
Fluid Simulation

using Smoothed Particle

Hydrodynamics

Burak Ertekin

i7637445

MSc Computer Animation and Visual Effects

August, 2015

Contents

Table of contents . i

List of figures . iv

Abstract . v

1 Introduction 1

2 Related Work 3

3 Computational Fluid Dynamics 5

3.1 Particle-Based vs Grid-Based Methods 5

3.1.1 Particle-Based Method 5

3.1.2 Grid-Based Method 6

3.1.2.1 Lagrangian Grid 7

3.1.2.2 Eulerian Grid 7

3.2 Navier-Stokes Equations 7

3.3 Smoothed Particle Hydrodynamics 8

4 Implementation 10

4.1 Design . 10

4.2 Algorithm . 10

4.2.1 Newtonian Fluid 12

4.2.2 Non-Newtonian Fluid 13

4.3 Mass - Density . 13

4.3.1 Mass . 13

4.3.2 Density . 14

4.4 Pressure . 15

4.5 Viscosity . 15

4.6 External Forces . 17

i

4.6.1 Gravity . 17

4.6.2 Collision Forces 17

4.7 Surface Tension . 17

4.8 Stress Tensor . 19

4.9 Smoothing Kernels . 21

4.9.1 Poly6 Kernel . 21

4.9.2 Spiky Kernel . 22

4.9.3 Viscosity Kernel 23

4.9.4 Spline Kernel . 23

4.9.5 Smoothing Length 24

4.10 Neighbor Search . 25

4.10.1 Spatial Hashing 26

4.10.1.1 Discretization 26

4.10.1.2 Hash Function 26

4.10.1.3 Table Size and Cell Size 27

4.10.1.4 Particle Queries 27

4.10.1.5 Searching Algorithm 28

4.10.2 Hierarchical Tree 28

4.11 Integration Methods . 29

4.11.1 Leap-Frog . 29

4.11.2 Explicit Euler . 30

4.12 XSPH Velocity Correction 30

5 Pipeline 32

5.1 Stand Alone Application 32

5.2 Houdini Digital Asset . 33

6 Results and Analysis 35

6.1 Known Issues . 39

6.1.1 Non-Newtonian 39

6.1.2 Fluid Incompressibility 40

6.1.3 Efficiency . 40

7 Conclusion 41

7.1 Future Work . 42

ii

References 43

A Appendix 49

A.1 HDA User Guide . 49

iii

List of Figures

3.1 Lagrangian Description 6

3.2 Eulerian Description . 7

4.1 UML Diagram . 11

4.2 Shear Stress vs Shear Rate Graph 16

4.3 Surface Tension . 18

4.4 Poly6 Kernel Graph . 22

4.5 Spiky Kernel Graph . 23

4.6 Viscosity Kernel Graph 24

4.7 Spline Kernel Graph . 25

5.1 Stand Alone Application 33

6.1 Test 1 - Regular Fluid 36

6.2 Test 2 - Regular Fluid with Collision 36

6.3 Test 3 - Low Viscosity 37

6.4 Test 4 - Mid Viscosity 37

6.5 Test 5 - High Viscosity 37

6.6 Test 6 - 4 Sphere shaped Fluids 38

6.7 Test 7 - Sphere and Box shaped Fluids 38

6.8 Test 8 - Non-Newtonian Fluid 39

A.1 HDA - Input Generator Tab 49

A.2 HDA - Simulation Visualisation Tab 50

A.3 HDA - Cache Out Tab 51

iv

Abstract

Smoothed Particle Hydrodynamics (SPH) is one of the most popular ap-

proaches to fluid simulations. This paper explains the implementation

of this method and the theory behind this method. The implementation

is designed to simulate both Newtonian and Non-Newtonian fluids using

Navier-Stokes equations. Different tests were made on various scenar-

ios and results were analysed. Possible future works were suggested to

improve these results.

Keywords: Fluid, Non-Newtonian, SPH, Smoothed Particle Hydro-

dynamics, Navier-Stokes

v

Chapter 1

Introduction

Realistic fluid animations are one of the most important phenomena in

computer graphics. They are frequently used in computer gaming and

visual effects industries. This high demand makes it a popular topic

between physically-based simulations. Fluids, liquids in particular, are

everywhere in everyday life. They may look simple and ordinary however

it is as complex and challenging to create a simulation that looks real-

istic. As Premoze et al. (2003) stated:“Due to our familiarity with fluid

movement, plausible simulation of fluids remains a challenging problem

despite enormous improvements”. While a well implemented simulations

can create an epic and glorious effects in a scene, a poorly done simula-

tion can cause a make-believe and cheap effect.

Even though fluid animation is a popular and old research area, the

progression still continues. Besides simulating the motion of the fluid

still being a challenge, the visualisation of the fluid is remains another

important topic to be covered. There are several different approaches

developed for different needs and different behaviors; such as, Eulerian

grids and Lagrangian particles. This project focuses on using one of

the most popular Lagrangian approach on fluid simulations: Smoothed

Particle Hydrodynamics (SPH). The aim of this project is to simulate

both Newtonian, water-like fluids, and Non-Newtonian, fluids with vis-

coplastic behavior, using SPH. The simulation was implemented in C++

with a simple OpenGL visualisation and data exporting functionality in

1

order to create more realistic visualisations using a secondary software

package, Houdini.

In the following sections, previous work done on fluid simulations have

been discussed. Third section is giving the essential technical background

of computational fluid dynamics, Navier-Stokes equations and SPH. Af-

ter this, the implementation of the project is being covered explaining

the design, the main algorithm and the physical equations aswell as the

neighbor searching procedure. At the fifth section, the pipeline of the

project is explained. Following this section, the results obtained are dis-

cussed. And lastly, after analysing the results, future work is discussed

in the conclusion.

2

Chapter 2

Related Work

In 1983, Reeves (1983) introducted particle systems - “a technique for

modeling a class of fuzzy objects”. With this, computer graphics started

using particles to simulate physically based elements. As Foster and

Metaxas (1996) were the first ones to solve 3D Navier-Stokes equations

to simulate liquids on a regular grid. Using semi-Lagrangian method,

Stam (1999) allowed using larger time-steps while being stable which

was an important step towards real-time simulation of fluids. Foster

and Fedkiw (2001) improved his work on liquids using a both level-set

method for tracking the fluid interface.

Smoothed Particle Hydrodynamics(SPH) introduced by Lucy (1977)

and Gingold and Monaghan (1977) as alternative gridless particle method

to simulate astrophysical problems such as galaxial collisions, solving

the dynamics of star formations. Desbrun and Gascuel (1995) is the

first one to apply SPH to simulate implicit surfaces. In 1996, Desbrun

and Gascuel (1996) used SPH to derive interaction for particle systems

and from this point SPH became a popular approach in fluid simula-

tions. Müller et al. (2003) used interaction force between particles from

SPH and Navier-Stokes equations to simulate water with free surfaces.

Same year, Premoze et al. (2003) introduced Moving-Particle Semi Im-

plicit(MPS) method which allowed incompressible fluid simulations. In

order to achieve a better incompressibility, Raveendran et al. (2011) pro-

posed a hybrid method that uses Poisson solving and local density cor-

3

rection of the particles. He et al. (2012) presented a local Poisson SPH

method to achieve a better fluid incompressibility. And recently, Ihmsen

et al. (2014) gathered all recent work and created an extensive SPH fluid

simulation.

For Non-Newtonian fluids, Goktekin et al. (2004) used grid-based

method to simulate the stress tensor in these fluids. They used a linear

Maxwell model with von Misses plastic yield condition. On the other

hand, Mao and Yang (2005a) used a co-rotational Maxwell model and

SPH to simulate Non-Newtonian fluids. Another approach was made by

Clavet et al. (2005) using SPH and elastic springs to simulate the plastic

behavior of viscoelastic fluids. Ellero et al. (2002) presented viscoelastic

flows using SPH. Following their previous work, Mao and Yang (2005b)

added heat transfer method to control the elasticity of fluids. Paiva et al.

(2006) used SPH and heat equation to derive the viscosity which helps

defining the stress tensor. And in Paiva et al. (2009) they extend their

previous work and simulate the viscoplastic effect of solid materials using

the same method. Recently, Andrade et al. (2014) used Cross model to

simulate Non-Newtonian fluid flow under shear stress with jet buckling

effects. The book of Chhabra (2006) is a great reference to understand

the behavior of Non-Newtonian fluids.

Neighbor searching is the most critical step in SPH implementations.

Teschner et al. (2003) proposed a spatial hashing algorithm for collision

detection of deformable objects. This approach was used extensively

in this project. Hierarchical tree method of Hernquist and Katz was

implemented aswell.

4

Chapter 3

Computational Fluid

Dynamics

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics

that is being used in Computer Graphics to create realistic animations

of fluids such as liquids, smoke and fire. The fundamental basis of the

fluid motion in these simulations mostly being solved by Navier-Stokes

equations. There are several different methods that are using these equa-

tions which can be used to create a fluid simulation: Smoothed Parti-

cle Hydrodynamics (SPH) method, Eulerian methods, Moving Particle

Semi-Implicit method, Lattice Boltzmann methods etc. Different meth-

ods are preferred for different needs.

We use either the “Lagrangian” or the “Eulerian” description when

defining the fluid flow. Both of these descriptions are explained in the

following section.

3.1 Particle-Based vs Grid-Based Methods

3.1.1 Particle-Based Method

In Lagrangian description, we define the fluid flow with particles where

each particle caries its own properties. This description can be gener-

5

alised as particle-based method. Each particle has various properties,

such as mass, velocity, density etc. The logic behind this method is

fairly straight-forward. Conservation of mass and Newton’s laws apply

directly to each fluid particle. Refer to figure 3.1 for visualisation.

Figure 3.1: Retrieved from MIT (2011)

There are numerous different methods as meshfree solutions however

this paper is focusing on using one of the most popular approaches in

fluid simulations: Smoothed Particle Hydrodynamics (SPH). Although

SPH was developed by Lucy (1977) and Gingold and Monaghan (1977)

for the simulation of astrophysical problems, it is extensively being used

in fluid simulations today. This approach is explained in section 3.3.

3.1.2 Grid-Based Method

In Eulerian description, we define the properties of the fluid at every

point in space/field. Instead of keeping record of every single particle,

we keep record of the cells of a grid. This description is often called a

grid-based method. Refer to figure 3.2 for visualisation.

There are two main frames for describing grid-based methods: Eu-

lerian grid and Lagrangian grid. The Eulerian description is a spatial

description while The Lagrangian description is a material description.

They correspond to two disparate kinds of grid of domain discretiza-

tion, Liu et al. (2004). Grid-based techniques are more accurate than

particle-based methods since it is easier to work with spatial derivatives

6

on a fixed grid.

Figure 3.2: Retrieved from MIT (2011)

3.1.2.1 Lagrangian Grid

In this description, the grid is fixed on the material and it moves together

with the material. This method is very popular and succesful in solving

computational solid mechanics however very difficult to apply for cases

with exteremely distorted mesh, Liu et al. (2004).

3.1.2.2 Eulerian Grid

The Eulerian Grid is fixed on the space, in which the simulated object is

located and moves across the fixed cells in the grid. The volume of the

cells remain unchanged for the entire simulation. Large deformations in

the object don’t cause any deformations in the mesh itself, therefore it

is very popular in fluid simulations, Liu et al. (2004).

3.2 Navier-Stokes Equations

Navier-Stokes equations are describing the motion of a fluid at any point

within a flow by a set of non-linear equations, Foster and Metaxas (1996).

7

These equations can be written in three dimensions:

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
= −∂p

∂x
+ gx + ν(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
)

∂v

∂t
+
∂vu

∂x
+
∂v2

∂y
+
∂vw

∂z
= −∂p

∂y
+ gy + ν(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
)

∂w

∂t
+
∂wu

∂x
+
∂wv

∂y
+
∂w2

∂z
= −∂p

∂z
+ gz + ν(

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
)

(3.1)

where u, v, w are velocities in the x, y, z directions while p is the local

pressure, g is the gravity and ν is the viscosity of the fluid. They are de-

rived from Newton’s Second Law of Motion which means the momentum

is always conserved, Foster and Metaxas (1996).

In much simpler terms, Müller et al. (2003) formulates the equation

for Newtonian fluids as:

ρ
(Dv

Dt

)
= −∇p+ ρg + µ∇2v (3.2)

where ρ is density, µ is viscosity constant; describes the same principal

for Lagrangian fluids.

While Mao and Yang (2005a) formulates the equation for Non-Newtonian

fluids as:
dv

dt
= −1

ρ
∇p+

1

ρ
∇ · T +

µ

ρ
∇2v +

1

ρ
f (3.3)

where T being the stress tensor.

3.3 Smoothed Particle Hydrodynamics

SPH is an interpolation method which allows any function to be ex-

pressed in terms of its values at a set of disordered particles, Monaghan

(1992). To do that, SPH distributed local quantities to the neighboring

particles of each particle using radial symmetrical smoothing kernels,

Müller et al. (2003).

8

The integral interpolant of any function A(r) is defined by

A(r) =

∫
A(r′)W (r− r′, h)dr′ (3.4)

the integration is over the entire space where W is an interpolating kernel

with core radius h, Monaghan (1992). Smoothing kernel W has two

properties: ∫
W (r− r′, h)dr′ = 1 (3.5)

and

lim
h→0

W (r− r′, h) = δ(r− r′) (3.6)

where the limit is to be interpreted as the limit of the corresponding

integral interpolants, Monaghan (1992).

The default, gradient and Laplacian of A are:

AS(r) =
∑
j

mj
Aj
ρj
W (r− rj, h),

∇AS(r) =
∑
j

mj
Aj
ρj
∇W (r− r′, h),

∇2AS(r) =
∑
j

mj
Aj
ρj
∇2W (r− r′, h),

(3.7)

where mj is the mass of particle j and ρj is the density of particle j and

Aj is the field quantity at rj.

Field elements such as pressure, viscosity are explained in the im-

plementation section together with example kernel functions(chapter 4)

used in the implementation.

9

Chapter 4

Implementation

4.1 Design

Designing an extensive fluid simulation is a challenging process. This

implementation contains two different type of fluids but the aim is to

maintain these different approaches into a single implementation. In or-

der to make a flexible structure, main elements were divided into their

own classes and gathered in a main solver class, Fluid class. UML dia-

gram can be seen in figure 4.1.

4.2 Algorithm

The main algorithm implemented for both fluid types are very similar.

Newtonian fluid algorithm (Algorithm 1) is based on Müller et al. (2003)

and Non-Newtonian algorithm(Algorithm 2) is based on Mao and Yang

(2005a). And both of these algorithms can be found below as pseudo-

code.

10

Figure 4.1: UML Diagram

11

4.2.1 Newtonian Fluid

foreach particle i do

find neighbors j ;

ρj =
∑

jmjWij (Eq. 4.2);

compute pi using ρi (Eq. 4.6);

end

foreach particle i do

if i 6= j then

Fpressure
i = −mi

ρi
∇pi (Eq. 4.4);

Fviscosity
i = miv∇2vi (Eq. 4.8);

end

Fsurface
i = mi∇2cS (Eq. 4.10);

Fother
i = mig;

Fi(t) = Fpressure
i + Fviscosity

i + Fsurface
i + Fother

i ;

end

foreach particle i do
vi(t+ ∆t) = vi + ∆tFi(t)/mi

xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t)

collision detection and response

Correct vi using XSPH (Eq: 4.37)

end
Algorithm 1: Newtonian Fluid SPH

12

4.2.2 Non-Newtonian Fluid

foreach particle i do

find neighbors j ;

ρj =
∑

jmjWij (Eq. 4.2);

compute pi using ρi (Eq. 4.6);

end

foreach particle i do

compute ω and D (Eq: 4.16);

end

foreach particle i do

if i 6= j then

Fpressure
i = −mi

ρi
∇pi (Eq. 4.4);

Fviscosity
i = miv∇2vi (Eq. 4.8);

end

Fstress
i = mi

ρi
T∇ (Eq. 4.19);

Fother
i = mig;

Fi(t) = Fpressure
i + Fviscosity

i + Fstress
i + Fother

i ;

end

foreach particle i do
vi(t+ ∆t) = vi + ∆tFi(t)/mi

xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t)

collision detection and response

Correct vi using XSPH (Eq: 4.37)

end
Algorithm 2: Non-Newtonian Fluid SPH

4.3 Mass - Density

4.3.1 Mass

Mass and density elements are the most important parameters for SPH

fluids. Since SPH is a Lagrangian approach, every single particle holds

their own mass and density values. Even though the mass value is same

for all particles, density parameter changes according to the neighboring

13

particles.

In order to calculate the mass of each particle, we use an adjusted

version of volumetric mass density formula presented by Kelager (2006):

ρ0 =
m

V
n (4.1)

where ρ is the default density of the fluid, m is the mass of single particle,

V is the volume of the fluid object and n being the particle count. This

mass calculation is done at initialisation stage and stays the same for

the entire simulation process. Calculating the mass is a more stable

approach than allowing to the user to assign it because it’s crucial to get

physically correct value related to rest density. And since NGL OBJ class

is being used in this implementation, it is easy to retrieve the particle

count which is used in equation 4.1, Macey (a). However, the volume

parameter is to be set by the user.

4.3.2 Density

As explained in section 3.3, each particle i represents a certain volume

inside the fluid. While mass of every particle, mi, stays the same, density

of every particle ρi changes. In this implementation, the SPH approxi-

mation applied to the density as suggested by Monaghan (1992). This

technique can be called as “density summation” and can be found in

equation 4.2.

ρi(r) =
∑
j

ρj
mj

ρj
W (r− rj, h)

=
∑
j

mjW (r− rj, h)
(4.2)

Density for each particle is calculated according to its neighboring par-

ticles. Finding the neighboring particles of every particle is explained in

section 4.10. The density is updated every time-step for every particle.

14

4.4 Pressure

When the pressure term is applied on equation 3.7, we get the following

equation:

fpressurei = −∇p(ri) = −
∑
j

mj
pj
ρj
∇W (ri − rj, h) (4.3)

However, the pressure force is not symmetrical. When two particles

interact, particle i will only use the pressure of particle j to compute its

pressure force and vice versa. Müller et al. (2003) solved this problem

by taking the arithmetic mean of pressures of interacting particles:

fpressurei =
∑
j

mj
pi + pj

2ρj
∇W (ri − rj, h). (4.4)

The gradient of kernel function for the pressure term is explained explic-

itly in section 4.9. The individual pressure values for every particle, pi

and pj are calculated right after the density is calculated. The ideal gas

state equation is being used for this:

p = kρ, (4.5)

where k is the gas constant. But in order to keep density at ρ0, Desbrun

and Gascuel (1996) proposed to use:

p = k(ρ− ρ0), (4.6)

which comes from (P + P0)V = k where V = 1/ρ is the volume per

unit mass, and P0 = kρ0, Desbrun and Gascuel (1996). This provides

a constant density which results in a constant volume which allows the

fluid to back to its initial volume after deformation, Desbrun and Gascuel

(1996).

15

4.5 Viscosity

The viscosity is the fluid’ resistance against deformation by shear stress

or tensile stress. Chhabra (2006) defines viscosity for Newtonian fluids

as, the value µ is independent of shear rate and it depends only on

temperature and pressure. In a graph of shear stress (τyx) vs shear rate

(γ̇yx), which is called a rheogram or flow curve, a Newtonian fluid is a

straight line of slope µ passing through the origin, Chhabra (2006). On

the other hand, “when the viscosity depends upon flow conditions, such

as flow geometry, shear rate (or stress) developed within the fluid, time

of shearing, kinematic history of the sample etc.” the fluid is called as

Non-Newtonian, Chhabra (2006).

Figure 4.2: Shear Stress vs Shear Rate Graph. Retrieved from Chhabra
(2006)

When the viscosity term is applied on equation 3.7, we get the follow-

ing equation:

f viscosityi = µ∇2v(ra) = µ
∑
j

mj
vj
ρj
∇2W (ri − rj, h) (4.7)

but similar to the pressure term, this equation gives asymmetric forces

because the velocity field varies from particle to particle. Müller et al.

16

(2003) proposed a solution since viscosity force depends on the difference

of velocities, the force can be symmterized by using a velocity difference

instead of absolute velocities:

f viscosityi = µ
∑
j

mj
vj − vi
ρj

∇2W (ri − rj, h). (4.8)

µ value is the viscosity coefficient in these equations. Increasing this

value will make the fluid more viscous. The laplacian of kernel function

of this equation is explained explicitly in section 4.9.

4.6 External Forces

4.6.1 Gravity

External forces such as gravity or collision forces are applied directly

to each particle without using any SPH approximations. Gravity, g, is

applied to the net force without dividing by any density.

4.6.2 Collision Forces

Collision forces applied in this implementation are simple and straight-

forward. After detecting a collision between particle and the object, the

particle is translated outside of the object with a reflected velocity that

is perpendicular to the object’s surface.

There are only two collision detection and response algorithms imple-

mented for this project: collision with the boundaries (simulation box)

and collision with spheres. They both use the similar approach as ex-

plained above. Collision with arbitrary objects can be implemented as a

future work for this project.

17

4.7 Surface Tension

“The cohesive forces between molecules down into a liquid are shared

with all neighboring atoms. Those on the surface have no neighboring

atoms above, and exhibit stronger attractive forces upon their nearest

neighbors on the surface. This enhancement of the intermolecular attrac-

tive forces at the surface is called surface tension” HyperPhysics. Which

can be summarized as the elastic tendency which makes the liquid to ac-

quire least surface area possible. Surface tension implementation in this

paper is referenced from Müller et al. (2003) which referenced their work

from Morris (2000). Surface tension implemented in this paper aimed

for single fluid usage however it is possible to extend this using interface

tension using the work presented by Morris (2000) in the future.

Figure 4.3: Surface tension illustration. Retrieved from HyperPhysics

Surface of the fluid is represented as color field in literature, which is

1 at particle locations and 0 elsewhere. In order to adapt this to SPH

approximation the equation can be written as,

cS(r) =
∑
j

mj
1

ρj
W (r− rj, h). (4.9)

To get the surface tension force of each particle, the following equation

18

is implemented:

f surface = σκn = −σ∇2cS
n

|n|
, (4.10)

where n is the gradient field of the smoothed color field:

n = ∇cs, (4.11)

and σ being the tension coefficient.

When calculating n/|n| small |n| values causing problems. Therefore

as suggested in Müller et al. (2003), a threshold value, l, is defined which

identifies a particle as a surface particle if

|n(ri)| > l. (4.12)

Tension coefficient, σ, threshold value, l are user defined parameters in

this implementation.

4.8 Stress Tensor

The stress tensor is a nonlinear function of deformation tensor as de-

scribed by Paiva et al. (2006). There are several different approaches to

calculate the stress tensor. This implementation computes the stress ten-

sor by integrating the tensor-rate as described in Mao and Yang (2005a)

and Goktekin et al. (2004). The tensor-rate in this model is based on

a nonlinear corotational Maxwell model defined by Ellero et al. (2002).

This method is chosen for this implementation because the aim was to

implement the stress tensor independent from the temperature.

This method is implemented according to the work of Mao and Yang

(2005a) and can be found below. The tensor-rate model can be written

as:
dT

dt
= Ω +

µe
2
D′ − 1

λ
T (4.13)

where Ω is the rotational tensor, µ elasticity constant, λ relaxation time

19

and T being the stress tensor. Ω is described as “the coordinate transfor-

mation between the global inertial frame and a coordinate frame rotating

with the instantaneous fluid angular velocity at the particle” by Mao and

Yang (2005a):

Ω =
1

2
(T • ω − ω • T). (4.14)

D′ is the traceless strain tensor and can be calculated with:

D′ = D − Trace(D)

3
I. (4.15)

Both w and D calculation is using the following similar procedure: the

velocity gradient.

ω = ∇v − (∇v)T

D = ∇v + (∇v)T
(4.16)

The tensors can be expressed as their individual elements:

ωαβ =
∂vβ

∂rα
− ∂vα

∂rβ

Dαβ =
∂vβ

∂rα
+
∂vα

∂rβ

(4.17)

In equation 4.17, α and β values are representing the 3D spatial coor-

dinates. Since the implementation is based on SPH method, the stress

tensor elements needs to be formulated under SPH approximation aswell.

The partial velocity derivative from equation 4.17 can be found with:

∂vα

∂rβ
=

n∑
j=1

mj

ρj
(vαj − vα)

∂W (r − rj, h)

∂rβ
(4.18)

Using equation 4.18, all the elements in D and ω are calculated. After-

wards, with equations 4.15 and 4.14 we obtain equation 4.13. Using the

current time-step, T value of every particle is calculated.

In order to obtain the stress term of every single particle, the following

20

approximation from Paiva et al. (2006) have been used:

1

ρi
∇ ·Ti =

n∑
j=1

mj

ρiρj
(Ti + Tj) · ∇iW (xij, h). (4.19)

As explained in section 4.2.2, instead of surface tension term, this stress

term is used. Elasticity constant, µe, and relaxation time, λ are user-

defined parameters.

Other approaches to stress tensor calculation can be made such as

Generalized Newtonian Liquid model proposed by de Souza Mendes et al.

(2007) that is used in Paiva et al. (2006). However, in this implementa-

tion, the aim was to implement the stress tensor independent from the

temperature. This approach can be implemented as a future work.

4.9 Smoothing Kernels

Smoothing kernel functions are one of the most important points in SPH

method. Stability, accuracy and speed of the whole method depends

on these functions. Different kernels are being designed for different

purposes. Since this paper is based on the work of Müller et al. (2003)

and Mao and Yang (2005a), the kernel functions used in these papers

were implemented for this project.

The basic logic of using kernel functions is to determine how much

the neighboring particles are influenced from the function A(r). The

rules to follow when designing a kernel can be found in section 3.3. A

kernel function takes two parameters as input: xi−xj, being the distance

between the particle and its neighbor and h, being the smoothing length.

A separate kernel class is implemented in this project to have a flex-

ibility to test different kernel functions with ease. After testing various

different kernel functions, it’s decided to use the ones presented in Müller

et al. (2003) and Mao and Yang (2005a).

21

4.9.1 Poly6 Kernel

The default kernel function used in Müller et al. (2003) for density cal-

culation (equation 4.2). This kernel is also known as the 6th degree

polynomial kernel.

Wpoly6(r, h) =
315

64πh9

(h2 − ||r||2)3, 0 ≤ ||r|| ≤ h

0, otherwise
(4.20)

The gradient of this kernel function used for surface normal (equation

4.11).

∇Wpoly6(r, h) = − 945

32πh9

r(h2 − ||r||2)2, 0 ≤ ||r|| ≤ h

0, otherwise
(4.21)

The laplacian of this kernel function used for surface tension calculation

(equation 4.10).

∇2Wpoly6(r, h) = − 945

32πh9

(h2 − ||r||2)(3h2 − 7||r||2), 0 ≤ ||r|| ≤ h

0, otherwise

(4.22)

As Müller et al. (2003) stated, if this kernel is used for the computation

Figure 4.4: Poly6 Kernel Graph. Retrieved from PukiWiki

of pressure forces, particles tend to build clusters under high pressure

22

because “as particles get very close to each other, the repulsive force

vanishes because the gradient of the kernel approaches zero at the cen-

ter”. Another kernel, spiky kernel, is proposed by Desbrun and Gascuel

(1996) to solve this problem.

4.9.2 Spiky Kernel

The kernel proposed by Desbrun and Gascuel (1996) to solve the particle

clustering problem which is used to calculate the pressure force (equation

4.4).

∇Wpressure(r, h) = − 45

πh6

 r
||r||(h− ||r||)

2, 0 ≤ ||r|| ≤ h

0, otherwise
(4.23)

As can be seen from figure 4.5, the kernel function no longer tends

Figure 4.5: Spiky Kernel Graph. Retrieved from PukiWiki

towards zero.

4.9.3 Viscosity Kernel

“Viscosity is a property arising from collisions between neighboring par-

ticles in a fluid that are moving at different velocities”, M. A. Boda

(2015). However as mentioned in Müller et al. (2003); for two particles

23

that get close to each other, the Laplacian of the smoothed velocity field

can get negative resulting in forces that increase their relative velocity.

Because of this, artifacts may appear in coarsely sampled velocity fields.

In order to overcome this problem, a kernel whose Laplacian is positive

everywhere is being used.

∇2Wviscosity(r, h) =
45

πh6

(h− ||r||), 0 ≤ ||r|| ≤ h

0, otherwise
(4.24)

Figure 4.6: Viscosity Kernel Graph. Retrieved from PukiWiki

4.9.4 Spline Kernel

Mao and Yang (2005a) used the traditional spline kernel described in

Monaghan (1992). The default spline kernel used for the density calcu-

lation and the gradient spline kernel is used for stress term calculations

including the approximation of the stress tensors.

Wspline(r, h) =
1

πh3

1− 3

2

(
r
h

)2
+ 3

4

(
r
h

)3
, 0 ≤ r

h
≤ 1

1
4

(
2− r

h

)3
, 1 ≤ r

h
≤ 2

0, otherwise

(4.25)

24

∇Wspline(r, h) =
9

4πh5

(
r
h
− 4

3

)
r, 0 ≤ r

h
≤ 1

−1
3

(
2− r

h

)2
h
r
r, 1 ≤ r

h
≤ 2

0, otherwise

(4.26)

Although this kernel is being proposed by Mao and Yang (2005a) in their

paper, it wasn’t effective in this implementation. The implementation

remains in the final code, however not being used by the functions.

Figure 4.7: Spline Kernel Graph. Retrieved from PukiWiki

4.9.5 Smoothing Length

Smoothing length, h, is one of the most important parameters that af-

fects the whole SPH method by changing the kernel value results and

neighbor searching results. Too small or too big values would cause

instabilities and inconsistencies to the simulation. Kelager (2006) devel-

oped a formulation on this issue however this hasn’t been used in this

implementation. The smoothing length is a user-specified variable for

both of the simulations.

25

4.10 Neighbor Search

Neighbor search is one of the most crucial procedures in SPH method

considering all interpolation equations, A(r), needs the neighbor list for

every particle (refer to equation 3.7). A näıve neighbor searching ap-

proach would end up with a complexity of O(n2). This complexity is not

good enough since it is impossible to reach any interactive speed when

the particle count increases. With an efficient nearest neighbor searching

(NNS) algorithm, it is possible to have a significant performance increase

since it is the most time consuming procedure in SPH computation.

Different algorithms are used for different approaches. In this project,

two different NNS algorithms were implemented: Spatial Hashing and

Hierarchical Tree. Spatial hashing algorithm is mainly referenced on

Teschner et al. (2003) work and hierarchical tree algorithm is mainly ref-

erenced on Paiva et al. (2006) and Hernquist and Katz. The approach

of these algorithms are very different. After testing both of these algo-

rithms, Spatial Hashing was found to be more accurate and more efficient

for this simulation. Therefore, it was used in this implementation.

4.10.1 Spatial Hashing

Spatial hashing is mapping the 3D world to a 1D hash table using a

hash function. This hash function generates hash keys for each “cell” of

the 3D world which allows to reach the cell in constant time. It doesn’t

always provide a unique mapping of grid cells to hash table entries. Grid

cells with same index decreases the performance of algorithm. However,

Teschner et al. (2003) narrowed down this problem using optimized pa-

rameters in their algorithm. This implementation uses multimap con-

tainer of Standard C++ library for the primary hash map which allows

multiple elements to have the same index and make use of this weakness.

26

4.10.1.1 Discretization

In the first pass, the position of the neighbor searching particle, i, is being

discretized with respect to a user-defined cell size, l. The discretization

process is to divide the given coordinates, (x, y, z), by the given cell size

and round down to next integer:

r̂(ri) =
(
brx/lc, bry/lc, brz/lc

)T
(4.27)

4.10.1.2 Hash Function

Using the discretized coordinates,(i, j, k), the hash function maps the

coordinate to a 1D hash index:

h : h = hash(i, j, k). (4.28)

The hash function used in this implementation is the same one defined

in Teschner et al. (2003):

hash(i, j, k) = (i p1 xor j p2 xor k p3)mod n. (4.29)

However the grid cell with same index is being utilised in this implemen-

tation, it is crucial to keep this count as low as possible. p1, p2, p3 are

large prime numbers: 73856093, 19349663, 83492791 respectively and the

value n is the hash table size. Usage of prime numbers is important to

obtain unique index values.

4.10.1.3 Table Size and Cell Size

Teschner et al. (2003) states that larger table size reduces the risk of

mapping different 3D positions to the same hash index. Kelager (2006)

proposes to use

h = prime(2n), (4.30)

n being the number of particles. Ihmsen et al. (2011) also indicates the

approach of choosing the table size two times the number of particles is

27

appropriate.

Grid cell size influences the number of particles that are mapped to

same index value. Therefore, it has the most singificant impact on

the performance than table size or the hash function as mentioned in

Teschner et al. (2003). Both Ihmsen et al. (2011) and Kelager (2006)

proposed to use the smoothing length (section 4.9.5) as the grid cell size.

After having some tests, the grid cell size was set to smoothing length

in this implementation aswell.

4.10.1.4 Particle Queries

In the second pass, the neighbor searching algorithm takes place. Teschner

et al. (2003), Ihmsen et al. (2011) and Kelager (2006) proposes a bound-

ing box based particle query. The same approach is applied in this im-

plementation. After iterating through the bounding box, the same hash

index valued candidates were searched to add to the neighbor list.

A bounding box defined around the particle using the grid cell size.

Two corner points, minimum and maximum were found by adding and

subtracting the cell size from the position of the particle, ri.

BBmin = ri − (h, h, h)T , BBmax = ri + (h, h, h)T (4.31)

After finding the bounding box, an iteration has been done over three

dimensions. At every iteration, the candidate position is being searched

if it’s in the searching radius. The iteration over three dimensions were

made using a float increment value which is used by Priscott (2010).

4.10.1.5 Searching Algorithm

The searching algorithm was implemented as a separate function for

particle query. As mentioned above, multimap of Standard C++ was

used for hash map in this implementation. Given the input candidate

position with a hash index key, hash map has been iterated. If the

candidate already exists in the neighbor list, it passes on next candidate.

28

The checking of existing neighbor particles is done using hash mapping

aswell with one difference. Instead of using a multimap, a normal hash

map of Standard C++ library has been used since unique results were

needed for this procedure. This approach increased the performance

rather than using a dynamic list and iterating through the whole list.

If the candidate is not in the little hash map for existing neighbors, the

distance between the candidate and the current particle is calculated. If

this distance is smaller than the grid size, the candidate is finally pushed

into the dynamic neighbor list of the particle. And the candidate is also

added to the little hash map.

||ri − rj|| ≤ h (4.32)

The complexity of the first pass, creating the hash map, takes O(n) time

since all the vertices are to be evaluated. The particle query complexity

is O(n · q) where q is the average number of vertices per cell.

4.10.2 Hierarchical Tree

Paiva et al. (2006) proposed to use an adaptive hierarchy tree search

to find particle neighbors. Since the simulation takes place in three

dimensions, octree data structure was used in this approach. They used

the work of Hernquist and Katz as their main reference. This approach

was the first NNS algorithm implemented in this project.

An octree structure has been adapted from Macey (b) Octree Demo.

The hierarchy tree is formed with a pre-defined height. The simulation

box is divided recursively into eight pieces, nodes. The nodes at height =

1 are called leaves. Each node has a surrounding box for particle query

which is used to check if the particle is inside the node. Each parent

node, contains the elements that are divided through its children.

The particle is being checked at each level of the tree if it’s intersecting

the node. If it does, descend one level down in that node. After reaching

to leaves, bottom level, particle has been checked if its within the search

29

distance, h. If the particle is in the range, add it to the neighbor list.

Neighbor searching is done when the whole tree has been traversed. The

search distance set to be smoothing length in this implementation.

The complexity of this tree search method is O(nlog(n)), n being

the number of particles. The performance of this algorithm is worse

than Spatial Hashing method. In addition, the results obtained using

this NNS algorithm wasn’t accurate and stable for this implementation.

Therefore as mentioned above, Spatial Hashing method was preferred.

4.11 Integration Methods

After calculating the net force/acceleration on the particle, an integration

is needed to find the new velocity and position. Two basic integration

methods have been implemented in this project: Leap-Frog Method and

Explicit Euler Method.

4.11.1 Leap-Frog

Leap-Frog method is a popular integration method in SPH implemen-

tations. It is a second order method compared to first order Euler in-

tegration. It has a stable behavior for oscillatory motion as long as the

time-step is constant as mentioned by Birdsall and Langdon (2005).

In Leap-Frog integration, the position and velocities are updated at

interleaved time points which means they ’leapfrog’ each other. In order

to find the new velocity and position, the following equations are being

used:

xi+1 = xi + vi∆t+
1

2
ai∆t

2, (4.33)

vi+1 = vi +
1

2
(ai + ai+1)∆t. (4.34)

In order to keep track of the unsynchronized velocity, position and accel-

eration in the implementation; besides the current values, the previous

30

values of velocity, position and acceleration have been kept in each par-

ticle.

4.11.2 Explicit Euler

Euler method is a simple integration method for solving ordinary differ-

ential equations with a given initial value. Given its simple structure, it

is a very unstable integration method. Very small time-steps needed to

be used.

vt+hi = vti + Ft
i

h

mi

, (4.35)

xt+hi = xti + vt+hi h, (4.36)

where vti is the velocity at time t, Ft
i is the net force, xti is the position

and h being the time-step.

4.12 XSPH Velocity Correction

Monaghan (1989) introduced an improvement called XSPH velocity-

correction, to prevent particle inter-penetration which causes stable clus-

ters of particles. Using the following equation after the integration step,

more stable results were obtained.

vi ← vi + ε

n∑
j=1

m

0.5(ρi + ρj)
(vj − vi)W (xij, h) (4.37)

By computing the average velocity from the velocities of the neighboring

particles, the flow of the particles are kept in order. The variable ε is the

correction constant. It’s to be given between [0, 1]. High values create

unrealistic effects on the simulation.

31

Chapter 5

Pipeline

The aim of this project as mentioned in the introduction before, is to sim-

ulate the motion of both Newtonian and Non-Newtonian fluids. There-

fore, the visualisation wasn’t the main focus point. In order to overcome

this, an output file functionality provided to export .txt files. The stand

alone application was assisted with input and output features using a

Houdini Digital Asset. This chapter will explain the features of the both

stand alone application and the Houdini Digital Asset.

5.1 Stand Alone Application

As described in chapter 4, the implementation is done following the works

of Müller et al. (2003) and Mao and Yang (2005a). It was written in C++

and used following libraries: NGL of Macey (a), Boost C++ Libraries

by boo and Eigen C++ Library by B. Jacob.

Used Vec3 class and few demo programs of NGL for OpenGL visual-

isation. Used Boost::ForEach macro in for loops. Used Matrix class of

B. Jacob in the calculations of stress tensor.

The user interface of the application is simple and straight-forward:

OpenGL visualisation is not responsive when the particle count is over

eight thousand particles. Therefore, the functionality to export position

data of each particle is implemented to visualise in a secondary software.

32

Figure 5.1: User Interface of Stand Alone Application

Output files (.txt files) generated to visualise can be found in the output

folder of the project folder.

Houdini digital asset can be used to generate the input fluid .obj

files. This process has been explained in appendix. For the simulation

box, a regular box shaped object can be used as input. However, this

box should be cubic shaped due to the limitation of the boundary box

creation within the implementation.

5.2 Houdini Digital Asset

Houdini Digital Asset is created to assist the existing application. The

application needs .obj files as inputs for both simulation box and the

fluid object. Using the “Points from Volume” node of Houdini, a feature

added in digital asset so the user can create input files easily.

33

In the digital asset, there are three sections: input generator, simula-

tion visualisation and cache out. Input generator can be used to create

proper .obj files with points. Simulation visualisation reads in the .txt

files generated by the stand alone application and allows user to have

simple options on visusalisation. Cache out section is to create .bgeo

files of the scenes to have it ready for later use.

Using the digital asset is straight-forward but will be explained with

images in Appendix.

34

Chapter 6

Results and Analysis

In this section, the results of the simulation will be discussed. Over-

all, Newtonian fluid simulation is working and is giving realistic results.

Improvements can be done to make it more realistic and more efficient.

However, Non-Newtonian fluid simulation is not working as expected.

Analysis of the results will be given with each individual example. Used

OpenVDB features in Houdini to create these simple surfacing of the

particles in some of the examples.

In figure 6.1 and 6.2, the fluid dropped from one side of the simulation

box. Causing it to rush to the other side of the wall and try to balance

itself within the simulation box. At initial drop, the fluid particles that

are located on top hit the bottom boundary as expected while the fluid

particles at the lower area continue to flow to the otherside of the box.

After the initial hit, the fluid flows inside the simulation box causing

a whirlpool-like look which is caused because of the cube shaped box.

Weakly compressible fluid behavior can be seen in this example when

looked at the first impact towards the bottom and the otherside of the

box. Incompressibility algorithms can be implemented to fix this problem

in the future. Sphere obstacles are making the fluid behave accordingly.

And the behavior of fluid to these obstacles are satisfying. More complex

collision detection algorithms for arbitrary objects can be implemented

in the future to test the fluid on different shaped obstacles.

35

Figure 6.1: Fluid being dropped from one side of the simulation box.
Approx. 110k particles.

Figure 6.2: Same test using 3 spheres as collision objects. Approx.
110k particles.

36

Figure 6.3: Low viscosity fluid dropped on a sphere. Approx. 14k
particles.

Figure 6.4: Mid viscosity fluid dropped on a sphere. Approx. 110k
particles.

Figure 6.5: High viscosity fluid dropped on a sphere. Approx. 110k
particles.

In figure 6.3, 6.4 and 6.5, sphere shaped particles representing the

fluid with different viscosity values were dropped on a sphere to observe

the behavior of different viscosity levels after an impact. Low viscosity

fluid particles tend to scatter and separate from each other, while higher

viscosity fluid particles want to stay together. This example has not

surfaced because the particle count was low. High time-step values causes

instabilities in this example because of inaccurate velocity values.

In figure 6.6, the fluid dropped as four identical spheres inside the box.

Causing them to hit the bottom, splash because of the high pressure and

mix. Usage of XSPH velocity correction in this example is the crucial

point because it keeps spheres from scatter and helps them maintain their

shape until they hit the ground. Incompressibility issues can be seen in

37

Figure 6.6: Four identical sphere shaped fluids dropped at the same
time. Approx. 20k particles.

this example aswell. Since the particle count wasn’t high, surfacing has

not applied in this example. However, higher particle count example

would expected to give a similar result.

Figure 6.7: A sphere shaped fluid dropped on top of a box shaped fluid.
Approx. 100k particles.

Another example on multiple fluid objects can be seen in figure 6.7.

Two fluid objects were dropped on each other and caused the fluid to

38

splash. Even though the incompressibility issue still continues in this

example, the results are pleasing.

Figure 6.8: Non-Newtonian fluid behavior. Stress tensor not working
as expected. Model by Christoffer Stai. Approx. 35k particles.

Non-Newtonian algorithms are used in this example. Even though

high elasticity constant was used in this example, the behavior of the

fluid is not how it’s expected. The behavior of the fluid should’ve been

more viscous and there shouldn’t be particle scattering. Viscosity and

stress tensor elements in this example are not working properly. However,

it shows that any arbitrary shaped .obj can be used as an input for the

fluid.

6.1 Known Issues

6.1.1 Non-Newtonian

Implementation of Non-Newtonian fluids are not working properly. Af-

ter investigating and debugging for long hours, it’s been found that the

39

velocity values of the particles are not very accurate. The fluid com-

pressibility is another issue on this topic. Mao and Yang (2005a) used a

modified version of Moving Semi-Implicit method to enforce incompress-

ibility. Which would allow particles to have different response to each

other and therefore, affecting the whole simulation. The papers that

have been followed for the two different types of fluids were using two

different default kernel functions. Changing the kernel functions causes

completely different scaled density values which causes two different test-

ing conditions for two fluid types.

6.1.2 Fluid Incompressibility

As mentioned above, the high pressured areas are running late to push

back the compressing particles. This causes a huge issue on reality of

the simulation. Several different fluid incompressibility techniques were

presented. These techniques will be mentioned in section 7.1.

6.1.3 Efficiency

After running several program profiling on the implementation, it’s been

found that the bottle-neck is the neighbor searching process. Improving

the nearest neighbor search (NNS) algorithms gives better and more

efficient results. As mentioned in section 4.10, it is observed that Spatial

Hashing is more efficient over Hierarchical Tree method.

The smoothing length, h and the number of particles have big influ-

ence on the performance. As Teschner et al. (2003) stated, grid cell size

has the most significant impact on performance. And in this implemen-

tation, the smoothing length is set as grid cell size. Which makes it the

most crucial parameter regarding the efficiency. The particle count has

a direct influence on NNS however the system should be running regard-

less of the dependency on the particle count. Therefore, multi-threaded

implementations or other neighbor searching algorithms can be used to

increase the performance.

40

Chapter 7

Conclusion

The aim of this project was to design and implement a fluid simula-

tion using Smoothed Particle Hydrodynamics. It is designed in a way

to simulate both Newtonian and Non-Newtonian fluids. Even though

these fluids are using different algorithms, their structure is based on

same equation defined by Navier-Stokes. SPH is a popular and power-

ful method to use when simulating fluids however since it was designed

for compressible flow problems, the lack of incompressibility is the one

major drawback, Kelager (2006).

As explained in chapter 6, results of the Newtonian fluids are looking

as expected. Improvements can be done to increase the performance and

to have more realistic results. However, unfortunately the simulation of

Non-Newtonian fluids are not how they were expected. Particle scat-

tering, low stress tensor values are causing the simulation to look like

splashing but highly viscous fluid. XSPH velocity correction was used to

maintain the shape of the fluid and prevent it from scattering but using

high values in correction parameter would take away from the physical

correctness of the the simulation. Other methods like “ghost particles”

can be used to prevent the scattering, Schechter and Bridson (2012).

41

7.1 Future Work

This implementation covers the essential features of a fluid simulation

due to the limited time. However, it is possible to create more realistic,

better looking, faster and more adaptive simulation. Since the aim of

this project was to focus on the motion not the visualisation, the future

work presented in this section is again focusing on the same but more

advanced aspects of this topic.

SPH is a method where each particle is evaluated alone. Therefore,

they dont depend on each other. This allows the method to be im-

plemented using parallel programming. Ihmsen et al. (2014), Harada

et al. (2007), Ihmsen et al. (2011) and Krog and Elster (2012) created

GPU-based fluid simulations. Multi-threaded approach would increase

the performance of the simulations significantly.

Another issue on the performance is the time-steps used in the integra-

tion schemes. High time-step values creates inaccurate results on veloc-

ity and position values which leads to unrealistic simulations. Adaptive

time-stepping is an important topic to increase the efficiency. Desbrun

and Gascuel (1996) and Paiva et al. (2006) proposed a similar solution

for this.

As mentioned in chapter 6, this implementation doesn’t have incom-

pressibility feature. Premoze et al. (2003) proposed a method called

Moving Particle Semi-Implicit method which is adapted to SPH by Mao

and Yang (2005a) that enforces the fluid incompressibility. He et al.

(2012) propose a local Poisson SPH approach and Ihmsen et al. (2014)

recently proposed a pressure projection method to maintain the incom-

pressibility. Adding this feature to the implementation would change the

response of each particle and create more realistic results.

There is only a simple collision detection and response algorithm im-

plemented for this project (boundaries and spheres obstacles). Collisions

with arbitrary objects, scenes would increase the possibilities to test and

help creating better results. Using the same spatial hashing algorithm

that’s been used for neighbor searching, a collision detection algorithm

42

can be created, Teschner et al. (2003).

Heat equations can be implemented for Non-Newtonian fluid calcu-

lations which are proposed by both Paiva et al. (2006), Mao and Yang

(2005b). Thus, the control of elasticity and viscosity would be more sta-

ble and realistic. Oscillations in the velocity field are causing particles to

penetrate or repel each other which causes scattering. In order to pre-

vent this, ghost particles which are proposed by Schechter and Bridson

(2012) or artifical viscosity proposed by Paiva et al. (2006) can be used.

43

Bibliography

Boost c++ libraries. 2015-14-08.

Andrade L. F. d. S., Sandim M., Petronetto F., Pagliosa P. and Paiva

A., 2014. Sph fluids for viscous jet buckling. In Proceedings of the

2014 27th SIBGRAPI Conference on Graphics, Patterns and Images,

SIBGRAPI ’14, Washington, DC, USA. IEEE Computer Society, 65–

72.

B. Jacob G. G. Eigen c++ library. 2015-14-08.

Birdsall C. K. and Langdon A. B., 2005. Plasma physics via computer

simulation. Series in plasma physics. Taylor & Francis, New York.

Originally published: New York ; London : McGraw-Hill, 1985.

Chhabra R. P., 2006. Bubbles, Drops, and Particles In Non-Newtonian

Fluids; 2nd ed. Taylor and Francis, Abingdon.

Clavet S., Beaudoin P. and Poulin P., 2005. Particle-based vis-

coelastic fluid simulation. In Proceedings of the 2005 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’05,

New York, NY, USA. ACM, 219–228.

de Souza Mendes P. R., Dutra E. S., Siffert J. R. and Naccache M. F.,

2007. Gas displacement of viscoplastic liquids in capillary tubes. Jour-

nal of Non-Newtonian Fluid Mechanics, 145(1), 30 – 40.

Desbrun M. and Gascuel M.-P., 1995. Animating soft substances with

implicit surfaces. In Proceedings of the 22Nd Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’95, New

York, NY, USA. ACM, 287–290.

44

Desbrun M. and Gascuel M.-P., 1996. Smoothed particles: A new

paradigm for animating highly deformable bodies. In Proceedings of

the Eurographics Workshop on Computer Animation and Simulation

’96, New York, NY, USA. Springer-Verlag New York, Inc., 61–76.

Ellero M., Kröger M. and Hess S., 2002. Viscoelastic flows studied by

smoothed particle dynamics. J. Non-Newtonian Fluid Mech., 105,

35–51.

Foster N. and Fedkiw R., 2001. Practical animation of liquids. In Pro-

ceedings of the 28th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’01, New York, NY, USA. ACM,

23–30.

Foster N. and Metaxas D., 1996. Realistic animation of liquids. Graphical

Models and Image Processing, 58(5), 471 – 483.

Gingold R. A. and Monaghan J. J., nov 1977. Smoothed particle hy-

drodynamics - Theory and application to non-spherical stars. 181,

375–389.

Goktekin T. G., Bargteil A. W. and O’Brien J. F., 2004. A method

for animating viscoelastic fluids. In ACM SIGGRAPH 2004 Papers,

SIGGRAPH ’04, New York, NY, USA. ACM, 463–468.

Harada T., Koshizuka S. and Kawaguchi Y., 2007. Smoothed particle

hydrodynamics on gpus. Computer Graphics International, 63–70.

He X., Liu N., Li S., Wang H. and Wang G., 2012. Local poisson sph

for viscous incompressible fluids. Computer Graphics Forum, 31(6),

1948–1958.

Hernquist L. and Katz N. TREESPH - A unification of SPH with the

hierarchical tree method.

HyperPhysics . Cohesion and surface tension. http://hyperphysics.

phy-astr.gsu.edu/hbase/surten.html. Accessed: 2015-10-08.

Ihmsen M., Akinci N., Becker M. and Teschner M., 2011. A Parallel SPH

Implementation on Multi-Core CPUs. Computer Graphics Forum.

45

http://hyperphysics.phy-astr.gsu.edu/hbase/surten.html
http://hyperphysics.phy-astr.gsu.edu/hbase/surten.html

Ihmsen M., Orthmann J., Solenthaler B., Kolb A. and Teschner M.,

2014. SPH Fluids in Computer Graphics. In Lefebvre S. and Spag-

nuolo M., editors, Eurographics 2014 - State of the Art Reports. The

Eurographics Association.

Kelager M., 2006. Lagrangian fluid dynamics using smoothed particle

hydrodynamics.

Krog O. E. and Elster A. C., 2012. Fast gpu-based fluid simulations

using sph. In Proceedings of the 10th International Conference on Ap-

plied Parallel and Scientific Computing - Volume 2, PARA’10, Berlin,

Heidelberg. Springer-Verlag, 98–109.

Liu G. R., Liu M. B. and Li S., 2004. smoothed particle hydrodynamics

a meshfree method. Computational Mechanics, 33(6), 491–491.

Lucy L. B., dec 1977. A numerical approach to the testing of the fission

hypothesis. 82, 1013–1024.

M. A. Boda A. S. S. R. A. A., P. N. Bhasagi, 2015. Analysis of kinematic

viscosity for liquids by varying temperature. 4.

Macey J., a. Ngl. 2015-14-08.

Macey J., b. Octreeabstract. 2015-12-08.

Mao H. and Yang Y.-h., 2005a. Particle-Based Non-Newtonian Fluid An-

imation with Heating Effects. Technical report, Department of Com-

puting Science, University of Alberta.

Mao H. and Yang Y.-h., 2005b. Particle-Based Non-Newtonian Fluid

Animation with Heating Effects. Technical report, Department of

Computing Science, University of Alberta.

MIT , 2011. Marine hydrodynamics.

Monaghan J. J., May 1989. On the problem of penetration in particle

methods. J. Comput. Phys., 82(1), 1–15.

Monaghan J. J., 1992. Smoothed particle hydrodynamics. 30, 543–574.

Morris J. P., 2000. Simulating surface tension with smoothed particle hy-

46

drodynamics. International Journal for Numerical Methods in Fluids,

33(3), 333–353.

Müller M., Charypar D. and Gross M., 2003. Particle-based fluid sim-

ulation for interactive applications. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, SCA

’03, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association,

154–159.

Paiva A., Petronetto F., Lewiner T. and Tavares G., october 2006.

Particle-based non-newtonian fluid animation for melting objects. In

Sibgrapi 2006 (XIX Brazilian Symposium on Computer Graphics and

Image Processing), Manaus, AM. IEEE, 78–85.

Paiva A., Petronetto F., Lewiner T. and Tavares G., April 2009. Particle-

based viscoplastic fluid/solid simulation. Comput. Aided Des., 41(4),

306–314.

Premoze S., Tasdizen T., Bigler J., Lefohn A. and Whitaker R. T., 2003.

Particle-based simulation of fluids. Computer Graphics Forum, 22(3),

401–410.

Priscott C., 2010. 3d lagrangian fluid solver using sph approximations.

PukiWiki . http://www.slis.tsukuba.ac.jp/~fujisawa.makoto.fu/

cgi-bin/wiki/index.php?SPH%CB%A1%A4%CE%BD%C5%A4%DF%B4%D8%

BF%F4. Accessed: 2015-10-08.

Raveendran K., Wojtan C. and Turk G., 2011. Hybrid smoothed

particle hydrodynamics. In Proceedings of the 2011 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’11,

New York, NY, USA. ACM, 33–42.

Reeves W. T., April 1983. Particle systems—a technique for mod-

eling a class of fuzzy objects. ACM Trans. Graph., 2(2), 91–108.

Schechter H. and Bridson R., 2012. Ghost sph for animating water. ACM

Transactions on Graphics (Proceedings of SIGGRAPH 2012), 31(4).

Stam J., 1999. Stable fluids. In Proceedings of the 26th Annual Confer-

ence on Computer Graphics and Interactive Techniques, SIGGRAPH

47

http://www.slis.tsukuba.ac.jp/~fujisawa.makoto.fu/cgi-bin/wiki/index.php?SPH%CB%A1%A4%CE%BD%C5%A4%DF%B4%D8%BF%F4
http://www.slis.tsukuba.ac.jp/~fujisawa.makoto.fu/cgi-bin/wiki/index.php?SPH%CB%A1%A4%CE%BD%C5%A4%DF%B4%D8%BF%F4
http://www.slis.tsukuba.ac.jp/~fujisawa.makoto.fu/cgi-bin/wiki/index.php?SPH%CB%A1%A4%CE%BD%C5%A4%DF%B4%D8%BF%F4

’99, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.,

121–128.

Teschner M., Heidelberger B., Müller M., Pomeranets D. and Gross M.,

2003. Optimized spatial hashing for collision detection of deformable

objects. Proceedings of Vision, Modeling, Visualization VMV03, 47–

54.

48

Appendix A

Appendix

A.1 HDA User Guide

As mentioned in chapter 5, this implementation has a Houdini Digital

Asset extension. This digital asset is used to help create both input

and output files. This guide will go over a quick look into this asset.

The digital asset consists of three sections: input generator, simulation

visualisation and cache out.

Figure A.1: Input Generator Tab in HDA

In this tab, user can upload an arbitrary .obj file as object to converted

49

into particles. The geometry loaded through connecting the related node

to the asset’ input node. Point separation will change the distance be-

tween neighboring particles. Jitter scale feature changes the placing of

the particles. By looking at the particle count, user can track the amount

of particles that are generated through the process. By pressing the Ex-

port button, particles will be exported as an .obj file relative to the given

path.

Figure A.2: Simulation Visualisation Tab in HDA

User can visualise the outputs generated by the stand alone applica-

tion using this tab. First, the input .txt file sequence must be inserted to

file path. Then the visualisation type can be selected between particles,

spheres (replacing the particles) and surface (using OpenVDB feature

in Houdini for this). Collision scenario is to visualise the spheres that

created for collision in the implementation.

User can export the scene as a .bgeo sequence using this tab. It’s

using a ROP Solver to render out the data.

50

Figure A.3: Cache Out Tab in HDA

51

	Table of contents
	List of figures
	Abstract
	Introduction
	Related Work
	Computational Fluid Dynamics
	Particle-Based vs Grid-Based Methods
	Particle-Based Method
	Grid-Based Method
	Lagrangian Grid
	Eulerian Grid

	Navier-Stokes Equations
	Smoothed Particle Hydrodynamics

	Implementation
	Design
	Algorithm
	Newtonian Fluid
	Non-Newtonian Fluid

	Mass - Density
	Mass
	Density

	Pressure
	Viscosity
	External Forces
	Gravity
	Collision Forces

	Surface Tension
	Stress Tensor
	Smoothing Kernels
	Poly6 Kernel
	Spiky Kernel
	Viscosity Kernel
	Spline Kernel
	Smoothing Length

	Neighbor Search
	Spatial Hashing
	Discretization
	Hash Function
	Table Size and Cell Size
	Particle Queries
	Searching Algorithm

	Hierarchical Tree

	Integration Methods
	Leap-Frog
	Explicit Euler

	XSPH Velocity Correction

	Pipeline
	Stand Alone Application
	Houdini Digital Asset

	Results and Analysis
	Known Issues
	Non-Newtonian
	Fluid Incompressibility
	Efficiency

	Conclusion
	Future Work

	References
	Appendix
	HDA User Guide

