigned to the

respective edge. Figure 3.4 shows a simple example of this method and how the resulting

weights are generated. One can notice that edges on the white areas of the image are

assigned the maximum weight value of 1, indicating a high cost to the path planner. The

other weights can be seen to vary based on the darkness of the image colour regions, thus

making the darker regions of the image more desireable.

Figure 3.4: Weighted lattice with superimposed image
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The intention of this method is not to provide an exact rendering of the desired dendrite,

but rather to provide an easy and generic way of controlling the behaviour of the path

planner without the need of adding complex heuristics to the path planner, or edit weights

manually. Furthermore the user has the ability to clearly de�ne regions through which

the path planner will not be able to pass. This can be used to create dendrites that must

adhere to some outline shape, similar to Xu and Mould's sketch approach in [23]. An

example of such an image, and the resulting dendrite is shown in Figure 3.5.

Figure 3.5: Sample image (left) and resulting dendrite (right)

3.3 Path Generation

Once the edges have weights, the next step is to choose a root and subsequently calculate

the distances from all nodes in the lattice to the root. By this, we mean the sum of the

shortest path of edge weights leading from the respective node to the root. This is done

using Dijkstra's algorithm (Algorithm 3.1) and results in an ordered list of nodes with

corresponding distances to the root.

Algorithm 3.1 Dijkstra's Algorithm [2]

1: function Dijkstra(Graph, source):
2: for each vertex v in Graph: // Initialization
3: dist[v] := in�nity // initial distance from source to vertex v is set to in�nite
4: previous[v] := unde�ned // Previous node in optimal path from source
5: dist[source] := 0 // Distance from source to source
6: Q := the set of all nodes in Graph // all nodes in the graph are unoptimized - thus are in Q
7: while Q is not empty: // main loop
8: u := node in Q with smallest dist[ ]
9: remove u from Q
10: for each neighbor v of u: // where v has not yet been removed from Q.
11: alt := dist[u] + dist_between(u, v)
12: if alt < dist[v] // Relax (u,v)
13: dist[v] := alt
14: previous[v] := u
15: return previous[ ]

The distances calculated are therefore very much dependent on the chosen root, as can
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be seen in Figure 3.6 showing, for the same set of weights, the resulting distances on the

nodes for two di�erent roots chosen. The path planning application allows the user to view

these similarly to the node indices and edge weights so as to fully understand the network

and pick the root as desired.

Figure 3.6: Comparison of node distances generated for di�erent roots

The last step in path generation is choosing the desired endpoints and for each one,

using a greedy algorithm to traverse from the endpoint to the root through the next

cheapest node. In order to avoid cycles, a heuristic was added such that a node cannot be

used more than once in a single path.

One of the challenges encountered at this stage was getting enough density in the

lattice to result in dense erratic paths. As an example, using a step of 5, yields Figure

3.7, where it can be seen that the overall number of edges is low. One way to treat this

would be to make the lattice denser by increasing the step, resulting in more edges from

the endpoints to the root, however this would incur a high computational cost of retaining

all the unused edges in memory. Xu and Mould, in [22], suggest an optimization for this in

the re�nement of the path through sub lattices only on nodes in the path. In this way, the

extra computational cost and memory would only be expended on nodes of interest lying

on the already established path. By creating a lattice on each, the straight line to the next

node can be broken down into a path of its own, making it more erratic by a factor of the

step used. We attempted to replicate this method, with limited success and was ultimately

not taken forward for path re�nement in our pipeline. Instead of this approach, we opted

to perform post processing on the dendrite at the coversion to geomerty stage, described

in the next section.
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Figure 3.7: Low density path using a lattice of step value 5

3.4 Converting to Geometry

The conversion of the paths to geometry is the �nal step of this method. This was done

with the aid of Houdini
TM

by SideFX R© which is an industry standard modeling and visual

e�ects tool. After importing, each path in the dendrite is smoothened into a NURBS curve.

At this stage an artist may choose to instigate procedural noise to �ow along the curve as

a means of re�ning the skeleton of the model. Each path is then individually skinned by

using low polygon circles as the cross-section pro�le and sweeping them along the curved

path. The resulting e�ect is that each edge of the path is covered by a tube. To allow for

various kinds of organic shapes one would need to control the variation of the radii in the

tubes. As an example, tapered strokes in a model of a tree are highly sought after and can

be achieved with little e�ort using an adaption of Xu and Mould's [22]formula:

ri = rs ×
(
1− (pi/pk)

β
)
+ rf × (pi/pk)

β (3.2)

where ri is the radius of the circle pro�le at a current point i in the path, rsand rf are

the radius at the start and �nish of the curve respectively, pi is the index of the current

point, pk is the index of the last point and �nally, β is the parameter that governs the

amount of tapering allowed. The ability of the above equation to produce tapering strokes

is illustrated in the next chapter.
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Chapter 4

Implementation

In this chapter, we present the implementation speci�c details relating to the path planning

application and the Houdini
TM

scene. The project makes use of a pipeline made up of

two distinct modules. The �rst module, explained in Section 4.1, is a path generation

application built in C++ and OpenGL (using the NGL library [11]) and handles the process

through which paths are generated over a lattice, based on the same general algorithm as

that used by Xu and Mould in Algorithm 2.1. The second module, shown in Section 4.2,

consists of using an industry third party tool; Houdini
TM

, and handles the importing of

the path data from XML via a Python script, followed by the conversion to geometry.

4.1 Path Planning Application

In this subsection we take a look at the path planning appliction and the features it

provides. We also look at the architecture details in terms of classes and interaction

between them.

4.1.1 User Interface

A user interface is provided (see Figure 4.1) to allow the user to progressively build dendrite

paths by setting parameters over a number of steps. On the right of the viewport, the

parameters for the three main steps in the process are shown; weighted lattice construction,

root selection and endpoint selection. Each step has a number of action buttons, explained

in Table 4.1. For each step, Table 4.2 gives details on each of the parameters a�ecting the

aforementioned actions, and which should be read in the context of material presented in

the previous two chapters. Finally, on the left of the viewport, a view toggle toolbar is

provided for the user to show and hide di�erent elements in the viewport; lattice [L] , node

indices [N] , edge weights [W], node distances [D], image background [I], bounding box [B].

A number of views of the viewport with di�erent toggle con�gurations is shown in Figure

4.2.
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Figure 4.1: Path planning application user inteface

Step Action button Use

1 Construct lattice Invokes the construction of the weighted lattice based on selected

parameters. Any paths previously generated in the viewport are removed.

2 Calculate distances from root Runs Dijkstra path planning algorithm based on selected root. Generated

distances may be viewed by toggling `D' in view toggle toolbar. May be run

with already existing paths in place if building dendrite iteratively.

3 Select random endpoints Selects a number of random endpoints based on the chosen bounding box

and amount. These are added to endpoint list view. User may view

bounding box by toggling `B' in view toggle toolbar.

3 Generate paths Runs through endpoint list and uses greedy algorithm to trace a path from

each endpoint to root. Any path endpoint selected in listbar is shown in red.

Table 4.1: Action button details
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Step Parameter Allowed values E�ect on dendrite

1 Lattice Type Square2D,

Hexagon2D,

Cube

Determines the construction method of the lattice.

1 Steps Integer Determines the size of the lattice.

1 Edge Length Real World space distance between one node and another.

Inconsequential to dendrite shape, but useful for managing

viewport.

1 Irregular Ticked/Unticked If ticked, lattice is distored to produce irregular edges.

1 Weight

Function

Type

Default, Image

Based

Determines how weights are assigned. For `Default', alpha

value is required to calculate weights randomly. For `Image

based', an image URL.

1 Alpha Real value When using `Default' weighting, a�ects the disparity

between cheapest and most expensive edges.

1 Filename String When using `Image based' weighting, speci�es the image �le

to be used.

2 Root Index Integer (from

set of Indices)

Determines which node is selected as the root for the

Dijkstra function to calculate distances.

3 Random

Select

Amount

Integer Number of random endpoints to select from within the

bounding box.

3 Min and

Max x,y,z

Real Determines the bounding edges of the endpoint selection

bounding box.

3 Endpoint Real Position of desired endpoint, speci�ed manually.

Table 4.2: Parameter details

Figure 4.2: View toggles examples. Lattice and node indices (left). Lattice and distances
(middle), Node indices and bounding box (right)

The general use of the application therefore involves primarily deciding the lattice

structure based on the dendrite requirements, and constructing the lattice. Once this is

done, the user may use the view toggle toolbar to select a root and invoke the calculation

of the distances. The last step may be approached iteratively by moving the bounding box

for the random endpoint generator and progressively generating endpoints in the desired

region(s) (Figure 4.3). Each path is added to a list characterized by the endpoint index,
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where if selected, it is displayed in red to be identifyable. The user may then choose to use

the remove button to remove any undesireable paths. The user may also choose to add

endpoint indices to the list manually if this is required. Finally, from the top menu, the

user may choose the `Export' function to export all the paths in the current viewport to

an XML �le.

Figure 4.3: Restricting endpoint selection using the bounding box

4.1.2 Architecture

The architecture of this module consists of a number of high level classes to represent

the real world problem of storing lattice information, performing functions over nodes and

edges, and representing a dendrite. A high level UML diagram is shown in Figure 4.4,

while the corresponding class summaries are summarized in the next three subsections.

These should provide enough detail for anyone wishing to pursue development in this area

to get a good idea of the backend structures.

25



Figure 4.4: UML diagram
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4.1.3 NGLScene and PPNP

As with other OpenGL applications using the NGL library, the NGLScene governs the

high level �ow of the application, where graphics resources are initialized, user interface

signals are caught, and the screen updated through the paintGL() method. In terms of

our application, it su�ces to say that the main interaction point between the NGLScene

and our architecture is through the PPNP class, which acts as a wrapper class to call

all the necessary functions on the main objects initialized in the application; the dendrite,

the lattice and the endpoint selection bounding box. The BoundingBox class is a very

simple class that is used solely for user interaction purposes, allowing the NGLScene to

maintain and draw the box from which endpoints can be chosen.

4.1.4 Lattice Class and Relative Objects

A number of classes in the architecture handle lattice related functions. An abstract

class Lattice is inherited by two other classes; Square and Hexagon, which implement

methods to construct and draw the lattice respectively. Any additional tessallation formats

that need to be implemented can be created as classes that inherit from Lattice, making

the system extendible. This class also makes use of the Node class to represent each node

in the lattice. This in turn uses the Edge struct to represent an edge between two nodes.

Each node maintains a list of edges which join to that node, while each edge maintains the

node to which it is connected. This therefore means that between each two nodes, there

are also two edges, making the edge structure directional. Finally the lattice makes use

of another abstract class WeightFunction, which is inherited by the two implemented

function types DefaultFunction and ImageFunction, each implementing an algorithm

to apply a weight to an edge.

4.1.5 Dendrite Class and Relative Objects

On the other side of our UML diagram are a number of classes related to the dendrite itself.

Primarily, the Dendrite class provides a lot of functionality related to working with the

lattice to generate paths and maintain them. It maintains a pointer to the currently active

lattice, as well as the root and list of endpoints provided by the user. By calling the

Dikjstra class, it populates a map of tuples rootNodeDist, which contains the respective

distances from each node to the selected root. Once the path generation option is invoked

for a set of endpoints, the backtrack() method is used to generate a Path object for each

endpoint, containing a list of points in world space. For display purposes, each path can

be marked isSelected, so that the draw() function uses a di�erent colour for the respective

path. To be able to use these paths outside the application, a Portable class is used to

save these paths in an XML by providing a �lename and directory.
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4.2 Modeling in Houdini
TM

The dendrite data generated in the previous steps is exported into an XML �le (a sample

can be found in Appendix B) which can be parsed by the software using an in-built operator

that interprets a Python script (available in Appendix A). It should be noted that while

Houdini
TM

was used as the modeling tool in this case, the XML provided is structured so

that it may be used by other tools in a similar way. The script makes use of the Houdini

Object Model API ([17]) to invoke the appropriate modules and packages them in a simple

model that can be used by an artist. The raw model that is generated is shown in Figure

4.5 (top left). We provide a set of parameters for thickness and tapering, which can be

seen in Figure 4.5 (bottom). This allows an artist to easily change the thickness of the

paths and tapering factor based on Equation 3.2. Figure 4.5 (top right) shows an example

of how varying these parameters enhances the model.

Figure 4.5: Modeling progression in Houdini
TM

. Default model (top left). Tapered model

(top right). Thickness and tapering parameters in Houdini
TM

(bottom).
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Chapter 5

Results and Discussion

In this chapter we present the results of experiments run as part of this project, their

implications and a general discussion on the outcomes of these experiments. We �rst

perform a number of comparisons related to the tessellation of di�erent lattices using

di�erent input parameters and assess how this a�ects the dendrites produced. We then

assess the performance of the image based weighting function and the resulting dendrites.

The last part of this chapter then looks at results from the last part of the pipeline, and

what types of models are possible when exporting dendrites from the path generation

application into Houdini
TM

using the developed Python script.

5.1 Tessellation Parameters

Looking at the tessellation parameters of the lattices and resulting dendrites allows us to

make certain assessments about the e�ect of said parameters; type of lattice structure (2D

square, 2D hexagon and 3D cube), regularity - regular or irregular (determining the angle

variation between nodes and edges), and step size - determining the size and density of the

lattice.

For the purpose of this section, the input image in Figure 3.5 was used as the weighting

function. Figure 5.1 shows a comparison between two dendrites with varying lattice types.

In both cases, a random set of 25 endpoints was chosen, keeping the step size constant and

a using a regular lattice in both cases. One can observe that the type has a marked e�ect

on the resulting dendrite. While the square lattice provides a dendrite more akin to a

tree structure corresponding to the input image, the hexagonal lattice produces a dendrite

which looks less like the structure of a tree.

Figure 5.2 uses the same dendrite, but instead looks at the e�ect of regularity of the

lattice. In this case both dendrites use a square lattice and same lattice size, but one can

see a clear e�ect of the irregularity of the dendrite on the right. The irregularity almost

guarantees the absence of straight lines across multiple nodes, and produces a dendrite
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with branches that resemble what one would expect to see in the natural world, such as in

trees.

The last experiment in this section, shown in Figure 5.3, looks at the e�ects of varying

the step size and therefore having a denser lattice to work with. In theory, a denser lattice

should provide more detail, and this clearly comes through from left to right as a very

simple dendrite gets more detailed as the step size is increased. There is however an upper

bound to the step size depending on the dendrite required. While each dendrite resembles

the source image more than its counterpart on the left, one can also see how the right-

most dendrite produces multiple `trunks' as multiple paths of fairly equal cost are used by

di�erent endpoints. Depending on the dendrite required, one may therefore decide to keep

a lower step size to maintain more common branches.

Figure 5.1: Comparison of dendrites with square lattice (left) and hexagon lattice (right)

Figure 5.2: Comparison of dendrites with regular lattice (left) and irregular lattice (right)

Figure 5.3: Comparison of dendrites with step 5 (left), step 15 (middle), step 35 (right)
lattice sizes
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5.2 Image based weighting

The next, perhaps more interesting assessment in this chapter is on the image based weight-

ing function introduced in this project. As an initial evaluation, we attempted to reproduce

some of the dendrites presented in [22] so as to show that the implemented image weighting

function is able to produce a dendrite similar to an input image. In each of the cases shown

in Figure 5.4, the middle image is an input gradient image corresponding to the dendrite by

Xu and Mould its left. On the right we show the resulting dendrite using our image based

weighting function. It can be noted that in each case, the resulting dendrite conforms very

well to the input image provided, and therefore manages to produce dendrites similar to

Xu and Mould's without manually changing any weights.

Figure 5.4: Dendrite produced by Xu and Mould [22] (left), input image for our image
weighting algorithm (middle), resulting dendrite (right)

It is important to note that in the above cases, the input image needs to be created such

that there is a color gradient in the desired direction towards the root. Aside from ensuring

variance between weights, this is also critical to ensure that lower weights (lower costs)

are closer to the root such that the greedy algorithm that traverses the node network

31



always favors a direction towards the root. The importance of this can be shown in

Figure 5.5, where two dendrites are produced using the same image shape but one with

directional gradients and the other a solid black color. Even though the structure is the

same, the resulting dendrites are di�erent, as in the solid �ll image, there is not enough

weight variance and therefore the algorithm picks a route based on its internal bias of node

checking.

Figure 5.5: Comparison of gradient image (left) to solid image (right) for weighting and
resulting dendrites (bottom)

5.3 Modeling Natural Phenomena

In this section, we use the results from the previous two subsections to showcase a number

of models developed using our pipeline. In each case a real world reference image is used

to give a general impression of the desired model output. The renders are presented in a

very minimalistic scene so as to show what an artist's starting point may be.

Figure 5.6 shows a case study of a slanting tree structure, with the corresponding model

rendered on the right. This was generated using image weighting, with the input image and

dendrite shown in Figure 5.7. In this case, since image weighting was used, the dendrite

was in 2D, however once in Houdini
TM

, bending was used to give the structure a 3D feel.

One can also notice that tapering was used in this case as each path gets thinner from root

to branch. Some of the paths were also re�ned using procedural noise which resulted in
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more erratic variation, further enhancing the 3D feel.

Figure 5.6: Modeling a natural tree [4] (left) in 2D with bending (right)

Figure 5.7: Dendrite evolution for Figure 5.5, input image weighting (left) and dendrite
(right)

The second case study attempts to use a similar approach, but replicate 2D dendrites

to produce a 3D model. In this case coral is used as an example, and therefore less tapering

is used in this case to maintain radius even at the endpoints. Figures 5.8 and 5.9 show

once again how a simple input image can produce a dendrite that through a modeling tool

can be made to look very similar to the subject matter.
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Figure 5.8: Modeling a natural coral [18] (left) in 2D using image weighting and replication
in Houdini (right)

Figure 5.9: Input image and dendrite

The last case study, shown in Figure 5.10, attempts to treat two limitations of the

previous case studies. Firstly, we generate a 3D dendrite using default alpha weighting.

An iterative process is used to choose random endpoints within �xed bounded areas, so

as to produce clusters of endpoints. A top view is shown in Figure 5.11 (left) to get

an idea of the clusters. The same �gure (middle) also shows how the bounding box can

be used to make certain areas of the dendrite denser . The second limitation from the

�rst case study is that while the branch struture matches the reference image very well,

there is an absence of detail at the ends of the branches. In order to overcome this, we

attempted to supplement the initial 3D model in this case study with smaller 2D dendrites

scattered across some of 3D model tapered branches. For practicality, the scatter was only

applied above a certain height, so as to match the clustered areas. Figure 5.12 shows a

before and after comparison, where on the left we can see the model with just the 3D

dendrite rendered, and on the right, we see it supplemented with 2D branches that were

produced using image weighting. This shows that while image weighting may be limited

in this implementation to 2D results, these can still be used in a hybrid environment when

modeling a 3D structure.
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Figure 5.10: Modeling a tree [8] (left) in 3D, enhanced with 2D fractals (right)

Figure 5.11: Dendrite evolution. 3D top view(left), endpoint selection via bounding box
(middle), �nal dense dendrite side view (right)

Figure 5.12: Model comparison; 3D dendrite only (left), 3D dendrite with 2D dendrite
scatter (right)
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Chapter 6

Conclusion and Future work

We have shown that path planning is a viable avenue for the generation of models resem-

bling natural phenomena characterized by their dendritic nature such as plants, coral, trees

and lightning. Since path planning is a well studied problem in the realm of arti�cial in-

telligence, there are many optimized algorithms available. This approach has the potential

to be more computationally attractive than more established methods such as L systems

and physically based techniques which can be very slow as the problem becomes complex.

The second chapter provides the relevant background on these methods, and in particular

makes reference to the path planning work �rst presented by Xu and Mould in [21] as a

basis for our investigation into this area.

Our contribution in this project is an alternative method to distribute weights over

the navgational lattice of the path planning algorithm. Our method takes a gray scale

image as input whereby the pixel colours are used as weights. We have demonstrated its

e�ectiveness in our experiments and it is clear that image based weighting is a simple way

of informing the behaviour of the path planning algorithm and in turn in�uencing the

general shape of the model. In the case studies we have presented the path planner was

encouraged to seek inexpensive edges that correspond to the darker regions of the input

image. For the experiments presented in the results section, we have picked out a number

of real world case studies. Through this method we have succeeded in generating simple

models that clearly resemble their real world counterpart with little information about

the morphology of the natural phenomena itself except from what is visible in the source

image. The versatility of our method is also demonstrated by the use of targeted endpoint

selection, where random endpoints are selected within a bounded area, thereby controlling

the overall structure of the model.

This approach was found to be a very straight forward and generic way of controlling

the behaviour of the path planner without the need of adding complex heuristics. However,

a major consequence of this method is that the detail elements that could be generates

are limited to the resolution of the navigations graph, On the other hand, highly dense
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graphs could pose certain performance and memory problems. In fact, our implementation

contains directional edges which doubles the amount of edges that need to be maintained

in memory. Therefore, it would be worth looking into alternative structures which reduce

the load and perform faster. Furthermore, the implementation of the edge selection may

result in harsh changes in direction which may not occure in certain natural phenomena.

This is due to the indiscriminate approach to edges angles. A possible improvement would

be to introduce herusitics in the path planner to favour slightly more expensive edges with

lower angle changes. Another way to address this would be to apply path re�nement as

suggested by Xu and Mould but only between nodes that have harsh angle changes.

As part of future work, a natural extension for our application is the ability of generating

dendrites in an iterative fashion to get a hierarchicial e�ect and generate more complex

models. Also, a lot of room for exploration in the selection of root and endpoints remains.

Instead of manually selecting these points in a bounded area, it will be interesting to make

used of more modern arti�cial intelligence techniques to infer the endpoints based on the

outline shape of the image.
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Appendix A - Python import script

for Houdini
TM

# import the stuff we need to access houdini and parse xml

import hou

import xml.etree.ElementTree as et

# let us parse the xml

filepath = hou.getenv("XML") + '/input.xml'

xmldata = et.parse(filepath)

skeleton = xmldata.getroot()

# let us init imp houdini variables to play around with the node network

node = hou.pwd()

root = hou.node('/obj')

# now we start

# first things first - create our geo object that will be the parent of everything

skeleton_node = root.createNode('geo')

skeleton_node.setName(skeleton.attrib['name'])

# delete the default nodes

for child in skeleton_node.children():

child.destroy()

# edit the parameter interface of the skeleton node

# parmTemplate = hou.FloatParmTemplate("ths", "Thickness at Start", 1,

default_value=([0]), min=0, max=10, min_is_strict=False)

# skeleton_node.addSpareParmTuple(parmTemplate, in_folder([Tapering]), create_missing_folders=True)

parm_group = node.parmTemplateGroup()

parm_folder = hou.FolderParmTemplate("folder", "Thickness and Tapering")

parm_folder.addParmTemplate(hou.FloatParmTemplate("ths", "Thickness Start", 1, default_value=([0.3])))

parm_folder.addParmTemplate(hou.FloatParmTemplate("thf", "Thickness Finish", 1, default_value=([0.3])))

parm_folder.addParmTemplate(hou.FloatParmTemplate("beta", "Tapering Factor", 1, default_value=([1])))

parm_group.append(parm_folder)

skeleton_node.setParmTemplateGroup(parm_group)

# for every path we must create a curve node

for path in skeleton:

curve = skeleton_node.createNode('curve')

curve.setName(path.attrib['name'])

curve.parm('type').set(1)

# empty list of vertices

vertices = []

for vertex in path:

x = vertex.find('x')
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y = vertex.find('y')

z = vertex.find('z')

coord = x.text + ',' + y.text + ',' + z.text

vertices.append(coord)

coords = ' '.join(vertices)

curve.parm('coords').set(coords)

sopcategory = hou.nodeTypeCategories()["Sop"]

curvetype = hou.nodeType(sopcategory, "curve")

i = 0

sweep_expr = str("ch('../ths')*(1-pow($"+"PT/$"+"NPT, ch('../beta')))

+ ch('../thf')*pow($"+"PT/$"+"NPT, ch('../beta'))")

circle = skeleton_node.createNode('circle')

circle.parm('type').set(1)

for child in skeleton_node.children():

if child.type() == curvetype:

sweep = skeleton_node.createNode('sweep')

sweep.setInput(0, circle)

sweep.setInput(1, child)

sweep.parm('skin').set(1)

sweep.parm('xformbyattribs').set(False)

sweep.parm('scale').setExpression(sweep_expr)

i = i + 1

# merge all nodes together

merge = skeleton_node.createNode('merge')

sweeptype = hou.nodeType(sopcategory, "sweep")

i = 0

for child in skeleton_node.children():

if child.type() == sweeptype:

merge.setInput(i, child)

i = i + 1

merge.setDisplayFlag(1)
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Appendix B - XML sample

<skeleton name='simple_example'>

<path name='path_0'>

<vertex>

<x>2.88855</x>

<y>2.85935</y>

<z>0</z>

</vertex>

<vertex>

<x>1.76534</x>

<y>2.70711</y>

<z>0</z>

</vertex>

<vertex>

<x>1.80134</x>

<y>1.84142</y>

<z>0</z>

</vertex>

<vertex>

<x>0.889024</x>

<y>1.88056</y>

<z>0</z>

</vertex>

<vertex>

<x>0.566371</x>

<y>0.817885</y>

<z>0</z>

</vertex>

<vertex>

<x>0.99892</x>

<y>-0.479899</y>

<z>0</z>

</vertex>

<vertex>

<x>-0.467331</x>

<y>-0.268224</y>

<z>0</z>

</vertex>

</path>

...
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...

...

<path name='path_6'>

<vertex>

<x>-1.35514</x>

<y>-2.402</y>

<z>0</z>

</vertex>

<vertex>

<x>-1.05441</x>

<y>-1.21027</y>

<z>0</z>

</vertex>

<vertex>

<x>-1.46853</x>

<y>-0.253649</y>

<z>0</z>

</vertex>

<vertex>

<x>-0.467331</x>

<y>-0.268224</y>

<z>0</z>

</vertex>

</path>

</skeleton>
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