
Packing of particles

Shruti Jain

MSc Computer Animation and Visual E�ects

Bournemouth University

24th Aug 2015

1

Abstract

Particle packing has been a topic of interest in many areas like

engineering, mathematics, physics, biology and computer graphics.

Though this topic is not much explored in the �eld of computer graphics,

there are many algorithms proposed in other �elds. Many papers can be

found in the �eld of powder technology. In the �eld of computer graphics,

packing of particles can be really interesting in itself as a structural

representation or as a packed object that can be used as the basis for

di�erent types of simulations. An object packed with particles can be

used for �uid simulations or act as the input geometry for point based

dynamics. Di�erent types of packing have been implemented, broadly

categorized as lattice and non-lattice. The nature of the lattice packing is

repetitive and layers resemble other layers, depending on the type chosen.

In non-lattice packing, random packing being the most interesting, has

been implemented. The size of the particles is kept same for lattice

packings. But, in case of random packing, the approach is not con�ned

to the same size of the particle, hence particles can have di�erent sizes.

The di�erent implementations are based on various technical papers, and

some methods have been combined and even extended.

2

Contents

1 Introduction 5

2 Related work 6

3 Technical background 7
3.1 Lattice packing . 7

3.1.1 Octahedral structure . 8
3.1.2 Hexagonal close packing 9
3.1.3 Optimal lattice vectors . 10

3.2 Non-lattice packing . 11
3.2.1 Binary packing . 13
3.2.2 Linear packing . 14

4 Design 16
4.1 Algorithm . 17
4.2 Class Diagram . 19

5 Implementation 22
5.1 Lattice packing . 22
5.2 Random packing . 22

5.2.1 Binary/Ternary Packing 22
5.2.2 Linear Packing . 23
5.2.3 Collision detection . 23

6 Results 25
6.1 Close packing . 25

6.1.1 Hexagonal close packing 25
6.1.2 Cubic close packing . 26

6.2 Lattice packing . 26
6.3 Random packing . 27

6.3.1 Binary/Ternary packing 27
6.3.2 Linear packing . 28

7 Conclusion and future work 29

3

List of Figures

1 Layers of packing . 12
2 Aperiodic packing . 13
3 Class diagram . 19
4 User settings . 25
5 Hexagonal close packing . 25
6 Cubic close packing . 26
7 Lattice packing of cubes and dodecahedron 26
8 Lattice packing of icosahedron 27
9 Binary packing . 27
10 Binary packing with growth . 28
11 Lattice packing of cubes and dodecahedron 28

4

1 Introduction

Several algorithms have been proposed to create packed particles in di�erent
types of arrangements. The key factors to gauge the algorithm would be
e�ciency, complexity, adaptivity and outcome. E�ciency is an important factor
to be considered for any algorithm, but based on the expected outcome of
packing, e�ciency may need to be compromised. For example, lattice packing
usually will be faster but if the particles need to be packed randomly then the
time taken to generate the packing will exceed. The term complexity refers to
the complex nature of the algorithm, hence complexity is another factor that is
related to e�ciency. If the algorithm is complex it will take more computation
time.

This report is based on generation of particles con�ned to a mesh. Di�erent
particle packing methods have been implemented to generate various forms
of arrangements. The commonly known close-packing methods have been
implemented. These methods are known to generate dense packings. One of
the other implemented methods is generation of particles based on the Lattice
vectors. This method is implemented for di�erent shapes other than spheres,
where platonic solids have been used as the choice for shape. The implemented
lattice vectors are amongst the ones known to generate dense packings, and so
they vary from one shape to another. There are multiple variations using the
combination of particle shape and packing type, or lattice vectors, that can be
possibly made. Therefore, some of the combinations have been implemented,
but more emphasis has been given to random packing.

Random packing of particles is an important aspect, as most of the packings are
random in nature. Also, e�ciency of the algorithm and density of packing play
a vital role. Considering the packing space as one entity, it will be exhaustive
to achieve denser packings by merely generating random positions and checking
for overlaps across the entire packing space. For faster computation, the mesh is
divided into cells, and the cells in turn maintain the list of particles belonging to
itself. So whenever a random position for a particle is generated, the particle is
checked against the particles in its own cell and the surrounding cells. Since not
all the particles present in the packing space needs to be checked, this reduces
the computation time considerably. The packing resulting for this method will
not be dense, unless there is a way to move the particle or change its radius,
based on the neighbouring cells. These two options have been added as part of
the two di�erent approaches implemented for random packing.

5

2 Related work

Not many papers focus on packing of arbitrary shapes, but Jia and Williams
[2001] proposed an approach that mentions about it. This approach was based
on digitization in which the particle and the packing space both are digitized.
The packing space is divided into 3D lattice and the particle behaves as a
collection of voxels. The cells in which particles exists are marked, which
makes the collision detection easier as it only means checking if the cell has
a value or not. Simulation of non-spherical hard particles which is driven by
collision was published by Donev et al. [2005]. The simulation was con�ned to
a parallelepiped domain satisfying periodic or hard-wall boundary conditions.
A detailed algorithm for making partial updates to near-neighbour list was
presented. The concept is based on molecular dynamics simulations. Conway
and Torquato [2006] suggest that the convex shape having the smallest packing
density might be the regular tetrahedron. Other problems related to packing
and tiling of tetrahedra were presented . In 2009, dense packing of Platonic and
Archimedean solids was published [Torquato and Jiao, 2009]. They suggested
that the densest packings of platonic shapes, other than tetrahedra, are Bravais
lattice packings. The lattice vectors for the densest packing of the individual
shapes have been provided. Also, the optimal densest packing lattice vectors
have been provided for Archimedean solids, other than truncated tetrahedron
which has denser non-lattice packings. The densest known optiomal packing for
two-dimensional superdisks for both concave and convex shapes was presented
by Jiao et. al [2009]. An algorithm to generate ordered and disordered sphere
packings using linear programming was proposed by Torquato and Jiao [2010].
This method is termed as Adaptive shrinking cell formulation and is based on
sequential linear programming (SLP) techniques. The packing space is divided
into cells and this method involves displacement of particles, and deformation
and volume changes to the cell. The result is a jammed packing. Weller and
Zachmann [2010] proposed a packing algorithm for arbitrary objects that was
based on the concept of �Apollonian sphere packing�. Apollonian packings are
known to be space �lling [Weller and Zachmann, 2010]. The approach is based
on �tting the largest sphere inside the object and recursively inserting more
non-overlapping spheres that are con�ned within the boundary of the object.
The drawback of this algorithm is that it yields an approximation of the object's
medial axis because of the way it is constructed. Lagarias and Zong [2012]
present an interesting case study that discusses the mysteries in packing regular
tetrahdron. Various algorithm dating from old to new are described, compared
and their problems are discussed.

6

3 Technical background

The various algorithms proposed for packing of particles can generate ordered
and disordered arrangements. Most of the ordered arrangements, specially
lattice packing is known to generate denser outputs, but it has been proven
that some disordered packings can generate equally denser packings or even
higher. Most of the packing algorithms, proposed in di�erent �elds, are mainly
based on packing of spherical particles. Some algorithms have been proposed
for packing other geometries such as cylinders, platonic and Archimedean solids.
Most of the approaches which are based on non-spherical shapes are based on
lattice vectors and yield to ordered packing. Packing of arbitrary shapes is still
not much explored.

Lattice based packings are easier to implement and provide faster results. On
the other hand, random packings are time consuming and also require lot of
computation. Both types of packing have their usage and existence. Random
behaviour is more natural in existence, and thus the use of random packing
as the basis can lead to visually realistic outcomes. The algorithms mainly
use sphere because of its uniform shape, which makes it easy to compute and
detect overlaps or collisions. Using non-spherical shapes for particles makes the
algorithm time-consuming and complex. For non-spherical shapes, Lattice based
packing is easier to implement because only the positions and rotations need
to be calculated unlike Random packing in which overlap needs to be detected.
The position of the particles can be easily calculated based on lattice vectors,
especially if the shapes are centrally symmetric, it makes the arrangement and
calculation less tedious.

For non-lattice packings, speci�cally in case of random packing, it is easier and
faster to detect overlap for spheres than for arbitrary shapes. The detection of
collision can be really exhaustive depending on what shape is selected for the
particle. If any arbitrary shape has to be used for the particle, an alternate way
of detecting overlap could be to check the bounding box values of the particle
and the neighbouring particles. Even if the arbitrary shapes are of di�erent
sizes, the bounding box values can be calculated and used for overlap detection.
This is an e�cient way of detecting overlaps.

3.1 Lattice packing

The packing is termed as lattice packing when there are spheres with centers u
and v, that means there are also spheres having centers u+v and u-v, considering
0 to be the center of the packing [Conway & Sloane 1993]. The lattice packings
are all based on the same concept, where the lattice vectors decide the positions
of the particles in the arrangement. This arrangement is formed in layers, where
a particle layer is created in a particular formation and then another layer of
particles is laid on top of this layer. This process is repetitive and results in
ordered packings.

7

Not all the layers are arranged in the same way, but the arrangement does repeat
itself. So depending on which packing type is chosen, every alternate or third
layer may be same. Numerous arrangements can be formed by making use of
this method. The formation or layout of the particles in the layer is dependent
on the type of lattice chosen, and there are multiple variations possible.

Bravais lattice packing is one of the sub-categories of lattice packing, in which
the centers of the spheres form an additive group. The term Bravais lattice
packing is commonly used in the �eld of crystallography. Bravais lattices can �ll
up the whole space, when the packing pattern is repeated. Each lattice point,
de�ned by vector r can be obtained from the following equation [Zeghbroeck
1997]:

r = ka1 + la2 +ma3

where, k, l and m are integers and a1, a2 and a3are unit vectors.

3.1.1 Octahedral structure

O0- lattice packing

Face centered cubic packing is one of the forms of Bravais lattice. Assuming
that the packing space is divided into cubic cells, then this structure is formed
by placing spheres at the cube corners as well as in the center of each face of
the cube. If all of the corner spheres are removed, the remaining six spheres
form a hexagonal array. These remaining six spheres are tightly packed, leaving
no scope of packing them closer than that. If all these spheres are connected
to each other, they result into eight planes that forms an octahedron, thus they
are called 'Octahedral' planes [FCC, BCC and HCP Metals n.d.]. The structure
of this packing is ABCABC.

This optimal packing is de�ned as O0 lattice packing by Jiao et al. [2009]. The
layers are stacked in a way that the spheres in the top layer �t in the holes
created in the bottom layer. Each sphere contacts twelve neighbours in total,
consisting of four neighbours in each layer: own, bottom and top. The lattice
vectors are given by the following equations [Jiao et al. 2009].

e1 = 2i

e2 = 2j

e3 = i+ j + 2(1− 21−2p)1/2pk

The spheres can be replaced with octahedra, in that case the planes of the two
layers coincide with each other. The packing density, φ = 0.7959 approximately,
which is dependent on the size of the particle.

8

O1- lattice packing

The densest known packing of regular octahedra is achieved by Bravais lattice
packing [Jiao et al. 2009], and was discovered by Minkowski [1904]. In this
packing, each octahedra contact 14 others. The packing density, φ = 18 / 19 =
0.9473, which is de�nitely denser than the one described in the section above.

The Bravais lattice vectors for this packing are given below [Minkowski 1904]
[Betke et al. 2000].

a1 =
2
3
i+

2
3
j − 2

3
k

a2 = −1
3
i+

4
3
j − 1

3
k

a3 =
1
3
i− 1

3
j − 4

3
k

3.1.2 Hexagonal close packing

HCP is a periodic packing and is considered as one of the important
packing structures, in ranking with face-centered cubic and body-centered cubic
packings. Though not a Bravais lattice in itself, this packing method is based on
simple hexagonal Bravais lattice as its underlying structure, that is generated
by stacking two-dimensional triangular nets placed on top of each other. The
lattice vectors are given by the following equations [FCC, BCC and HCP Metals
n.d.].

a1 = ai

a2 =
a

2
i+
√

3a
2
j

a3 = ck

where, c is the distance between two layers and a is an integer.

The �rst layer is a close-packed triangular lattice, followed by the second layer
in which the particles are placed in the holes created by the triangles in the
�rst layer. The third layer is formed by placing the particles in the depressions
created by the second layer and so on. This means that the arrangement of
third layer is same as the �rst layer. So in general, alternate layers are same.
The resulting packing structure is ABABAB.

The distance between two interpenetrating hexagonal Bravais lattices which hcp
is based on, is given by the following value [FCC, BCC and HCP Metals n.d.]:

a1

3
+
a2

3
+
a3

2

9

3.1.3 Optimal lattice vectors

To generate dense packings of nonoverlapping, nontiling polyhedra within an
adaptive fundamental cell that is subjected to periodic boundary was called
the adaptive shrinking cell ASC scheme [Torquato & Jiao 2009]. The densest
packing of the platonic shapes, except tetrahedron, are the Bravais lattice
packing. The values of packing density obtained by ASC scheme are at par
with the density obtained from Bravais lattice. An unsaturated packing of
particles is generated within the cells as an initial condition, the positions and
rotations of the polyhedra are design variables which need to set appropriately
for optimization. The cell can also be deformed or compressed/expanded, which
is the reason for calling these cells as adaptive fundamental cell.

Packing of cubes

Each cube in the packing contacts 26 others, which includes vertex-to-vertex
contacts, and the packing density is given by φ = 1. The optimal lattice vectors
are given as [Torquato & Jiao 2009]:

a1 = (2, 0, 0)

a2 = (0, 2, 0)

a3 = (0, 0, 2)

Packing of dodecahedra

As an initial condition, unsaturated random packings with densities 0.15 to 0.3,
unsaturated simple cubic and the optimal lattice packings with densities from
0.3 to 0.6 have been tested. The maximum packing density is achieved when an
unsaturated optimal lattice packing with density 0.72 as an initial condition is
applied [Torquato & Jiao 2009].

Each dodecahedron of the packing contacts 12 others. The packing density is
φ = (2 + Φ)/4 = 0.904508....The optimal lattice vectors are given as [Torquato
& Jiao 2009]:

a1 = [2/(1 + Φ), 2/(1 + Φ), 0]

a2 = [2/(1 + Φ), 0, 2/(1 + Φ)]

a3 = [0, 2/(1 + Φ), 2/(1 + Φ)]

where, Φ = (1 +
√

5)/2 is the golden ratio.

10

Packing of icosahedra

Various initial conditions were tried to achieve the dense packings of icosahedra.
The di�erent techniques used include unsaturated random packing with density
0.2 to 0.3, unsaturated lattice packings such as bcc and fcc, and the densest
lattice packing with density 0.3 to 0.65 [Torquato & Jiao 2009].

Each icosahedron of the packing contacts 12 others and the packing density is
φ = 0.83637.... The optimal lattice vectors are given as [Torquato & Jiao, 2009]:

a1 =
2

(1 + Φ)

 (−33/8− 39
√

5/8)x2 + (39/4 + 33
√

5/4)x− 11/4− 3
√

5/2
(−1/4−

√
5/4)x+ 1 +

√
5/2

(33/8 + 39
√

5/8)x2 + (−19/2− 8
√

5)x+ 13/4 + 3
√

5/2

a2 =
2

(1 + Φ)

 (−39/8− 33
√

5/40)x2 + (35/4 + 41
√

5/20)x− 5/2− 23
√

5/20
(5/4 +

√
5/4)x− 1−

√
5/2

(−39/8− 33
√

5/40)x2 + (15/2 + 9
√

5/5)x− 3
√

5/20

a3 =
2

(1 + Φ)

 (3/2 +
√

5/2)x− 2−
√

5
x
0

where, Φ = (1 +

√
5)/2 is the golden ratio, and	xε{1, 2} is the unique root of

the polynomial.

It is found that	x = 1.591 603 01. . . and therefore the lattice vectors, up to
nine signi�cant �gures, are given as below.

a1 = (0.711782425, 0.830400102, 1.07585146)

a2 = (=0.871627249, 0.761202911, 0.985203828)

a3 = (=0.06919791, 1.59160301, 0)

3.2 Non-lattice packing

Most of the packings are not lattice packings but there still can be packings that
can be as dense as lattice packings like fcc and hcp or even denser. The lattice
packing is built up in layers. Considering the example of fcc or hcp, the �rst
layer of spheres is created by placing the sphere centers in points marked a, then
the next layer can be created by positioning the spheres in 'b' or 'c' layout. If the
spheres are placed at 'b' positions, the next layer can be created by placing the
spheres in 'a' or 'c'. The resultant will be fcc packing if the layers are arranged
in either of the following manner: 'abcabcabc' or 'acbacbacb' [Sloan & Conway
1993]. The 'ababab' arrangement of the layers will result into hcp packing.

11

Figure 1: Di�erent layers of packing (left) [. Layers of packing for hcp and ccp(right) [Simple
modes of packing n.d.]

But, there are numerous non-lattice possibilities which will result into the same
density, such as 'acbabacb' or 'abcacabc'.

Random packing is an interesting type of non-lattice packing and there can
be many ways to achieve it. Two di�erent methods of random packing are
discussed in this section. The mesh is divided into cells which makes it faster to
detect collision or overlap, which makes it easier to handle overlap detection. If
the mesh is considered as one complete geomtery without any cell divisions to
check for overlaps, it will too time consuming as every particle will need to be
validated against all the particles existing in the mesh. The size of the cell can
be varied, the size of the cell needs to have an optimum value, it should neither
be too small, nor too big. When the particle is created it is assigned to the cell
to which it belongs which is decided by the position of the particle.

12

Figure 2: Aperiodic packing [Hopkins et al. 2012]

3.2.1 Binary packing

The packing space can be formed by generating Ns points of type S and NL

points of type L, which will combine both small(S) and large(L) points [Hopkins
et al. 2012]. Each pair of type S must be separated from each by a minimum
distance of 2Rs and each pair of points of type L must be separated by a
minimum distance of 2RL. And if the pair includes one point of type S and
the other point of type L, then the minimum distance between these two points
should be Rs +RL.

A variation of the lattice packing can be a periodic packing. A periodic packing
in this case can be obtained by placing a �xed number of particles in one cell,
which can be called the unit cell. Since the cells are all of the same size, the
particles can be replicated to all other cells. The particles can be of di�erent
sizes. The packing fraction for such a packing of spheres is given by [Hopkins
et al. 2012]:

φ =
Σv(Ri)
VU

where Ri is the radius of each sphere in the cell, and VU is the volume of the
cell. No binary packing can be a lattice packing since the basis of binary packing
consist of atleast two particles.

Aperiodic packing is the one in which there is no long-range order, which means
that the minimal basis should be equal to the number of particles. For a

13

packing with large number of particles, it can be aperiodic, if there are very
few repetitions of the minimal basis [Hopkins et al. 2012].

For achieving jamming conditions in such packings there can be various
techniques possible. One such method is called �host-guest� packings. In this
technique, a subset of the packing (usually larger spheres) are packed as a
jammed periodic packing. The smaller spheres then occupy the space formed
by the interstices by the larger spheres. In this case the smaller spheres do not
contact the larger spheres, and can be moved in the packing domain, without
a�ecting the overall density.

An additional feature for allowing the particle to grow has been implemented. If
the growth is enabled, the particle will grow in size so that it touches its nearest
neighbour. The growth parameter δi can be given as [Kansal et al. 2002]:

δi = δσi,0

where σi,0 is the initial diameter of the sphere.

3.2.2 Linear packing

The mesh is divided into cells and the particles are created inside those cells.
Starting from an initial unsaturated con�guration of particles of �xed size in
the cell, the positions and orientations are the design variables for optimization
[Torquato & Jiao 2010]. The initial state of linear programming is a setup with
some initial particle con�guration, and involves a deterministic collective motion
of the particles to achieve a higher density.

When a displacement to the particle position is applied, the new particle
position is given by the following equation.

x = x+ ∆x

Random packing of unequal spherical particles can be generated using Monte
Carlo method [He et al. 1999]. The particle radii obeying a given distribution
are generated and randomly placed within the packing domain. The packing
density is kept high when generating the particles. As the next step, a relaxation
step is performed which will relocate the particles to new positions based on its
neighbour positions and radii. This relaxation step is performed to minimize or
elimate overlaps.

The process can be summarized in high-level steps below:

1. Initial particle size generation

2. Initial position allocation

3. Overlap relaxation

14

4. Packing space expansion

Since the packing space is bounded by the mesh, the packing space expansion
is not possible, because even the shape of the packing space is arbitrary. As
a modi�cation to the step no. 4 above, a radius relaxation step is performed,
which will be described in detail in the Section 5.

The overlap rate of two particles with radii ri and rj , with dij as the distance
between the centers of these two particles, is de�ned as [He et al. 1999]:

(ri + rj − dij)/(ri + rj)

For each particle i, a search is conducted for particles that overlap particle i,
then from each of the overlapping particles, j, a new position can be calculated
by the following equation [He et al. 1999]:

Rji = Rj + (Ri −Rj)
(ri + rj)
dij

where Ri and Rj are vectors of the centers of particles i and j, respectively. If
the particle i is overlapped by n particles, then the new position of the particle
is given by [He et al. 1999]:

Ri =
1
ni

∑
Rij

15

4 Design

The solution is designed in C++ language. The libraries used include NGL and
some of the QT functions are used. �SignedDistanceFieldFromMesh.h� [Sanchez
2011] header �le is used to check whether the point is inside the mesh or not.
The aim was to implement various types of packings. Also, not only the most
commonly used shape for particle packing i.e sphere has been used, but packing
has been implemented for other shapes as well. Lattice packing provides an
option for platonic shapes, whereas Random packing gives an option to select
OBJ mesh as the particle.

Lattice packing has been implemented both for spherical particles as well as
some platonic shapes. The advantage of using lattice packing is that it is e�cient
as overlap detection is not needed. The position of the particles are calculated
by using the lattice vectors and is based on the size of the particle. The particles
are stacked in layers, one layer is created and then another one is added on top
of it and this recursive process continues as long as the center of the particle is
within the boundary of the bounding box.

Random packing is implemented for spherical particles and also any OBJ �le
can behave as the particle. Since, it is complex to deal with collision for particle
shapes other than spheres, more features are added on sphere packing. Particle
positions are generated randomly using size of the container's bounding box as
the basis. Binary packing is one of the choices, in which the packing is created
in two iterations. A �rst cycle of particle creation executes for the provided
parameter values, followed by the second one. A third iteration to generate
particles can be added by enabling the �ternary� parameter. The reason for
having multiple levels is that the values mainly the number of particles and
radius can vary. The result of this packing will be a mix of particles with
di�erent radii, with the approximate number of particles de�ned. The particles
added in any of the iterations have a base radius and this radius will only change
(grow) if the growth option is selected for that iteration. The size or value of
growth is determined by its distance to the closest neighbour. For any particle,
the distance to its nearest neighbour is calculated, and the particle is scaled by
that value. So, after the particle grows, it will touch its nearest neighbour. As
the particle size is allowed to increase beyond its initially speci�ed radius, this
will enable the particle to occupy more space in its surrounding resulting in a
denser packing.

When the particles are created, the point position of the particle, or the center
of the shape, should lie within the boundary of the mesh or packing space. The
particles near the boundary may partially exceed the boundary. The extent
to which the particle lies outside the boundary, depends on its closeness to
the boundary and the size, which would be the radius in case of spheres. The
particle position is checked, and if the particle center lies within the mesh the

16

particle is created. In some cases, an additional option is provided to generate
the particles which lie completely within the boundary of the mesh. Because of
the uniform shape of the sphere, this option is applicable to spheres only.

The other type of Random packing implemented is called Linear Packing. In
this packing technique, the particles (spheres) at random positions are created,
even if they overlap. After the particles are created, a relaxation is performed
on all the particles. This relaxation process calculates the new position of the
particle based on the positions of its neighbours. Since the spheres were still
found to be overlapping with each other signi�cantly, an extension is added
which re-calculates the radius of the particle, based on its neighbours.

4.1 Algorithm

The high-level algorithm is described below, but more details are provided in
the Section 5.

1. Select a default shape from the pre-saved OBJ �les or import OBJ using
�le browser.

2. Select the Mode of packing: Lattice or Random

3. Select the Type of packing, the options depend on the Mode and the
shape of the particle chosen. For Lattice, options are: Cubic, Hexagonal
or Octahedral.

4. Select the shape of the particles.

5. Calculate the bounding box of the OBJ mesh.

6. The point position, whichever be the Mode of packing, is generated within
the limit of the bounding box, and is tested for belonging inside the mesh
or not.

7. For Lattice Packing:

(a) Depending on the Type chosen, generate the packing based on the
lattice vectors.

(b) For packing of spheres, in hcp or ccp arrangement the horizontal
layer is generated �rst then another layer is stacked on top of the one
created previously.

(c) For packing of other platonic shapes, the lattice vectors will not create
a horizontal layer, so in this case, one layer is generated using X and
Z components �rst. Then the next layer is added using the height
speci�ed Y component.

(d) The particle positions are calculated based on the lattice vectors, and
is veri�ed to fall within the boundary of the mesh. If the position
lies inside the particle is created, and is discarded otherwise.

17

8. For Random Packing

(a) The options for particle shapes are: Sphere, Cube or OBJ. Some
pre-saved OBJ particle shapes are provided, but any OBJ can be
chosen for the shapes of the particle.

(b) Divide the mesh into cells.

(c) Generate a random position of the particle.

(d) Based on the position and radius check if the particle overlaps with
any existing particle. The logic for detecting overlap is covered in
detail in the Section 5.2.

i. If the particle does not overlap any of its neighbours, create the
particle.

ii. If the particle overlaps with any other particle, then try a
di�erent position of the particle.

(e) For Binary/Ternary packing,

i. The above step is performed in iterations. For Binary, it will be
two iterations and for Ternary, the number of iterations will be
three.

ii. The maximum number of particles and the number of retries can
be setup for each iteration.

iii. If the 'Grow' option is selected for any iteration, then after all
the particles in that iteration are created, the size of the particles
created in that iteration is increased, until it gets in contact with
its closest neighbour.

18

4.2 Class Diagram

Figure 3: Complete class diagram

The classMainWindow handles the user interface and connects the signals for
the controls. This class sets the default values of some controls. It will enable or

19

disable some controls based on the values in other controls. The GLWindow
class acts as the mediator between MainWindow and PackingGenerator
class. It also loads the shader, setup the the camera and light.

PackingGenerator is the core class that connects and co-ordinates with the
other classes. This class is the one that is called fromGLWindow. This class is
responsible for transmitting information to the respective classes for generating
the desired output. Based on the options chosen for packing mode and type,
the respective methods are invoked.

PolyMesh class creates the mesh, which is the container for bounding the
particles. This mesh is treated as the boundary for particle packing space. For
lattice packing, since the packing is sequential the mesh need not be divided
into cells. In case of Random packing, if the mesh is not divided into cells, then
each time a random position for the particle is generated, it has to be checked
for overlap against all existing particles. This may take a substantial amount
of time depending on the number of particles existing already. As the number
of particles increase, this process will become slower. An e�cient way to check
the overlap is to divide the mesh into cells so that overlap has to be detected in
the current cell and neighbouring cells.

Packing is an abstract class and is the base class for the classes that generate
di�erent types of packing. This class will add particles to the Particle class.
It will also draw the particles on the screen depending on the type the particle.
Packing is the base class for three classes: ClosePacking, LatticePacking
and RandomPacking. ClosePacking class generated hcp and ccp packing
structures for spheres. The packing types in this class are also de�ned by lattice
vectors. But this class has been separated for maintainability. LatticePacking
is used to generate packing based on lattice vectors. This class will generate
packing for platonic shapes and the packing arrangement generated through
this class is layered. The particle positions are calculated based on the lattice
vectors depending on the type of packing.

RandomPacking class functions as the base class for two classes. The �rst one
is BiTernaryPacking, which will generate packing in two or three iterations.
The main purpose of having packing in iterations is to make it more scalable and
�exible. Each iteration will create particles with the speci�ed size. Additional
options are provided to control the maximum number of particles and number
of retries. This type of packing will result in particles with di�erent sizes. An
additional feature to grow the particle is included, which will scale the size of
the particle till it gets in contact with its closest neighbour. This option will not
only result in particles with varying sizes, but will also increase the density of
the packing. The second class is LinearPacking, which generates the particles
at random positions. Then, a relaxation step is executed on the overlapping
particles. Based on the position and radius of each of its neighbouring particle,

20

a new position is then evaluated for the overlapped particle. Since the particles
still overlap considerably, it becomes important to modify the radius of the
particle. Similar to the calculation of new position, the new radius is calculated
based on the position and radius values of its neighbours.

The PolyMeshLattice and PolyMeshCell classes are used in case of random
packing. PolyMeshLattice class is used to divide the mesh into cells. The
bounding box of the mesh is evaluated and the cells are divided based on the
bounding box values. The size of the cell is provided as a parameter in the
interface. PolyMeshCell class holds the data speci�c to each cell, like the
cell index and the lower bound of the cell which is the position of the lower
division of the cell in world co-ordinates. PolyMeshLattice class calculates
the neighbouring cells for all the cells that have been created. The reason
to store all the neighbouring cells in advance, is because the cell size is �xed
initially when the mesh is divided, so the neighbours will not change. Also, as
multiple particles can be created in one cell, it will be an extra e�ort to �nd the
neighbouring cells again and again, for all point positions which belong to the
same cell (the point position can be used as a basis to �nd the cell it is located
in or speci�cally the cell index).

Particle class will hold the information speci�c to the particle like particle ID,
position and size.

Maps have been used in multiple scenarios. To map the associative path for the
mesh/shape of the particle, the names which are strings are mapped to the OBJ
path. Another instance is, to be able to use string in switch statements. Maps
are created for storing the associations and the equivalent values are fetched
using respective methods.

21

5 Implementation

Di�erent methods have been implemented to achieve various forms of
arrangement of particles. The methods used for particle packing can be roughly
divided into two categories: lattice and random packing. To achieve lattice
packing for spherical particles, the commonly known close-packing methods
such as hexagonal close-packed (hcp) and face-centered cubic (fcc), also known
as cubic close-packing (ccp) are applied. Packing of some other platonic shapes
is achieved by using lattice vectors. Packing has also been designed for similar
and di�erent sized particles.

5.1 Lattice packing

Lattice packing has been generated for spherical as well as non-spherical
particles. For spherical particles, hcp and ccp are the two packing types
implemented. For non-spherical particles, the packing is based on lattice vectors.
The point positions are generated using the lattice vectors. This type of packing
is generated in layers and is repetitive, some layers are replica of the others. In
most of the case every second or third layer will be same. All the lattice vectors
used are provided in Section 3.1.

The high-level steps for lattice packing are given below:

1. Generate point position based on the lattice vectors

2. The particle position is only generated within the bounding box of the
packing domain.

3. The point position is then checked if it lies within the mesh

(a) If the point position is inside the mesh, create the particle.

(b) Discard the position if the point lies outside the mesh and generate
a new position.

5.2 Random packing

Random packing has been implemented mainly for spherical particles as well as
arbitrary shapes. For packing of spheres, two di�erent approaches are used. The
underlying structure of these methods is the same and most of the functionality
used is common and applies to both. Both the approaches are described below
and rest of the section will cover the common aspects. Both these approaches
are capable of packing unequal spheres.

5.2.1 Binary/Ternary Packing

This approach is based on the generation of multiple iterations of packing. Two
(Binary) or three (Ternary) iterations can be selected for generating the packing.

22

sectionEach iteration contains the number of particles, radius, number of retries
and option for growth. The radius in the iteration is common for all the particles
generated in that iteration. In this approach, the position is randomly generated
within the bounding box of the mesh, and then is checked whether it lies inside
the mesh or not, the position is only considered valid if it lies within the mesh.
This newly generated position is validated for overlap with any of neighbouring
particles, if it fails then a new position is re-tried.

There is a limit to the number of times the process is repeated, either until the
maximum particle count is reached or the maximum number of re-tries for the
same nth particle is reached. The idea behind placing a validation for maximum
re-tries for the same particle, is that if x number of random positions have been
tried and the particle still fails to �nd a position, then the possibility is that not
enough space is available for the particle to �nd a space. Had there not been
a limit on maximum number of re-tries then the algorithm would continue to
search for a position until the maximum number of particles are attained, so in
case of not enough space, this may result into an endless loop. The particle is
only inserted when it �nds a valid position.

5.2.2 Linear Packing

This approach is somewhat similar to the �rst approach. The particle positions
are randomly generated within the mesh. The di�erence is that the randomly
generated position is not validated with the neighbours immediately, and the
particle is inserted. This will lead to overlaps of particles. After the particles are
generated, for all the particles which overlap with its neighbours, a relaxation
is provided and a new position for the center is found. This approach does not
have iterations as the �rst one and the radius of the particle is not �xed. Each
particle will have a di�erent radius, which is a random value. So not only the
position of the particle is random but also the radius of the particle is random,
but to limit the radius within a limit, a range is de�ned.

5.2.3 Collision detection

The particles inside the mesh need to be non-overlapping. In case of random
packing, it is of prime importance on how the collision detection is done. As
mentioned earlier, collision detection for non-spherical shapes can prove to be
exhaustive. Also, if the shape is arbitrary, simple techniques to detect overlap
may no longer work. One of the ways to detect overlap, can be to check the
vertices/edges of one particle, and if those fall within the boundary of another
particle, the particle cannot be created at that position. For packing of arbitrary
shapes, digitization approach was mentioned by Jia and Williams [2001], that
was based on digitization of particle shape as well as the mesh. This method
requires a lot of computation for �nding the cells which are �lled by the particle.

23

An alteration to the approach, can be dividing the mesh into cells with size
of bounding box. The approach basically can hold one particle in one cell, so
when a new particle is created, the only check to be made is whether the cell
is occupied already. This approach works well for structured packing, but it
cannot be implemented for random packing as such, since the particles in the
same layer will always be at the same level and this is more like lattice packing.
If the cell size is bigger than the bounding box of the particle, then the particles
can be positioned at di�erent levels in the same layer, but the rest of the space
in the cells will always be unoccupied.

To make the packing of arbitrary shapes more compact and random, the cell size
is considered irrespective of the bounding box size. Any number of arbitrary
shaped particles can be added to a cell, as long as they do not overlap each other.
The lattice cells are still the normal cell divisions mentioned previously as part
of the algorithm in the Section 4. Intersection of two particles is controlled
by �nding the distance to all the particles from the neighbouring cells. The
approach used is same as for spherical particles, the only di�erence lying in the
calculation of the nearest neigbour. While in case of spheres, the radius is used
for detecting overlap, whereas for arbitrary shapes bounding box values are used
for overlap detection.

The following steps are used for overlap detection:

1. Check all neighbouring particles, which includes particles in its own cell
as well as the neighbouring cells.

2. To �nd the distance of the particle to its closest neighbour, the calculation
is based on the following particle and neighbour values:

(a) Spheres - Calculation is based on position and radius. The center to
center distance is calculated and checked against sum of radius.

(b) Arbitrary shapes (OBJ) - position and bounding box. Overlap is
checked in X, Y and Z axis and the minimum value is considered.

[Note: These values are stored at particle level.]

3. In case of overlap,

(a) a new random position is tried.

(b) the number of retries keeps increasing unless a non-overlapping
particle position is found.

4. For no overlap, the particle is created.

5. The particles of the speci�ed radius are inserted.

6. If the growth option is selected, then the particle is scaled uniformly by
the minimum distance to the closest neighbour.

24

6 Results

This section shows the results generated for di�erent types of packing.

Figure 4: User settings

6.1 Close packing

6.1.1 Hexagonal close packing

Hexagonal closed packing has been generated for two di�erent meshes.

Figure 5: Hexagonal close packing

25

6.1.2 Cubic close packing

Cubic closed packing has been generated for two di�erent meshes.

Figure 6: Cubic close packing

6.2 Lattice packing

Lattice packing is generated for di�erent platonic shapes: cube, dodecahedra
and icosahedra.

Figure 7: (a)Lattice packing generated for cube particles. (b) Lattice packing for
dodecahedron.

26

Figure 8: Lattice packing for icosahedron.

6.3 Random packing

6.3.1 Binary/Ternary packing

Figure 9: Binary packing using di�erent shapes of particles (OBJ)

27

Figure 10: Binary packing with growth parameter selected.

6.3.2 Linear packing

Figure 11: (a)Lattice packing generated for cube particles. (b) Lattice packing for
dodecahedron.

28

7 Conclusion and future work

Packing of particles in multiple arrangements has been implemented. Lattice
packing has been implemented for spherical and platonic shapes. Random
packing has been achieved for spheres and cubes. Random packing has been
extended to use OBJ �les as shapes for particles, in which some pre-saved OBJ
�les are provided as choices. An additional option of importing any OBJ mesh
for the particle shape has been provided. This packing can be generated for all
particles of the same size, but additional options are provided to have di�erent
sizes of the particles. A parameter for growth is also added, that increases the
size of the particle so that more space is occupied and this will lead to more
denser outcomes.

Multiple algorithms are implemented, which are based on di�erent technical
papers. Some of the features from di�erent papers are combined and
implemented as one algorithm. Also, some new ideas have been implemented
like provision of growth option for Binary/Ternary packing. As an attempt to
work on packing of arbitrary shapes, another idea of using bounding box as the
shape for particles have been implemented, in which the particles are OBJ �les.

Lattice packings are faster to compute as overlap doesn't need to be calculated.
Thus, it can produce faster results. The non-lattice packings which are layered,
also produce structured arrangements. So in general, packing in layers is easily
achievable and also produces denser results. Random packing, on the other
hand, which also falls under the category of Non-lattice packing, requires more
computation and will take longer to generate results. The di�erent types of
packing implemented as part of the project, produce results in fair amount of
time. Binary/Ternary packing produces results with di�erent sphere sizes, but
since the particle positions are �xed, the packing space cannot be fully utilized.
The results from Linear packing technique provide denser packing as compared
to the Binary method of packing.

Particle packing �nds applications in many areas, and can act as the basis of
di�erent simulations. One of the uses could be for water or sand simulations.
Another one is to make use of the particle packing information for point based
dynamics.

There are hardly any algorithms that describe packing of arbitrary shapes
densely, but given more time this aspect could be delved into deeper. Instead
of having all particles of the same shape, particles with di�erent shapes can be
an added feature too. An additional option of exporting the packing generated
in C++ as OBJ can prove to be useful, as that can be used by other program
as an input geometry for simulations.

29

References

Betke, U., & Henk, M., Comput. Geom., 16, pp. 157-186, 2000. Conway, J. H.,
Sphere Packings, Lattices and Groups , Springer, 1993.

Donev, A., Torquato, S., Stillinger, F. H., �Neighbor list collision-driven
molecular dynamics simulation for nonspherical particles: I. Algorithmic details
II. Applications to ellipses and ellipsoids�, J. Comp. Phys, 202 (2), pp. 737�764,
765�793, 2005.

�FCC, BCC and HCP Metals�, Accessed August 2015,
<http://che.uri.edu/course/che333/Structure.pdf>, Pg 1.

He, D., Ekkere, N. N. & Cai, L., �Computer simulation of random packing of
unequal particles�, Physical Review, 60 (6), 1999.

Hopkins, A. B., Stillinger, F. H. & Torquato, S., �Densest binary sphere
packings�, Physical Review, 85, pp. 1-19, 2012.

Kansal, A. R., Torquato, S. & Stillinger, F. H., �Computer generation of dense
polydisperse sphere packings�, Journal of Chemical Physics, 117 (18), pp. 12-18,
2002.

Jia, X., & Williams, R. A., �A packing algorithm for particles of arbitrary
shapes�, Powder Technology, 120, pp. 175-186, 2001.

Jiao, Y., Stillinger, F. H. and Torquato, S., �Optimal Packings of Superdisks
and the Role of Symmetry Physical Review Letters�, 100, 245504, 2008.

Jiao, Y., Stillinger, F. H. & Torquato, S., �Optimal packings of superballs�,
Physical Review, 79, pp. 1-12, 2009.

Lagarias, J. C. & Zong, C., �Mysteries in Packing Regular Tetrahedra�, Notices
of the AMS, 59 (11), pp. 40-49, 2012. Conway, J. S. & Torquato, S., �Packing,
tiling, and covering with tetrahedra�, PNAS, 103 (28), pp. 12-17, 2006.

Minkowski, H., Nachr. Ges. Wiss. Göettingen, Math.-Phys. Kl- .Dichteste
gitterförmige Lagerung kongreuenter Körper, pp. 311, 1904.

Sanchez, M., �Continous signed distance �eld
representation of polygonal meshes�, Accessed August 2015,
<http://nccasta�.bournemouth.ac.uk/jmacey/MastersProjects/MSc11/Mathieu/msanchez-sdf-t
hesis.pdf>

30

Sarto and Van Zeghbroeck, B., "Photocurrents in a Metal-Semiconductor-Metal
Photodetector", IEEE Journal of Quantum Electronics, 22, pp. 88-94, 1997.

�Simple modes of packing�, Accessed August 2015,
<https://cluster13-�les.instructure.com/courses/986898/�les/31768395/course%20�les/006
%20Liquids%2C%20Solids%2C%20%26%20Intermolecular%20Forces/Close%20Packing/Clos
e_Packing.htm?download=1&inline=1&sf_veri�er=&ts=&user_id=&veri�er=ojbHMiy731x7omWo
KKQPpgtkyGWdezTzMsqFWWDX>

�Some important examples of crystal structures with lattices of bases�, Accessed
August 2015, <http://materias.�.uba.ar/6210/Ap%C3%A9dice%203.pdf>

Torquato, S. & Jiao, Y., �Dense packings of polyhedral: platonic and
archimedean solids�, Physical Review, 80, pp. 4-24, 2009.

Torquato, S. & Jiao, Y., � Robust algorithm to generate a diverse class of
dense disordered and ordered sphere packings via linear programming�, Physical
Review, 82 (6), 2010.

Van Zeghbroeck, B. J., �Bravais Lattices�, Accessed August 2015,
<http://ecee.colorado.edu/~bart/book/contents.htm>

Weller, R. and Zachmann, G., �ProtoSphere: A GPU Assisted Prototype guided
sphere packing algorithm for arbitrary objects�, ACM SIGGRAPH ASIA, pp.
1-2, 2010.

31

