
Position Based Dynamics

Pieterjan Bartels

Researching and Implementing a Particle-Based Unified

Physics Library.

August, 2015

Contents

Table of contents . i

List of figures . iii

Abstract . v

1 Introduction 1

2 Related Work 4

3 Mathematical and Physical Framework 7

3.1 Algorithm Outline . 7

3.2 Constraint types . 16

4 Software Design & Implementation 26

4.1 Class Diagrams . 26

4.2 Discussion . 27

4.3 Implementation . 35

5 Results & Discussion 40

5.1 Included effects & functionality 40

5.2 Performance . 41

5.3 Limitations & Future Work 46

5.4 Adaptive Position Based Dynamics 53

6 Conclusion 58

References 59

A Glossary 62

B Default SimulationElementBuilders 68

i

C Basic Application Manual 73

C.1 XML skeleton . 73

C.2 Simulation Parameters 75

C.3 Particles Parameters . 76

C.4 Example . 77

ii

List of Figures

3.1 Need for pre-stabilization 16

3.2 Different types of deformations as in (Müller et al. 2005) 23

4.1 Diagram: Core of the Position Based Dynamics Library . 28

4.2 Diagram: Inheritance diagram of all existing constraints. 29

4.3 Diagram: Inheritance diagram of all existing SimulationEle-

mentBuilders. 30

4.4 Diagram: Inheritance diagram of ExternalForces and Col-

lisionObjects. 31

4.5 Diagram: Class diagram of class involved in setting up

simulations. 31

4.6 The Houdini set-up for reading in results. 39

5.1 A rigid body pulled by an animated rope, moving through

a pile of sand. 41

5.2 Six rigid bodies colliding with an object consisting of tri-

angles. 42

5.3 A body deforming under the weight of another object. . 42

5.4 Rigid bodies falling onto a piece of cloth. 43

5.5 A set of hairs connected to a head (a sphere). 43

5.6 The effect of the amount of solver iterations. 47

5.7 Friction for different solver iterations. 48

5.8 Slow error propagation. 49

5.9 Particle flickering. 50

5.10 Constraint averaging. 51

5.11 Motivation for adaptive PBD 53

5.12 Adaptive Position Based Dynamics results 55

iii

5.13 Regular PBD in the connected test-case 56

5.14 Adaptive PBD in the connected test-case 56

iv

Abstract

In this thesis, a position based dynamics library is developed. It re-

views academic research literature focused on this class of algorithms,

and extracts the mathematical equations necessary to implement these

techniques. It then goes on to give the details of the software imple-

mented by the author, and its results. The resulting library is capable

of simulating several types of effects: rigid and deformable bodies, cloth,

granular material, hair and fluids. The project was also made thread-safe

and implemented in parallel. After analysing the results of the imple-

mentation, an original improvement to the Position Based technique is

proposed, and the results of an experimental implementation of this im-

provement are presented.

Keywords: Physical Simulation, Position Based Dynamics, Unified

physics

v

Chapter 1

Introduction

This report describes the masters project made by the author. This sec-

tion will introduce the project and its goals, and then outline the rest of

the thesis.

Problem statement

One of the core jobs of the Visual effect industry is providing films with

simulated versions of physical phenomena that are either too expensive

or just practically impossible to actually film. Several different phenom-

ena that are ubiquitous in human life have been extensively researched

in the Computer Graphics literature in the last few decades. some ex-

amples of well-researched simulation topics are cloth, granular material,

fluids, smoke, rigid bodies, ... (Parent 2012)

An obvious research goal for such simulations is accuracy, i.e. creat-

ing a simulated version of a phenomenon that is as close to the real-life

thing as possible. However, the simulations for visual effects are often

on a massive scale, and since creating these effects usually happens in a

commercial environment, the algorithms should be as efficient as possi-

ble, so as to ensure a smooth pipeline when working towards deadlines.

1

It is easy to see these two goals typically form a trade-off, and different

classes of simulation algorithms can be found in different places in the

spectrum between efficiency and accuracy.

This thesis is concerned with a class of simulation algorithms that

is located towards the efficiency end of said spectrum: Position based

dynamics (PBD). These algorithms have gained a lot of attention in the

past years, especially in interactive environments, because they are un-

conditionally stable and provide plausible, yet inaccurate, results. The

stability allows large time-steps, making them efficient. Given the rise of

multi-processor computers in the last decade or so, an algorithm aiming

to be as efficient as possible should allow making use of these multiple

processors. Many recent position based dynamics publications mention

parallelism.

As mentioned, different algorithms exist for different phenomena. How-

ever, in reality these phenomena interact with one another. For example

a piece of cloth or a rigid body floats on water, and creates splashes and

waves in the fluid simulation of the water. Most of the research litera-

ture makes little or no mention of these interactions, but some research

is specifically focused on them, be it one particular type of interaction

or trying to incorporate all interactions (also called unified physics).

Due to the capabilities of the PBD technique, and its relative novelty,

researching it and implementing a library based on it was deemed a

suitable subject for the author’s masters project. Given the mentioned

considerations, the main goals of this project were the following:

• Researching how to implement and effectively implement a dynam-

ics library based on the position based dynamics idea. These two

goals, researching and implementing, are intertwined: implement-

ing should be a means of researching and analysing the techniques

described in literature.

2

• Implement it in a parallel manner, meaning that it makes as much

use as possible of the available computing power.

• Have the library include at least a couple of different phenomena

and their interactions.

• Ideally, the library should also be extensible: adding new types

of phenomena should be easy, and should adhere the open/closed

principle: Extending the author’s library should be possible with-

out modifying the author’s software.

• While the extensibility was specifically mentioned, the end result

should ideally follow all principles of good software engineering and

be well-designed code.

Structure

The rest of this document will describe the authors efforts towards the

given goals, and his results. The next chapter, chapter 2, will give a

concise overview of related work in the research literature. This will be

the base for chapter 3, which will explain the mathematics and physics

of the different phenomena and how they were simulated in the project.

This chapter will present pseudo-algorithms representing the inner work-

ing of the resulting library. The following chapter, chapter 4, will outline

the library’s code design and the work-flow used for achieving the final

result. Any problems that were encountered during implementation will

be shown, and any crucial decisions in the project will be highlighted.

Chapter 5 then shows the results of the project. After analysing these

results, this chapter shows the results of an original improvement to

PBD. This improvement is discussed in section 5.4 specifically. Chapter

6 concludes.

3

Chapter 2

Related Work

Physical simulation has been a popular topic of research in the CGI

community. Position based dynamics algorithms specifically have been

growing in popularity over the last few years, and the list of publica-

tions related to this class of algorithms grows ever longer. This section

aims to concisely review the work most relevant to this project. Due

to the growing popularity of this class of algorithms, an exhaustive re-

view of all previous work on PBD, let alone physical simulation, is out

of scope. For an overview of the multitudes of other existing physical

simulation algorithms and research, we refer to Parent (2012). For PBD

specifically, Bender et al. (2014) and Bender et al. (2015) provide good

and very recent overviews of the existing techniques and limitations, and

have served as the main guides for this project as well, besides Macklin

et al. (2014).

Position based dynamics was first introduced by Jakobsen (2001).

They introduce a cloth system based on constraints rather than springs

to keep particles at a certain distance. The constraints are iteratively

applied to the system, hoping this will result in a state were all con-

straints are (close to) satisfied. The advantage of this technique over

a mass-spring model is its stability when taking large time-steps, and

the technique is specifically aimed at an interactive setting (i.e. com-

puter games). On top of so called spring constraints, he also introduces

4

constraints to deal with collisions: particles are kept inside a box (by

keeping them within a certain range per dimension), are projected out

of objects and are kept a certain distance away from each other (to avoid

self-intersection).

Building on this, Müller et al. (2007) formalize Position Based Dy-

namics. They provide a mathematical framework for the constraints,

including constraint weights, and a solver-algorithm that is independent

of the type of constraints. This opened the door for new constraint types

simulating different effects, where PBD’s constraint solver could serve as

a unified solver. They recognise that position based dynamics sometimes

suffers from slow convergence due to slow spatial propagation of errors,

and follow it up with Hierarchical Position Based Dynamics to counter

this (Müller 2008). Follow-up work then introduced more constraints,

and thus effects, to PBD. These new constraints usually build on al-

ready existing techniques.

Rigid bodies were introduced to PBD by Deul et al. (2014), build-

ing on the connectors from Witkin et al. (1990). However, as shown by

Müller et al. (2005) it is also possible to do rigid body dynamics (RBD),

and deformable objects, by using shape matching. Macklin et al. (2014)

use these shape matching techniques for particle-based non-convex rigid

bodies. This led to shape matching constraints for PBD. The latter ap-

proach was preferred for this project. Shape matching can also be used

to simulate deformable object (Müller et al. 2005), providing two effects

with one technique. Other solids, including cloth, have been proposed or

improved separately as well. An overview is given in Bender et al. (2013).

Even fluids have been simulated with PBD. Macklin and Müller (2013)

enforce incompressibility using a pressure constraint per fluid particle,

based on the standard SPH formulas. They also provide ways to cor-

rect negative pressure at boundaries and to provide vorticity confinement

(Macklin and Müller 2013).

5

Granular materials require friction to be simulated correctly (Jaeger

et al. 1996). These have also been simulated with PBD. One alternative

is to use the ideas of Bell et al. (2005), who simulate granular materials

using small Rigid Bodies. The friction is then implied in the rigid body

interaction. However, in PBD friction has been often modelled by damp-

ing the velocities post constraint solving (Müller et al. 2007). Recently

the friction has been placed inside the constraint solving loop by Macklin

et al. (2014), with a specific friction constraint.

As was mentioned, PBD was introduced for its stability. With the

rise of multi-core computers, algorithms aimed at interactive applica-

tions would ideally take advantage of this increase in computing power.

Position based dynamics can be implemented in a multi-threaded fash-

ion, as was recently shown by Macklin et al. (2014). In order to do so

efficiently, the algorithm is slightly modified from Gaussian iterations to

Jacobi-style iterations, meaning that each constraint is solved indepen-

dently.

On top of focusing on multi-threading, Macklin et al. (2014) also aim

to simulate every thing using particles. Because of the generality of the

PBD solver, and all effects being particle-based, their technique turns

out to be an elegant unified physics algorithm, that is also easy to par-

allelize. For this reason, Macklin et al. (2014) was used as the main

reference for this project. As a result, the resulting library described

in the next chapters will not only be a unified, position based physics

library, but will also be particle-based .

6

Chapter 3

Mathematical and Physical

Framework

This chapter will introduce the main mathematics and algorithms that

were implemented in this project. It will build on the papers mentioned

in the previous chapter, picking out the parts that were implemented for

the project and referencing them accordingly.

3.1 Algorithm Outline

This section outlines the general idea and maths behind position based

dynamics. For this, we mostly follow the notation of Müller et al. (2007)

and Bender et al. (2015).

In general terms, position based dynamics is a technique for calculat-

ing the movement of a set of vertices through 3D space (Müller et al.

2007). This movement can be caused by external or internal forces on

these vertices. In order to know the position and velocity of these ver-

tices, we integrate the net force on them, since force is related to acceler-

ation, the second derivative of position, as dictated by Newton’s second

law:

a =
Fnet
m

(3.1)

7

where a is the acceleration of the vertex, Fnet the net force on the vertex,

with the net force being the sum of the internal forces and the external

forces Fnet = Fint + Fext. Finally, m is the mass associated with the

vertex.

The external forces are usually easy to apply, e.g. gravity, wind,

drag, ... The difference between different simulation methods is how

they model and calculate the internal forces. A simple example are mass-

spring systems, where the internal forces on the vertices or particles are

represented with linear springs. Several other models for the internal

forces exist, but most of them are either slow or unstable (or both).

Constraints In position based dynamics the problems associated with

internal forces are avoided by replacing them by so-called constraints

that work directly on the position rather than being added to the net

force. Hence, in PBD, the vertex positions are updated through simple

integration of the external forces, and those positions are then directly

subjected to constraints, which are functions of the positions themselves

(Müller et al. 2007).

This project was based on the work of Macklin et al. (2014), which is

purely with particle-based. As particles have no orientation, the notation

in what follows does not mention a rotational component: for example,

constraints will be functions of the particle positions only, not their ori-

entation. For a more general notation including rotation, we refer to

Bender et al. (2015). Hence in this thesis we represent constraints on

systems with N particles as follows (notation from Müller et al. (2007)):

C(x1, x2, ..., xn) = 0 (3.2)

or

C(x1, x2, .., xn) ≥ 0. (3.3)

All constraints are in one of these formats, called equality of inequality

8

constraints respectively. The position of particle i is represented by xi.

For readability purposes, constraints are sometimes also represented as:

C(p) � 0 (3.4)

where p is the vector obtained by concatenating xi of particles 1 to N.

The symbol � is used to represent both = or ≥. This gives a short nota-

tion for both kinds of constraint. Note that while in general constraints

are functions of all particle positions, most constraint types work on a

limited number of particles.

Since PBD solves the constraints individually, it basically turns the

problem into many under-determined single scalar equations of the fol-

lowing form (Müller et al. 2007):

C(p+ ∆p) � 0. (3.5)

Expressed in words this comes down to finding the correction ∆p to

the positions p of the system that makes the system satisfy the con-

straint. Since the system is under-determined, the constraints are lin-

earized (Bender et al. 2015):

C(p+ ∆p) ≈ C(p) +∇C(p) ·∆p � 0, (3.6)

and then a solution ∆p is found along the direction ∇C(p), bringing the

amount of unknowns in the equation down to one Lagrange multiplier

λ. The equation is hence no longer under-determined.

The Lagrange multiplier then has to be so that the correction ∆p of

the form (Bender et al. 2015)

∆p = λM−1∇C(p) (3.7)

satisfies Equation (3.6). These simplifications lead to the correction for

9

a particle i affected by the constraint:

∆xi = −λwi∇xiC(p) (3.8)

where ∇xiC(p) is the gradient of C(p) according to a change in position

xi, wi is the inverse mass of particle i and

λ =
C(p)

Σj|∇xjC(p)|2
. (3.9)

Where j iterates over all particles affected by the constraint. Sometimes

a multiplier k is added to the right side of Equation (3.8). This acts as

constraint weight, and is supposed to be set by the user in the interval

[0, 1].

In conclusion, to update one particle i by one constraint, one has to

calculate the particle-independent λ as in Equation (3.9) (which is the

same for all particles), and a particle-dependent gradient ∆xiC(p), and

combine them as in Eq. (3.8).

Solver In most systems, several constraints need to be applied. In early

work, all constraints were processed sequentially, updating the position

of the particles after every constraint (Müller et al. 2007). Since a con-

straint might invalidate an earlier processed one, the group of constraints

is iterated over, and all constraints are solved several times, every time

in the same order. This way of solving the constraints is called Gauss-

Seidel iterations, and can be proven to converge to a correct solution

(Müller et al. 2007). However, a significant amount of iterations might

be needed to arrive at a converged solution and in practice convergence

isn’t always reached.

It it important to note that the order of the constraints is important.

Since the last constraint to be processed is sure to be satisfied (i.e. no

other constraint can come in and invalidate it), it possible to prioritize

the constraints by ordering them. When processing the more important

10

ones last, they are more likely to be satisfied (Bender et al. 2015).

As is rightfully pointed out by Macklin et al. (2014) and Macklin and

Müller (2013), this process is inherently sequential. All constraints need

to be processed in the same order every iteration, and multi-threading is

therefore difficult. Macklin et al. (2014) solve this problem by working

with Jacobi iterations rather than Gauss-Seidel iterations. This means

that rather than updating the position immediately after every con-

straint, the corrections ∆p are all computed based on the same position

and accumulated before actually applying them to the particle at the

end of the iteration. This allows PBD to take advantage of the compu-

tational power of modern computers with multiple cores.

Macklin et al. (2014) note that accumulating the corrections may lead

to situations that will not converge to a correct solution. For this reason,

the corrections are averaged in every iteration, and the total correction

∆xi for particle i in one iteration becomes:

∆xi =
Σj∆xij
n

(3.10)

where n is the amount of constraint that affect i and ∆xij is the cor-

rection of the position of i by constraint j (with j going from 1 to n).

This averaging is sometimes too severe, bringing down the convergence

rate. For this reason, Macklin et al. (2014) proposes introducing over-

relaxation to Equation(3.10):

∆xi =
ω

n
Σj∆xij (3.11)

where ω is a user-defined parameter controlling the amount of over-

relaxation. Macklin et al. (2014) reports 1 ≤ ω ≤ 2 to work well.

An issue with Jacobi iterations is that it makes it impossible to prior-

itize the constraints, as their processing order is now no longer guaran-

teed. To allow prioritized constraints, Macklin et al. (2014) groups the

11

constraints. These constraint groups are ordered according to their pri-

ority, parallelized separately and the position of the particles is updated

after each group rather than after every iteration.

Algorithm Overview The above considerations result in the algo-

rithm as in listing 1 being implemented in the project. This pseudo-

code algorithm strongly resembles similar listings in Müller et al. (2007);

Macklin et al. (2014); Bender et al. (2015).

12

1 foreach Particle i do

2 vi ← vi + ∆tfext(i);

3 x∗i ← xi + ∆tvi

4 end

5 foreach Particle i do

6 find Neighbouring Particles Ni(x
∗
i);

7 find Environment contacts;

8 generate collision constraints;

9 end

10 for i← 1 to solverIterations do

11 foreach ConstraintGroup G do

12 foreach Particle i do

13 ∆xi ← 0, ni ← 0;

14 end

15 foreach Constraint C in G do

16 foreach Particle i affected by C do

17 Solve Constraint for i;

18 Add result to ∆xi and increment ni;

19 end

20 end

21 foreach Particle i do

22 x∗i ← x∗i + ω∆xi
ni

;

23 end

24 end

25 end

26 foreach Particle i do

27 update velocity vi ← x∗i−xi
∆t

;

28 update position xi ← x∗i or apply particle sleeping;

29 end

Algorithm 1: Simulation loop of Position Based Dynamics

(pseudo-code)

13

Giving an overview of the steps in Algorithm 1:

• Lines 1-4: The external forces fext(i) on the particles are integrated

with explicit euler integration, with timestep ∆t. Note that parti-

cle’s position is not immediately updated. The resulting position

is stored in a second variable called the predicted or proposed posi-

tion x∗i (Macklin et al. 2014). The particle’s velocity vi is updated

as well.

• Lines 5-9: The particles are checked for collisions with other parti-

cles and environment objects. Collision constraints are generated

accordingly, and temporarily added to the constraint groups.

• Line 10: The outer loop of the solver, where solverIterations is the

amount of Jacobi iterations to perform. The ideal value depends

on the simulation and should be user settable.

• Line 11: As explained earlier, the constraints are grouped and the

particles are fully processed per constraint group.

• Line 12-14: The accumulators of the particles, ∆xi and ni, are set

to zero.

• Line 15-19: The constraints are solved and the results added to the

accumulators. Note that this loop is presented in the constraint-

centric approach. One could also write a particle-centric loop

(Macklin et al. 2014), provided one can easily find the constraints

affecting one particular particle. Note that the particle-centre ap-

proach allows rewriting the three loops in lines 12-23 into one larger

loop.

• Line 21-23: The particle’s proposed position is updated with the

averaged accumulated correction. Note that over-relaxation is ap-

plied as well, by multiplying with ω.

• Lines 26-29: The particle’s position xi and velocity vi are updated

with the computed proposed position x∗i .

It is important to note that all of the calculations are done on a sec-

ond variable, the proposed position, before they are applied to the actual

14

particle’s position. It is hence important to keep in mind to work with

the proposed position when implementing constraints.

Macklin et al. (2014) gives one exception to the rule of always working

with the proposed position. In between the application of the external

forces and the constraint solve, they place a pre-stabilization. This means

that the contact constraints are solved with the positions at the start of

the time-step rather than the proposed position. Any deltas computed

are applied to both the actual position and the proposed position, but

the velocity is not updated. Adding this to the solver loop would mean

adding the pseudo-code in algorithm 2 in between line nine and ten of

algorithm 1.

1 for i← 1 to solverIterations do

2 foreach Particle i do

3 ∆xi ← 0, ni ← 0;

4 end

5 foreach Collision Constraint C do

6 foreach Particle i affected by C do

7 Solve Constraint for i with xi instead of x∗i ;

8 Add result to ∆xi and increment ni;

9 end

10 end

11 foreach Particle i do

12 xi ← xi + ω∆xi
ni

;

13 x∗i ← x∗i + ω∆xi
ni

;

14 end

15 end

Algorithm 2: pre-Stabilization loop as by Macklin et al. (2014)

(pseudo-code)

This pre-stabilization is to ensure that any unsatisfied constraints in

the previous time-step can not propagate into a high velocity away from

the contact, as explained in Figure 3.1. This method of pre-stabilization

15

Figure 3.1: This particle is clearly in an invalid state at timestep t = 0.
Without pre-stabilization, this will be corrected in the following time-step,
but the velocity will be upwards. Consequently, it seems to fly upwards
for no reason at the following time-step (t = 2). Image by Macklin et al.
(2014).

removes a lot of the visible errors that would otherwise occur in a con-

straint solve with a low amount of solver iterations. This way it increases

performance by allowing lower solver iteration counts. Pre-stabilization

was also implemented in the project.

In the next section, the constraints are presented with xi, but need to

be computed with the proposed position x∗i , as explained.

3.2 Constraint types

The framework explained in the previous subsection allows simulating

a wide range of effects, provided we have the right constraints to simu-

late them. In this section, the constraints that were implemented in the

project will be explained. For a full overview of existing constraints, we

refer again to Bender et al. (2014).

16

Fixed Position Constraint We start out with the easiest example:

a constraint that fixes a particle i at a particular position p. The easiest

way to calculate the correction of the position xi necessary is:

∆xi = p− xi, (3.12)

so that xi + ∆xi = xi + p− xi = p. As said earlier, in practice this will

be calculated with the proposed position, but that is beside the question

in this section.

However, we would like the calculations to fit Equation (3.8), which

requires the calculation of λ and ∇C(p). This is again fairly easy as the

direction ∇C(p) is simply the direction from xi to p:

∇C(p) =
p− xi
||p− xi||

(3.13)

and λ is the distance between them. However, λ also needs to incorporate

the mass mi of the particle, and be negated, to cancel out wi and the

−1 factor in Equation (3.8):

λ = −mi||p− xi||. (3.14)

Substituting these into Eq. (3.8) gives the right answer again:

−−mi||p− xi||wi
p− xi
||p− xi||

= mi
1

mi

(p− xi) = p− xi (3.15)

This simple constraint can be of great value. By updating the goal

position p every frame, one such constraint is a very simple means of

animating a particle. This is particularly useful for simulating cloth and

strands attached to an animated object.

Distance Constraint A step up from the fixed position constraint is

the distance constraint. This constraints mimics a linear spring force in

the classic mass-spring model: its goal is to keep two particles p1 and p2

on a particular distance d.

17

As pointed out by Bender et al. (2015), such a constraint can be

formulated as follows:

C(x1, x2) = |x1 − x2| − d. (3.16)

Here xi is the position of particle pi. Note that this constraint can be

either used as an equality constraint, where the particles are supposed

to be at that exact distance d, or as an inequality constraint, where the

particles stay within a certain distance from each other (or a certain dis-

tance away from each other, depending on the formulation). In order to

mimic the classic spring, it is usually implemented as an equality con-

straint, and so it is in this project.

Again, looking to evaluate Equation (3.8), we calculate the gradients

with respect to the particle positions (Bender et al. 2015)

∇x1 =
x1 − x2

|x1 − x2|
(3.17)

and ∇x2 = −∇x1 . Additionally we calculate λ as:

λ =
|x1 − x2| − d
w1 + w2

, (3.18)

with wi still the inverse mass of particle pi.

It is interesting to add that, as is noted by Bender et al. (2015), filling

these into Eq. (3.8) results in:

∆x1 = − w1

w1 + w2

(|x1 − x2| − d)
x1 − x2

|x1 − x2|
(3.19)

and

∆x2 =
w2

w1 + w2

(|x1 − x2| − d)
x1 − x2

|x1 − x2|
. (3.20)

Which are exactly the corrections proposed for the spring constraint in

the original PBD publication (Jakobsen 2001). It is important to note

18

that these constraints need a large amount of solver iterations to appear

stiff.

Collision Constraints This is more of a category than one particu-

lar type of constraint. First of all, most particles are not supposed to

intersect with each other (although there are exceptions, e.g. a fluid).

Second, most simulations happen in an environment, and the particles

should respond to that environment in an appropriate manner.

Collision constraints are generated at the start of every simulation

step, as can be seen in Lines 5 to 9 of the algorithm in listing 1. Be-

fore generating such constraints, the collisions need to be detected. For

particle-particle interaction this is fairly easy, since the distance can sim-

ply be compared to the sum of the two radii. However naive implemen-

tations are usually too slow because of the O(n2) complexity, with n the

number of particles. The fundamentals of spatial hashing techniques are

not discussed as these are very common. However, such a technique was

implemented for the project, as explained in the next chapter. For the

collisions with the environment, the detection depends on the type of

elements used for the environment. Typical examples are simple infinite

planes and triangle meshes. Both were implemented for the project.

Once collision has been detected, a constraint is generated to solve

the conflict. For particle-particle interaction, between particle p1 and p2,

one can easily introduce an inequality version of the distance constraint

from the previous paragraph (Bender et al. 2015):

C(x1, x2) = |x1 − x2| − (r1 + r2) ≥ 0 (3.21)

with xi the position of particle pi, and ri the radius. In words: the dis-

tance between the two particles needs to be greater than or equal to the

sum of the radii.

19

For the two forms of environment elements, the same collision con-

straint can be introduced (Bender et al. 2015). If the particle collides

with an infinite plane or a triangle when moving from its position to its

proposed position, an infinite plane constraint is generated, as this works

for both cases. This constraint aims to keep the particle on the same

side of an infinite plane throughout the time-step (Bender et al. 2015):

C(x) = nTx− drest ≥ 0. (3.22)

Here x is the position of the colliding particle, n is the normal on the

infinite plane and drest is the distance along that normal between the

plane and the origin. Note that this distance should include the radius

of the colliding particle on top of the distance in the plane’s definition.

Otherwise the particle’s center will be kept at that distance.

Friction Constraint Most materials have some kind of friction when

the interact with each other, and it should hence be included in simula-

tion. Friction is particularly important for simulating granular materi-

als, as their behaviour is largely due to the friction between their grains

(Jaeger et al. 1996).

whereas some authors have included friction in PBD using a post-

process (Müller et al. 2007), Macklin et al. (2014) proposed a constraint

to provide friction. This places friction in the constraint loop, allowing

for particle piles with high angles of repose, a typical phenomenon seen

in granular materials.

Macklin’s friction constraint is supposed to be processed after the

collision constraints (i.e. placed in a later constraint group), and aims

to take some of the relative tangential displacement away. They start by

calculating said displacement between particles p1 and p2:

∆x⊥ = ((x∗1 − x1)− (x∗2 − x2)) ⊥ n. (3.23)

20

xi and x∗i are the position at the start of the time-step and the cur-

rent proposed position respectively. The vector n is the contact normal
x∗i−x∗j
|x∗i−x∗j |

, and the ⊥ means only the part perpendicular to n is retained.

The correction for particle p1 is then (Macklin et al. 2014):

∆x1 =
w1

w1 + w2

∆x⊥ |∆x⊥| < µsd

∆x⊥ ·min(µkd
|∆x⊥|

, 1) otherwise
(3.24)

with µk, µk the static and kinetic friction coefficients, and d the interpen-

etration distance. The correction for p2 is similar but with the weighting

for w2 and the result negated.

Rigid and Deformable Bodies Some different ways of simulating

rigid bodies exist. A simple one that would easily fit the PBD framework

is connecting vertices of the mesh with distance constraints. However as

mentioned, these constraints need many iterations to be stiff. Stiffness

if an absolute necessity for rigid bodies. Deul et al. (2014) introduce a

position based RBD simulator but this doesn’t fit in the particle-based

framework we have in mind for this project.

Therefore, shape-matching constraints are used by Macklin et al. (2014).

These were originally introduced by Müller et al. (2005). In this tech-

nique particles are generated evenly within the mesh to represent the

shape. These particles are then simulated independently through all the

other forces and constraints, with particle collision between particles of

the same rigid body turned off. The shape-matching constraint then

brings the particles back into the shape of the rigid body. It is clear the

shape-matching constraint has a high priority and has to processed as

one of the last constraints, to ensure the rigid body shape to be intact.

This

Bringing the positions back into the shape involves finding the least

21

squares mapping from the deformed state to the correct state. Macklin

et al. (2014) use following correction for a particle i:

∆xi = (Qri + c)− xi. (3.25)

Which means that the proposed position is interchanged with (Qri + c),

the goal position, putting the particle back in the original shape. Here c

is the center of mass of the particles in the deformed state and ri is the

offset of pi from the mass center in rest configuration. The matrix is Q

is the rotational component of the polar decomposition of A, where A is

computed as:

A = Σn
i (xi − c) · rTi (3.26)

Note that · here represents the outer product, and this formula hence

results in a 3 by 3 matrix.

In conclusion, this technique avoids having to store rotational values

for the rigid bodies and (discrete) rigid body collisions are included au-

tomatically through the particle collision system in the PBD framework.

It is hence a very simple way of implementing rigid body dynamics.

Due to the discrete collision detection, inter-locking may occur (Mack-

lin et al. 2014). A simple way of improving this slightly is making the

particles slightly overlapping, which is possible since collisions between

particles belonging to one body are ignored during the collision gener-

ation. A better way of avoiding interlocking is introduced by Macklin

et al. (2014), and comes down to storing signed distance field information

on the particles. This technique was implemented in the project but not

thoroughly tested. The current default of the system is to rely on the

particle-particle collision detection.

As said earlier, shape matching was introduced by Müller et al. (2005).

They intended the technique to be used not only for rigid bodies, but also

for deformable ones. They provide different ways of adding deformations

22

Figure 3.2: Different kinds of deformations as introduced by Müller
et al. (2005), compared to rigid body behaviour. The cubes are marked in
accordance with their deformation behaviour (quadratic, linear or rigid).
Image by Müller et al. (2005).

to the above technique. The simplest one, which can only be used for

small deformations, is introducing a multiplier α in Equation (3.25):

∆xi = α ∗ ((Qri + c)− xi). (3.27)

The effect is that the particle will be placed somewhere in between its

deformed and goal position. The factor α (∈ [0, 1]) controls the amount

of deformation. Note however that this very sensitive to the amount of

solver iterations, as will be shown in the implementation as well.

Two type of deformations that allow bigger deviations from the base

shape are presented by Müller et al. (2005) as well: linear and quadratic

deformations. The difference between the two is illustrated in Figure 3.2.

The linear one is again fairly simple, but can only represent shear and

stretch. The matrix Q in Eq. (3.25) is replaced by a linear combination

of Q itself and A, where A is:

A = (Σn
i (xi − c) · rTi)(Σn

i ri · rTi) (3.28)

The combination of Q and A is controlled by another control parameter

β, and the final matrix is βA+(1−β)Q. Again, β is in the interval 0 to 1.

Quadratic deformations, while visually more interesting, are math-

ematically a bit more involved. The goal position gi (the position of

particle i in the correct shape) is now found as follows (Müller et al.

23

2005)

gi = Ãr̃i. (3.29)

Special attention needs to be paid to the dimensions here. gi is a three

dimensional position, and r̃i is a nine dimensional vector, based on ri. ri

is still the offset of particle i to the center of mass in the rest position. If ri

equals [rix, riy, riz]
T , than r̃i is [rix, riy, riz, r

2
ix, r

2
iy, r

2
iz, rixriy, riyriz, rizrix]

T .

Consequently, Ã is a three by nine matrix. As Müller et al. (2005)

show, this matrix can be computed as:

Ã = (Σimi(xi − c)r̃iT)(Σimir̃ir̃i
T)−1. (3.30)

With all symbols as defined before. As with the linear deformation, the

matrix Ã is used in a linear combination βÃ+ (1− β)Q̃. The matrix Q̃

is simply defined as [QOO], with Q as before, and O the three by three

zero matrix. Müller et al. (2005) note that this is a cheap version of

modal analysis.

Fluid Constraint Macklin and Müller (2013) propose a constraint

for simulating the incompressibility in fluids, based on SPH simulations.

They introduce following equality constraint for every particle pi in the

fluid:

Ci(pi, p1, ..., pn) =
ρi
ρ0

− 1, (3.31)

with ρ0 the rest density in the fluid. The constraint Ci for particle pi

also influences the particles in the neighbourhood of pi. These have been

named p1 to pn. The density ρi at the pi’s position is calculated as:

ρi = ΣjmjW (pi − pj, h). (3.32)

with W the SPH kernel, and h the kernel smoothing length. In (Macklin

and Müller 2013), and in this project, the Spiky kernel is used for gradi-

ents and the Poly6 one for density estimation.

24

Macklin and Müller (2013) then go on to compute λ from the given

constraint:

λ =
Ci(pi, p1, ..., pn)

Σk|∇xkCi|2 + ε
(3.33)

where k ranges over all particles affected by the constraint (i and 1 to

n). The term ε is added to counter instability problems, by relaxing the

constraint. For ∇xk :

∇xkCi =
1

ρ0

Σj∇W (pi − pj, h) k = i

−∇W (pi − pj, h) otherwise
(3.34)

With j ranging over the particles 1 to n in i’s neighbourhood.

Macklin and Müller (2013) also include Tensile instability corrections

and vorticity confinement but this was not implemented in the project.

25

Chapter 4

Software Design &

Implementation

The previous chapter introduced the concepts and mathematics of the

technique that were implemented for this project. This chapter will cover

how these techniques were implemented. It will discuss the software de-

sign, explaining the major decisions that were made during the project,

and the most important technical details of the project.

4.1 Class Diagrams

This section will show class diagrams of the project, which will then be

discussed in the next section. The diagrams themselves are inserted into

this report but will also be provided in image formats, to ensure that

they are clearly readable.

The class diagrams were split up into smaller logical modules, and

can be found in Figures 4.1 to 4.5. These diagrams are complemented

by a glossary of the classes and their responsibilities, which can be found

in Appendix A. For readability, it was preferred to keep the operation

parameter names out of the class diagrams. Also worth mentioning is

26

that some type names of class members may seem unknown. These are

all type definitions to increase readability. Most common are instances

where a certain classname is complemented with ’Ptr’, indicating a smart

pointer pointing to that class. In the same style, a class with the ’PtrVec’

addition is a std::vector of such smart pointers. In any case, all type def-

initions are included in the aforementioned glossary.

4.2 Discussion

The core of algorithm 1 is abstracted into the class design seen in figure

4.1. In order to represent the different particles and objects consisting

thereof, a Particle and ParticleObject class were designed. The different

ParticleObjects are grouped in a ParticleScene. Hence, the simulation

data is situated in the ParticleScene class (and its members). It is in-

teresting to mention that a ParticleObject is more than just a collection

of Particles. It also holds information on how to create new particles

(if this is allowed: adding a particle to a rigid body is impossible, but

adding one to a fluid simulation is common practice, hence the optional

ParticleInfo member), and has some more functions (”preSim” and ”af-

terSim”), that have to do with the extensibility of the library, and will

be discussed in a later paragraph.

The SimulationController class ensures the particles in the Parti-

cleScene are updated by the right steps, in the right order. The dif-

ferent steps of the algorithm are again abstracted away in their separate

classes, in a style similar to a strategy pattern. This results in classes

representing different parts of the algorithm: The ExternalForceSolver,

Environment and ConstraintSolver classes.

The ExternalForceSolver and ConstraintSolver classes apply respec-

tively ExternalForces and Constraints to the particles. Both of them

keep track of which forces or constraints to apply, by means of a com-

27

Figure 4.1: Diagram: Core of the Position Based Dynamics Library

28

Figure 4.2: Diagram: Inheritance diagram of all existing constraints.

29

Figure 4.3: Diagram: Inheritance diagram of all existing Simula-
tionElementBuilders.

30

Figure 4.4: Diagram: Inheritance diagram of ExternalForces and Col-
lisionObjects.

Figure 4.5: Diagram: Class diagram of class involved in setting up
simulations.

31

mand pattern: ExternalForce and Constraint are abstract classes, and

any child class can be added the their respective solvers. This use of

inheritance will be one of the key parts in the extensibility of the library,

as explained later. The different forces and constraints that were men-

tioned in the previous chapter are all included in the library, and specific

class diagrams can be seen in Fig. 4.4 and Fig. 4.2, respectively.

Environments are classes that calculate temporary constraints. These

are constraints that are generated per time-step, solved and then for-

gotten. The most prominent example are collision constraints, which are

computed by the CollisionEnvironment class (both collision between par-

ticles and with the physical environment). However, it might be possible

in the future one wants to add different collision constraints or improve

the performance, so it is possible to add new types of Environments to

the SimulationController. This completes the strategy pattern.

In fact, the project contains such a different Environment: the Flu-

idEnvironment, which calculates the neighbors of fluid particles every

timestep. The CollisionEnvironment and FluidEnvironment are defaulted

into the SimulationController, but can be turned off or replaced.

The CollisionEnvironment works with CollisionObjects for the physi-

cal environment. These objects know themselves when a particle collides

with them, and know what kind of collision constraint to generate. Ab-

stracting this knowledge in a separate class, combined with an abstract

CollisionObject interface, allows adding more types of environment ob-

jects in the future, without having to change the CollisionEnvironment.

Currently the library contains a triangle CollisionObject and an infinite

plane one.

Note that the Constraints have two layers of inheritance, as Con-

straints have to know themselves what particles to work on. Several types

of constraints work on one or two particular particles, or one particular

32

ParticleObject, and hence the classes OneParticleConstraint, TwoParti-

cleConstraint and OneObjectConstraint were made.

The SimulationController is a facade pattern, providing a clear inter-

face to controlling a particular simulation. There are functions to add

forces, constraints, objects and particles, and functions to run the result-

ing simulations. However, one still needs to build these elements before

they can be added and simulated. Ideally, one does not want to change

the core of the code (Fig. 4.1) when a new type of Constraint or Force is

added, and hence creation of these elements was kept away from the core.

For the creation and set-up, a software design was made that provides

both an easy and uniform way of setting all kinds of simulations and easy

extensibility when new types of elements are implemented. The resulting

design can be found in Figure 4.5. The whole library is accessible through

one simple class (again a facade pattern), called PBPBD, also the name

of the library. Setting up simulations is done by telling this class what

type of objects to make and to give the according parameters. These

types are registered with the factory with a typename (std::string). The

types of objects included in PBPBD by default, and their parameters,

are specified in appendix B. The parameters are structs called Parame-

terObjects, which are combinations of a name and boost::Variant, and

every element type accepts custom parameters of different base types.

The library reads these in, and then simulates, giving back positions and

velocities. This way, the library is not connected to one particular appli-

cation: different applications can be written using the library. In other

words, the library respects the Model-View-Controller pattern, with the

PBPBD class being the controller, and the library itself the model.

As said, the system was meant to be extensible. For this reason,

the SimulationElementFactory was created (see Figure 4.5). This object

allows a new implemention of the class SimulationElementBuilder to reg-

ister with a typename, and calls their buildElement method when their

33

typename is called upon. This is easily recognizable as a Command Pat-

tern and Factory Pattern. The factory is accessible through the PBPBD

interface. These SimulationElementBuilders can create any kind of el-

ement and add it to the SimulationController. The parameters of the

Builders are the earlier mentioned ParameterObjects, allowing them to

have custom parameters. The default types in the library all correspond

to one of the the default Builders (see Figure 4.3), which are all are reg-

istered with PBPBD on creation. The default Builders are specified in

appendix B.

It is clear from this design that it makes the library easily extensi-

ble: a programmer wishing to extend the default library can create his

or her own elements (Constraints, Objects, Environments, CollisionOb-

jects, ExternalForces, ... almost everything) and then complement these

new elements with one or more SimulationElementBuilders, possibly

with custom parameters, creating the particular elements and adding

them to the SimulationController.

Using this way of extending, implementing new elements does not

mean having to change the core algorithm, as they can easily be added

to the existing SimulationController thanks to the design. The new Sim-

ulationElementBuilders can simply be registered with PBPBD before

they are used, and PBPBD will still work as normal but with added

functionality. Hence the open/closed-principle is very well respected in

the library design: no piece of existing code has to change in order to

extend the library with most functionality imaginable. Since Position

Based Dynamics relies on different types of constraints, being flexible

towards new types of constraints is key for a PBD library. The author

believes that his software design provides this flexibility.

Additionally, ParticleObjects have the functions ”preSim” and ”after-

Sim”. In the default version these do nothing, but they are called for

every ParticleObject right before the constraint solving loop and right

34

after respectively. Adding new types of objects that have calculations

that somehow not fit into a constraint (e.g. calculating normals) becomes

possible this way. Again, these custom objects would then be added to

the simulation with a custom builder. Similarly, the constraints have a

endTimestep function that is called after every contraint solve. This is

key for constraints that change throughout time, such as the Animated-

PositionConstraint.

4.3 Implementation

The above software design was implemented in C++, using NGL for its

3D vector and matrix classes, and obj mesh loader. Several elements

of the boost library were used as well, mainly it’s smart pointers, the

property tree class for xml parsing, the unordered map container as the

provided environment did not include C++11, and the boost optional

and variant types. The Eigen library was used for some of the matrix

operations, most importantly the polar decomposition.

performance For a physical simulation library, performance is impor-

tant. One does not want to wait endlessly for the results of his simula-

tion. Especially for PBD, which was meant for interactive applications,

performance is key. Because of this, a large fraction of the development

time of the project was spent on improving performance. While focusing

on this, an iterative workflow was used.

Using the valgrind function profiler, the code was profiled with a set

of testcases. The profiler results were inspected to find the current bot-

tleneck. After finding it, the bottleneck was improved or avoided. Once

succeeding in the alleviating the bottleneck, we went back to profiling.

35

Giving an exhaustive list of all changes made in this iterative pro-

cess would not be very worthwhile. However, one part of improving

performance was quite substantial and is definitely worth explaining in

more detail. Since the PBPBD library depends completely on particle-

based physics, a lot of particle-particle interactions need to be computed.

Detecting these interaction is usually a bottleneck in particle projects,

especially since naive implementations have a squared complexity in the

amount of particles, which is unacceptable.

To avoid this bad complexity, a hash-grid was implemented, some-

what separate (i.e. in a separate project and hence reusable) from the

library. To avoid unnecessary delays, choosing the right containers for

this hash-grid implementations was key. The hash-grid needs to be re-

built every time-step, and the main operation is to find all particles in

one cell and iterate over them.

Consequently, the hash-grid is implemented with an unordered map

(from the boost library). The keys are cell ids, the values are the cell

contents, which are represented with linked lists. Because of this combi-

nation, adding particles to the hash-grid has a constant complexity, as

the map is unordered and there is no need for re-allocation when adding

to a linked list. Look-up into a unordered map is also constant. The

linked lists form no problem since all found particles need to be iterated

over in the collision environment. Both operations need to happen for

every particle every time-step, and hence the collision generation step

has a linear complexity in the amount of particles.

Multi-threading As was explained in the introduction, one of the

goals of the project was to take advantage of the multiple cores most

computers have nowadays. However, before parallelizing, one has to en-

sure thread-safety of the operations in the code (Pacheco 2011).

36

As mentioned earlier, Macklin et al. (2014) rework PBD to Jacobi

iterations to make parallelizing easier. Hence making the algorithms

thread-safe was relatively easy. Adding computed corrections to the ac-

cumulated delta of a particle needs to be thread-safe, as the algorithm is

implemented (and parallelized) in a constraint-centric fashion (Macklin

et al. 2014). A simple per-particle mutex was added. To parallelize the

hash-grid look-ups, the look-up functions were made thread-safe. This

was done by simply using const marked functions of the boost unordered

map.

After ensuring thread-safety, the code was multi-threaded using the

OpenMP library. Looking at the algorithm in listing 1, the following

elements were multi-threaded, as they were the most important bottle-

necks. The line of the particular for loop in algorithm 1 is added between

parenthesis:

• Finding the neighbors of each particle. (Line 5.)

• Pre-Stabilization. (Line 5 in Algorithm 2.)

• Solving the constraints. (Line 15.)

• Updating the proposed positions. (Line 21.)

Note that synchronization is necessary between Line 15 and 21, as all

constraints need to be solved before updating the proposed positions.

The result of the effect of multi-threading is discussed in the next sec-

tion.

Something that came up in discussions with people in the VFX in-

dustry is the requirement for physical simulations to be robust. By this,

they meant that a simulation should have the same result independent

of the amount of cores it is calculated on. In theory the PBD algorithm

as explained above is robust in this sense. However, since corrections

(and forces) are accumulated, and the order of accumulation is non-

deterministic, the results may change on a different number of cores due

to a changing order of floating point additions.

37

While initially small, such errors can propagate and give an entirely

different result. A possible solution is to keep track of all corrections in

an ordered container, and then adding them together when the proposed

position is updated in the same way. However, this over-head was deemed

unnecessary, especially for a technique that is meant to be interactive.

Hence, the results of the library in its current state might change due

to floating point rounding errors when ran on a different amount of cores.

Basic Application For demonstrating the libraries capabilities, a ba-

sic application was made. This basic application reads in XML-files and

adds the corresponding elements through using the PBPBD interface

only (as it is intended to be used). The syntax for the XML files can

be found in appendix C, and is very similar to the default element types

accepted by PBPBD and its SimulationElementFactory. The basic appli-

cation writes out the resulting particle information into a file per frame.

This can be read into SideFX’ Houdini using a set-up as seen in Figure

4.6. Several examples of such houdini files are included in the hand-

in. Since most SimulationElementBuilders can work with OBJ files, a

simulation can also be set-up in Houdini (or any other 3D package) and

exported into OBJs. These OBJs can then be referenced in the XML files

of the basic application. Currently, these XML files are made manually,

but a direction of future work is generating these straight out of the 3D

package, or even better, calling PBPBD straight from a plug-in for a 3D

package.

38

Figure 4.6: The Houdini set-up for reading in results.

39

Chapter 5

Results & Discussion

This chapter will review the final results of the project. It will discuss

the functionality included in the project and shows some screenshots of

how they look. However, since the project concerns physical simulation,

videos are far more important than one frame. Hence, the original videos

have been included in the hand-in separately, in the ’videos’ folder. Af-

ter reviewing the visual results in the first section, the next section will

go on to discuss the performance of the system. The following section

will then review the current limitations of the technique and system, and

outline directions of future work. The final section describes an improve-

ment to the current Position Based Dynamics technique, building on the

discussion in the section before.

5.1 Included effects & functionality

As was mentioned in the previous chapters, constraints were imple-

mented for the following types of effects:

• Rigid Bodies

• Deformable Bodies

• Ropes and Hair

40

Figure 5.1: A rigid body pulled by an animated rope, moving through a
pile of sand.

• Cloth

• Free flowing particles, such as Granular Material.

• Fluids

Most of these were extensively tested during the project. Resulting

videos can be found in the Hand-in (videos folder). These have been

complemented with functionality to set-up simulations with these effects

working together in different ways. An exhaustive list of all functionality

that is included by default in the library is given in Appendix B, and

Appendix C shows how to use this functionality in the form of XML-files

through the basic application. Figures 5.1 through 5.5 show some of the

effects in action.

5.2 Performance

As was mentioned earlier, parts of the library were parallelized using

OpenMP. This section reviews the performance gain this induced for the

kind of simulations that were tested during the project.

41

Figure 5.2: Six rigid bodies colliding with an object consisting of trian-
gles.

Figure 5.3: A body deforming under the weight of another object.

42

Figure 5.4: Rigid bodies falling onto a piece of cloth.

Figure 5.5: A set of hairs connected to a head (a sphere).

43

To compare the performance, three test-cases were run both single-

threaded and multi-threaded. The three test-cases are:

• The hair simulation as seen in Figure 5.5. This was simulated for

251 frames, with 100 solver iterations and 25 stabilization itera-

tions. This simulation has close to 700 particles.

• The deformation of one deformable body similar to the one in Fig-

ure 5.3, but with a less coarse particle packing for the body (about

4000 particles). This simulation was run with 70 solver iterations

and 2 stabilization iterations, and was run for 201 frames.

• The sand pile simulation as in Fig. 5.1, with 70 solver iterations

and 10 stabilization iterations for 301 frames. This simulation nears

10000 particles.

These test-cases were chosen because they represent different cases: the

first is a simulation with many constraints that work on a small amount

of particles (hair consists of a lot of distance constraints), where as the

second as is a deformable that works with one body constraint that

takes care of them all. The last one is a mix of the two, since there are

many free-flowing particles (the sand), but also has a rigid body. The

reason the choice of test-cases is inspired on the amount and type of

constraints is that the simulation loop is implemented and parallelized

in a constraint-centric fashion, as explained in chapter 3. Hence, we

mainly want to investigate the impact of the decision to implement this

constraint-centric loop over a particle-centric. An overview of the results

can be seen in table 5.1.

As we can see in the table, the results show very little relation to the

type of constraints. While this is a little bit surprisingly, there are some

different factors explaining this. First of all, the lambda in constraints is

cached. This means that for the Rigid (or deformable) Body Constraint,

the heaviest part of the calculation is done only once and the per-particle

calculation is fairly lightweight.

44

Test-Case Single Multi Improvement
Hair 24.64 12.17 49.39%
Deformation 114.62 38.69 33.76%
SandPile 484.69 48.79 17.49 %

Table 5.1: Performance improvement by multi-threading for the three
different test-cases. The second column shows the (averaged out) wall
time for the test-case when single-threaded, the third column shows the
same but for the multi-threaded version. The last column shows the di-
vision of multi-threaded by single-threaded (in percentage).

Furthermore, there is a considerable amount of collision constraints

in every test-case. Even in the deformation test-case, a great deal of the

deformable body particles collide with the floor or with the mass falling

on top of it. Collisions also mean more work in neighbourhood searches,

which are also parallelized. In the hair case, the particles are clearly less

densely packed than in the other cases, giving the other two cases an

edge. Hence, the collisions make the rigid body constraint less impor-

tant in the general picture. This is particularly true for the SandPile

case, since it has about 9000 sand-particles in a pile, very closely packed

together. As a result, the amount of collision constraints is gigantic,

making this a very good case for multi-threading.

We can conclude that the main factor determining the effectiveness of

multi-threading is the scale of the simulation. This can be expected, since

the overhead of multi-threading becomes relatively smaller as the amount

of particles increases. Hence, the decision to implement a constraint-

centric solver doesn’t seem to have a very big effect, and the paralleliza-

tion works very well as the scale of the simulation increases. It would be

interesting to see if a particle-centric solver could improve performance,

however this would add the overhead of keeping track of what constraints

work on particular particle.

45

5.3 Limitations & Future Work

This section discusses the currently known problems of the library. These

are divided in two categories: First the section will cover problems in-

herent to the position based dynamics technique that are visible in the

library results. Afterwards the section will cover problems of the library

itself, which will mainly be missing functionality. To complement these

two categories, the section will point out with directions for future im-

provements to the PBD technique and project where possible.

Position Based Dynamics An issue that is often mentioned in the

PBD research literature and that was found in the implementation, is

the dependency of the results on the amount of solver iterations (Mack-

lin et al. 2014). During the project, this dependency was found to be

understated by most authors. Most of the academic literature does not

fully convey the importance of the amount of solver iterations. Most

parameters are meaningless since their results is so dependent on this.

An excellent example are the friction constraints: the friction coefficients

are usually completely overruled by the amount of solver iterations. An-

other very good example is the setting of α for small rigid body defor-

mations, which will become almost meaningless with an high iteration

count. The dependency on this parameter is illustrated in Figure 5.6. To

illustrate this even more, the hand-in contains some videos of test-cases

repeatedly run with the same settings except for an increasing number

of solver iterations. These can be found in the folder ’iterationVideos’.

Müller et al. (2007) propose using non-linear constraint weights (called

constraint stiffness earlier). This reduces the effect slightly, but does not

remove it.

Furthermore, the amount of solver iterations is, in all known liter-

ature, the same for every type of constraint. As a result, the amount

of solver iterations depends on the weakest link in the simulation. For

example: rigid bodies usually dont need many iterations due to their

46

Figure 5.6: A rigid body suspended on a piece of rope. Even with the
stiffness set on the maximum, the actual stiffness largely depends on the
amount of solver iterations. For each rigid body, the amount of iterations
is shown below it. The rope stretches a lot with low amount of solver
iterations.

47

Figure 5.7: Three free-flowing particles fall onto each other, three dif-
ferent times. With the same friction settings, the friction is still different
in each case due to the amount of solver iterations (shown above the three
cases).

well working, high-priority shape matching constraints. Cloth and rope

on the other hand need many iterations to appear remotely inextensible.

Hence, a simulation containing both cloth and rigid bodies will need to

have a high amount of iterations, to ensure a decent cloth simulation.

These iterations spent working on the rigid bodies will be a wasted effort.

Furthermore, the effect of an high iteration count might not be suitable

for every effect. Consider Figure 5.7, where it is clear the amount of fric-

tion also depends on the iteration count. If one wants a medium amount

of friction but inextensible cloth or rope, choosing a suitable amount of

iterations will be very difficult, if not impossible.

A possible solution for this would be to have different amounts of

solver iterations per type of constraint. This would obviously not work

in a naive way where some constraints are just dropped after a certain

amount of iterations. However, some constraints could be periodically

solved. For the cloth-RBD example: after 4 iterations of solving all

constraints except the shape matching (RBD) ones, we could re-include

those for the next iteration. The shape matching constraint should also

always be included in the final iteration. To my knowledge, this idea has

not been presented in any academic literature, and it would be interest-

ing to experiment with this idea. An initial implementation of this was

48

Figure 5.8: Two particles, situated above each other but not touch-
ing, fall onto a floor. The external forces are applied, including gravity,
bringing the lower particle B in contact with the floor. Hence a collision
constraint is generated for B and the floor. However, A and B are not
colliding in their proposed positions and no constraint is generated to
resolve their eventual collision. The frame ends on in an invalid state
and the collision is only resolved in the next frame. It is easy to see this
becomes worse when adding another particle above A.

made and tested in this project. This is the subject of the next chapter.

Another problem found to be inherent to PBD is a one-frame delay

in collision detection due to the collision detection happening in between

the external forces and the constraint solve. This is explained in Fig-

ure 5.8: two particles, one positioned above the other, falling onto the

floor will overlap for at least one frame, since there will be no collision

constraint between in the first frame. This is made worse when multiple

particles are positioned above each other (i.e. each additional particle

will take another frame to be detected), and the collision will propagate

upwards. This is why this delay is called slow error propagation by Ben-

der et al. (2015). This behaviour can result in stacks of supposedly rigid

particles showing spring-like behaviour. Without pre-stabilization this

even leads to particles being shot upwards, as was mentioned by Macklin

et al. (2014). However, they fail to mention that the necessary amount of

pre-stabilization also depends on the amount of stacked particles. Espe-

cially for piles of granular materials, a large amount of pre-stabilization

iterations turned out to be necessary to avoid particles shooting out of

the pile.

49

Figure 5.9: The one-frame delay pushes particle B back and forth be-
tween A and C, especially if there is a lot of friction, since friction keeps
A and C in the same place. This causes the particle to oscillate.

In certain situations this one-frame delay causes one particle to oscil-

late between two positions. An example situation is explained in Figure

5.9, where a particle jumps back and forth between two positions, and

where it will take a considerable amount of frames before this situation is

resolved, if ever. This manifests itself as visible flickering of the particles,

something that is easily observed in the result videos. A fairly simple

solution to the flicker could be to add a post-stabilization step, where

flickering of particles is detected and averaged out.

However, the one-frame delay is a known problem, and is mentioned

by Bender et al. (2015). They call it ’slow propagation of local errors’.

A solution is mentioned in Müller (2008), and definitely forms a possible

of direction of future work for this project.

A problem inherent to the Jacobi iterations as presented by Macklin

et al. (2014) is the constraint averaging. While necessary, this averaging

can be too harsh and increase the amount of necessary solver iterations

themselves. What is worse is that the amount of necessary iterations

depends on the amount of constraints (in one constraint group) due to

the averaging. The more constraints there are, the more every correction

will be averaged out, so more iterations are necessary to reach a solution

state. This is illustrated in Figure 5.10. Making things worse, consider

50

Figure 5.10: Constraint averaging makes the amount of necessary
solver iterations depend on the amount of constraints. In the situation on
the left, the collision is resolved in one iteration. On the right however,
the third particle has barely any influence (the particles merely touch),
but because of its presence there is an extra collision constraint. Con-
sequently, the first constraint is not resolved in one iteration since it is
averaged out.

free-flowing granular materials: the smaller they are, the more collisions

will happen in one time-step (for the same magnitude of gravity), and

the more iterations are necessary to resolve them all. This ties in the

amount of solver iterations with the scale of the simulation which is far

from ideal. This inspires one to ask the question if Jacobi iterations are

truly necessary. However, as explained by Macklin et al. (2014), it is al-

most impossible to efficiently parallelize the Gauss-Seidel version of PBD.

Library The code library created for this project has been thoroughly

covered in the previous chapter. The author believes the code design

and implementation is good. However, there are always possible im-

provements for a software project of this time-frame.

51

A first one is the improvement of the Fluid simulation. Due to the

time constraints of the project, there was not enough time to thoroughly

test the fluid simulation, since fluid simulation take a fair amount of

time to get completely stable. Furthermore the tensile instability and

vorticity confinement from (Macklin and Müller 2013) are still missing.

The same goes for the deformable rigid bodies, since not all techniques

from Müller et al. (2005) were implemented, but just the one for small

deformations based on a multiplier. Adding or improving these elements

can be done without touching any of the existing code. However, due to

the broad range of existing PBD techniques, this will always be the case.

This is exactly the reason extensibility was valued so highly. A variety of

different elements (constraints, objects, forces, ...). It would for instance

be possible to add tearable cloth fairly easily.

The implemented solver was not meant to be touched but could still

be tweaked. For instance, a post-stabilization step to decrease the par-

ticle flickering would be a nice addition.

Apart from that, the main improvement would be a better applica-

tion. Usage of the library through the current Basic Application with

XML files is quite laborious. It would be nice to build a plug-in for Hou-

dini or Maya that calls PBPBD directly.

Off course, the performance could also still improve. As explained, the

profiling happened in an iterative fashion and such iterative processes are

never truly finished. It would be nice to experiment with other multi-

threading libraries or techniques as well, such as Intel TBB or CUDA.

52

Figure 5.11: In the figure on the left, a low amount (7) of solver iter-
ations ensures no work is wasted on the rigid body, but the rope is very
extensible. On the right we see the opposite situation, a high amount of
solver iterations (70) ensures inextensible rope but wasted effort on the
RBD.

5.4 Adaptive Position Based Dynamics

As was explained in the previous section, all current PBD algorithms

have a fixed amount of iterations for all constraints. However, not all

constraints depend equally on the amount of iterations. In the previous

section we compared cloth/rope to rigid bodies, which is a good example:

• The cloth and rope are connected with distance constraints. These

are relatively cheap to evaluate but need a lot of iterations to ap-

pear stiff.

• Rigid bodies are simulated using shape matching constraints. These

dont need a lot of iterations but are expensive to compute due to

the matrix operations, as outlined in chapter 3.

This is illustrated in Figure 5.11.

Ideally, one wants to avoid the wasted effort of doing many iterations

on the rigid bodies, since they simply dont need it. For this reason,

it would be useful to have different solver iterations per constraint-type.

53

To the best of my knowledge, this has not been done in previous research.

The basic idea goes as follows. Assume two constraints A & B are

being processed, and we want constraint A to be processed twice as much

as B. We do however want that B is processed in the last iteration, oth-

erwise there might be serious mistakes (e.g. if B is a shape matching

constraint, it would be no longer Rigid Body simulation). On the other

hand, we want to avoid doing A without incorporating information from

B for too many iterations. Consequently, A is solved every iteration and

B every other iteration.

This example does not show the full complexity of the process, since

in actual simulations there will be many constraints working together,

but it shows the idea. Due to the time constraints of this project, only

a relatively simple experiment was conducted. The constraint-groups as

introduced by Macklin et al. (2014) and implemented in this project were

an ideal mechanism for testing this variable solver iterations idea.

The constraint solver was made adaptive by first repeating the lower

priority constraints. In the current library the priorities range from 0 to

9. In one solver iterations, the constraint group are solved in the order:

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, Hence for for 1 solver iteration, the con-

straints in group 0 are solved 10 times and those in 9 only once. This

gives a simple adaptive constraint solver.

To show-case the adaptive solver, we show two variants of one test-

case. This test-case consists of a string of rope and a rigid body. In the

first variant, the two are not connected. The regular PBD version of this

case was presented in Figure 5.11. As can be seen in Figure 5.12, the

adaptive solver does equally well, without wasting solver iterations on

the rigid body. This is as expected when the two effects are unconnected.

54

Figure 5.12: In the adapative version, 70 iterations are used for the
rope, and 7 for the RBD, resulting in the same result as in the right of
Fig. 5.11, without the wasted effort on the .

Things become more complex in the second variant. Here the rope and

the rigid body are connected with a distance constraint. The stretchiness

of the rope becomes worse as there is a considerable mass at the end.

The result for normal, non-adaptive PBD can be seen in Figure 5.13.

The adaptive solver still behaves as before but due the low iterations

on the shape matching constraint, the connecting distance constraint is

overstretched. However, even in this case it is still possible to reduce

the efforts wasted on the rigid body, as illustrated in Figure 5.14. Hence

the potential for saving on solver iterations will depend on the particu-

lar simulation, but that goes for the current amount of solver iterations

already anyway.

In conclusion, this project was complemented by an experimental

adaptive constraint solver, an idea that has not been proposed in current

literature and has the potential to improve the performance of existing

PBD algorithms. This experimental solver works as expected and shows

that this idea has promise. More tests need to be performed. Ideally

the amount of solver iterations would not be connected to the constraint

priority in the future.

55

Figure 5.13: The regular version of PBD in the connected variant with
two different amounts of solver iterations, left 7 iterations, right 70.

Figure 5.14: In the figure on the left, a low amount (7) of solver iter-
ations ensures no work is wasted on the rigid body, and the rope is inex-
tensible. However, the distance constraint connecting gets over-stretched.
On the right, we have 70 iterations for the rope and 35 for the rigid body.
This gives a good result and halves the work necessary for the Rigid Body.

56

The results as presented in Figures 5.11 to 5.14 can be found in the

folder ’adaptiveness’ in the hand-in. The videos marked with fixed are

the regular, non-adaptive PBD. The ones marked with adaptive are the

adaptive PBD ones.

57

Chapter 6

Conclusion

In this project Position Based Dynamic algorithms were researched, and

a particle-based unified physics library was developed based on these

techniques. Looking back at the goals as set in the introduction, this

document, and the additional material in the hand-in, shows that:

• Position based dynamics was successfully researched and imple-

mented. Implementing and analysing the results even lead to

proposing an original improvement, i.e. adaptive constraint solver

iterations, as explained in section 5.4.

• The resulting library was multi-threaded by using the OpenMP

threading library.

• The library contains cloth, hair, granular Material,rigid and de-

formable bodies and fluids, although the last one needs to be im-

proved. All of them interact with each other.

• The author believes the library to have a good design. The ex-

tensibility was singled out in the introduction, and was thoroughly

discussed in section 4.

I think I can say all the goals set at the start of the project were met.

It would have been nice to multi-thread it in Intel TBB as well as in

OpenMP, but unfortunately there was not enough time to do this.

58

After implementing the techniques, they were tested to see what prob-

lems were still present in the techniques. This discussion lead to several

ideas for future work. The most promising one was an adaptive con-

straint solver, meaning that different constraints are solved with different

amount of solver iterations. This idea was actually implemented in the

project, and the results look promising, since they can increase perfor-

mance. This adaptive solver can be seen as an original contribution, as

no existing research makes mention of such an idea, to the best of my

knowledge.

59

Bibliography

Bell N., Yu Y. and Mucha P. J., 2005. Particle-based simula-

tion of granular materials. In Proceedings of the 2005 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’05,

New York, NY, USA. ACM, 77–86.

Bender J., Müller M. and Macklin M., 2015. Position-based simulation

methods in computer graphics. In EUROGRAPHICS 2015 Tutorials.

Eurographics Association.

Bender J., Müller M., Otaduy M. A. and Teschner M., 2013. Position-

based methods for the simulation of solid objects in computer graph-

ics. In EUROGRAPHICS 2013 State of the Art Reports. Eurographics

Association.

Bender J., Müller M., Otaduy M. A., Teschner M. and Macklin M., 2014.

A survey on position-based simulation methods in computer graphics.

Computer Graphics Forum, 33(6), 228–251.

Deul C., Charrier P. and Bender J., 2014. Position-based rigid body

dynamics. Computer Animation and Virtual Worlds.

Jaeger H. M., Nagel S. R. and Behringer R. P., Oct 1996. Granular

solids, liquids, and gases. Rev. Mod. Phys., 68, 1259–1273.

Jakobsen T., 2001. Advanced Character Physics. In Game Developers

Converence Proceedings. CMP Media, Inc., 383–401.

Macklin M. and Müller M., 2013. Position based fluids. ACM Transac-

tions on Graphics (TOG), 32(4), 104.

Macklin M., Müller M., Chentanez N. and Kim T.-Y., 2014. Unified par-

60

ticle physics for real-time applications. ACM Transactions on Graphics

(TOG), 33(4), 104.

Müller M., 2008. Hierarchical position based dynamics. In Faure F. and

Teschner M., editors, VRIPHYS. Eurographics Association, 1–10.

Müller M., Heidelberger B., Hennix M. and Ratcliff J., April 2007. Po-

sition based dynamics. J. Vis. Comun. Image Represent., 18(2),

109–118.

Müller M., Heidelberger B., Teschner M. and Gross M., 2005. Meshless

deformations based on shape matching. In ACM SIGGRAPH 2005

Papers, SIGGRAPH ’05, New York, NY, USA. ACM, 471–478.

Pacheco P., 2011. An Introduction to Parallel Programming. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

Parent R., 2012. Computer Animation: Algorithms and Techniques. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 3 edition.

Witkin A., Gleicher M. and Welch W., February 1990. Interactive dy-

namics. SIGGRAPH Comput. Graph., 24(2), 11–21.

61

Appendix A

Glossary

This appendix contains a glossary of all classes and type definitions in

the software project. The definitions are focused on the responsibility

the classes have in the system.

• AnimatedParticleBuilder : A simulationElementBuilder that

adds an AnimatedPositionConstraint to the simulation.

• AnimatedPositionConstraint : A constraint fixing a particular

particle to a position that changes every frame, thereby animating

the particle instead of simulating it. Child of FixedPositionCon-

straint.

• BasicApplication : The class containing the logic for the basic

application that works with XML input and writes out the position

per frame.

• BuilderMap : Typedef: std::map<std::string, BuilderPtr> (Used

in the SimulationElementFactory, to register SimulationElement-

Builders with a name)

• BuilderPtr : Typedef: boost::shared ptr<SimulationElementBuilder>

• ClothBuilder : A SimulationElementBuilder that adds a particle

object that will behave like cloth to the simulation.

• CollisionEnvironment : An Environment creating collision and

friction constraints for rigid contacts, both inter-particle collisions

62

and collsions with CollisionObjects.

• CollisionObject : Abstract class defining objects that make up

the physical environment with which the particles interact.

• CollisionObjectPtr : Typedef: boost::shared ptr<CollisionObject>

• CollisionTrianglesBuilder : A simulationElementBuilder adding

TriangleObjects to the simulation, based on a given OBJ file.

• Constraint : Abstract definition of a constraint.

• ConstraintGroups : Typedef: std::map<int, ConstraintPtrVec>

(Every constraint group is a ConstraintPtrVec with the key the pri-

ority of the group)

• ConstraintPtr : Typedef: boost::shared ptr<Constraint>

• ConstraintPtrVec : Typedef: std::vector<ConstraintPtr>

• ConstraintSolver : Class keeping track of the constraints in the

system and solving them for the SimulationController.

• DistanceConstraint : A constraint keeping two particles at a

specified distance.

• DistanceConstraintBuilder : A SimulationElementBuilder adding

a DistanceConstraint between two particles to the simulation.

• DragBuilder : A SimulationElementBuilder adding a dragforce

to the simulation.

• DragForce : An Externalforce representing drag (i.e. a force

opposing the current velocity). Can work on all objects or one

specified object.

• Environment : Abstract definition of an Environment that

makes up temporary constraints per timestep.

• EnvironmentPtr : Typedef: boost::shared ptr<Environment>

• ExplicitEulerIntegrator : Class containing functions to update

a position and velocity given a certain net force.

63

• ExternalForce : An abstract class representing external forces

such as gravity, drag, ...

• ExternalForcePtr : Typedef: boost::shared ptr<ExternalForce>

• ExternalForcePtrVec : Typedef: std::vector<ExternalForcePtr>

• ExternalForceSolver : Class keeping track of the external forces

in the system and solving them for the SimulationController.

• FixedPositionConstraint : Constraint fixing a particle at one,

fixed, location. Superclass of the AnimatedPositionConstraint.

• FluidBuilder : A SimulationElementBuilder adding a fluid ob-

ject to the simulation.

• FluidConstraint : A constraint meant to compute the movement

due to the pressure at one particular fluid particle.

• FluidEnvironment : An environment creating FluidConstraints

per timestep.

• FrictionConstraint : Constraint applying friction between two

particles.

• GravityBuilder : A SimulationElementBuilder that adds a Grav-

ityForce to the simulation.

• GravityForce : An externalforce representing a force with a

constant acceleration.

• InfinitePlaneConstraint : A constraint making particles stay

on one particular side of an infinite plane.

• MutexType : A Mutex for ensuring that code is only executed

by one thread at a time.

• ObjectFrictionConstraint : A constraint providing friction be-

tween the particle and a CollisionObject

• ObjectParameter : A struct to easily pass parameters to Simu-

lationElementBuilders. Combination of parametername (std::string)

64

and a boost::Variant. The boost variant can contain an integer,

float, string, boolean or a vector.

• OneObjectConstraint : Abstract class representing a constraint

working on all particles of a particular ParticleObject.

• OneParticleConstraint : Abstract class representing a con-

straint working on one particular Particle.

• ParameterTransformation : A class representing a transforma-

tion built from ObjectParameters. Used in a lot of SimulationEle-

mentBuilders.

• ParameterValue : Typedef: boost::variant<int, float, bool,

std::string, ngl::Vec3> (Used to have some flexibility in storing pa-

rameters in ObjectParameters, which are passed to SimulationEle-

mentBuilders)

• Particle : Class representing a Particle.

• ParticleCollisionConstraint : Constraint resolving a collision

between two particles.

• ParticleCollisionData : Data representing how a collision with

a particle should be resolved. In some cases it is prefferable to use

another direction than the contact normal.

• ParticleDraft : A struct representing a particle to be added to

PBPBD by the BasicApplication later.

• ParticleIdentifier : Typedef: std::pair<int, int> (used to rep-

resent a particle, where first is the ParticleObject ID, and second

is the Particle ID.)

• ParticleInfo : Blueprint for a Particle. Used in ParticleObject

to add Particles later on.

• ParticleIntegrator : Class updating Particles by applying their

net force.

• ParticleObject : Class representing one object consisting of

Particles.

65

• ParticleObjectPtr : Typedef: boost::shared ptr<ParticleObject>

• ParticleScene : Class representing all ParticleObjects in the

simulation.

• PBPBD : The main interface for the library.

• PBPBDFileParser : Class parsing XML files for the basic ap-

plication.

• RigidBodyBuilder : A SimulationElementBuilder that adds a

RigidBodyConstraint to the simulation.

• RigidBodyConstraint : A constraint keeping a ParticleObject

in a pre-determined shape. The constraint might allow deforma-

tions based on its stiffness setting.

• RopeBuilder : A SimulationElementBuilder that adds a Parti-

cleObject that will behave as a rope (a chain of connected particles)

• SandBuilder : A SimulationElementBuilder that adds a Parti-

cleObject that will behave as sand (unconnected particles).

• ScopedLock : A lock in MutexType.

• SimulationController : The interface/facade for controlling the

simulation.

• SimulationElementBuilder : Abstract class used for setting up

different kinds of elements of a simulation.

• SimulationElementFactory : Factory class keeping track of the

existing SimulationElementBuilders and calling them when neces-

sary.

• TriangleObject : CollisionObject representing one triangle.

• TwoParticleConstraint : Abstract class representing a con-

straint working on two particular Particles.

• WallBuilder : A SimulationElementBuilder adding a WallObject

to the simulation.

66

• WallCollisionConstraint : A constraint resolving a collision

between a particle and a WallObject.

• WallObject : A CollisionObject representing an infinite plane.

67

Appendix B

Default

SimulationElementBuilders

This Appendix shows the SimulationElementBuilders that are registered

with PBPBD by default. This includes their type-name used to call them

through PBPBD, and all of their parameters. Every parameter also has

a name, and a value type. Every parameter is explained and its default

is given, unless it is a mandatory parameter. A mandatory parameter is

signified by M in the default column.

Some SimulationElementBuilders use a ParameterTransformation ob-

ject to register a transformation. These objects take the following pa-

rameters and defaults:

Parameter Type Default

scale float 1.0f

rotateX float 0.0f

rotateY float 0.0f

rotateZ float 0.0f

translate vector (0, 0, 0)

Depending on the particular SimulationElementBuilder, this transfor-

mation is used in a different way. However, for all of them, the transfor-

mation has the above parameters and defaults. To keep the below tables

68

shorter, these transformation parameters are replaced by one parameter

called ’transform’. However, none of the default SimulationElement-

Builders have an actual parameter called ’transform’. The presence of

this parameter in their table simply means the particular builder takes

all of the parameters in the above table as well. The transformation

order is: uniform scaling - rotation (around X,Y and Z, in that order) -

translation, as this allows scaling and rotating in place before translating.

The default SimulationElementBuilders are (M is mandatory, trans-

form refers to the table above):

AnimatedParticleBuilder (type-name: ’animatedParticle’)

Parameter Type Default Remarks

transform T see above Transform the animation.

file string M Sequence of positions (txt or OBJ).

objectID int 0 The objectID of the animated particle

particleID int 0 The particleID of the animated particle

ClothBuilder (type-name: ’cloth’)

Parameter Type Default Remarks

transform T see above Transform the cloth.

radius float 1.0f particle radius

mass float 0.0f particle mass

staticFriction float 0.0f friction coefficient

kineticFriction float 0.0f friction coefficient

particleSleeping float (0, 0, 0) amount of particle sleeping

stiffness float M Constraint stiffness. Between 0 and 1.

file string 0 Mesh for cloth (OBJ)

fixed int none Fix one particle (by ID). Can be specified

multiple times

69

CollisionTrianglesBuilder (type-name: ’triangles’)

Parameter Type Default Remarks

transform T see above Transform the mesh.

file string M Mesh for collision object (OBJ).

DistanceConstraintBuilder (type-name: ’distanceLock’)

Parameter Type Default Remarks

distance float 1 Needed distance between the particles.

objectID int 0/0 ObjectID of locked particle (need to give 2!)

particleID int 0/1 ParticleID of locked particle (need to give 2!)

DragBuilder (type-name: ’drag’)

Parameter Type Default Remarks

coefficient float 0.1f Drag Coefficient.

objectID int none ObjectIDs of objects to apply drag to. Can

be specified multiple times. If none given,

applied to all.

FluidBuilder (type-name: ’fluid’)

Parameter Type Default Remarks

radius float 1.0f particle radius

mass float 1.0f particle mass

staticFriction float 0.0f friction coefficient

kineticFriction float 0.0f friction coefficient

particleSleeping float 0.0f amount of particle sleeping

density float 0.2f Fluid rest density

smoothing float 4.0f Fluid smoothing length

GravityBuilder (type-name: ’gravity’)

Parameter Type Default Remarks

direction vector (0, -1, 0) Gravity direction

magnitude float 10.0f Gravity magnitude

70

RigidBodyBuilder (type-name: ’rigidBody’)

Parameter Type Default Remarks

transform T see above Transform the animation.

radius float 1.0f particle radius

mass float 1.0f particle mass

staticFriction float 1.0f friction coefficient

kineticFriction float 1.0f friction coefficient

particleSleeping float 0.00001f amount of particle sleeping

file string M Points making up the rigid body (txt or

OBJ)

velocity vector (0, 0, 0) Initial rigid body velocity.

repeater string none Optional list of translations. One Rigid Body

per translation. (txt or OBJ)

fixed int none Fix one particle (by ID). Can be specified

multiple times

stiffness float 1.0f Controls amount of deformation allowed.

Has to be between 0 and 1. 1 is fully rigid.

RopeBuilder (type-name: ’rope’)

Parameter Type Default Remarks

transform T see above Transform the animation.

radius float 1.0f particle radius

mass float 1.0f particle mass

staticFriction float 0.0f friction coefficient

kineticFriction float 0.0f friction coefficient

particleSleeping float 0.0f amount of particle sleeping

bending bool FALSE Whether to attach bending constraints.

stiffness float 1.0f Constraint stiffness. Between 0 and 1.

bendingStiffness float 0.5f Bending Constraint Stiffness. Between 0 and

1.

file string M List of positions (and optionally velocities)

making up the rope. (txt or OBJ)

fixed int none Fix one particle (by ID). Can be specified

multiple times

71

SandBuilder (type-name: ’sand’)

Parameter Type Default Remarks

radius float 1.0f particle radius

mass float 1.0f particle mass

staticFriction float 0.15f friction coefficient

kineticFriction float 0.15f friction coefficient

particleSleeping float 0.0001f amount of particle sleeping

WallBuilder (type-name: ’wall’)

Parameter Type Default Remarks

normal vector (0, 1, 0) Normal on the infinite plane.

distance float 0.0f Distance between origin and plane.

72

Appendix C

Basic Application Manual

C.1 XML skeleton

As was mentioned in the thesis, the library was complemented with a

basic application to show-case its capabilities. This basic application

is fairly simple: it reads in an XML file describing the simulation, and

writes out one CSV file containing the simulation results per frame num-

ber. To run the application, one needs to go into the folder where it was

compiled and run it with one or two parameters. The first parameter

is the XML simulation description, the second, optional, parameter the

folder to store the resulting files in. Hence running the basic application

will simply require the following command in the terminal (provided the

terminal is in the right location):

./PBPBD scenefile.xml results/

If the latter argument is not specified the application will automatically

try to write to the ’results’ folder.

The key here is, obviously, how to specify said XML files. This ap-

pendix will show the right XML syntax. The basic application will only

work with XML files adhering to the following pattern:

73

<simulation>

<simulationParameter>value</simulationParameter>

...

<elements>

<element>

<type>elementType</type>

<parameterName>value</parameterName>

...

</element>

</elements>

<particles>

<particle>

<parameterName>value</parameterName>

</particle>

<list>

<parameterName>value</parameterName>

</list>

<listSequence>

<parameterName>value</parameterName>

</listSequence>

</particles>

</simulation>

We explain this skeleton from the first line down (Tag names are in

italics):

• The whole simulation is enclosed in the simulation tags. These are

mandatory.

• Some settings (e.g. time-step, frame count) that are global to

the simulation can be set within the simulation tags immediately.

These are the simulationParameter tags. What tag names to use

exactly, and what values these can take, are specified in section

C.2. The dots on the next line specify that multiple of these lines

74

can follow.

• The elements tag denotes the start of the elements specification.

These tags are mandatory, since a simulation needs at least one

element.

• The element tag denotes the start of the specification of one ele-

ment. At least one element needs to be specified but there is no

upper limit. Every element needs type tags, saying what kind of

element it is. This type completely determines what kind of param-

eters can be given. The type-names that are accepted as element-

Type are the type-names of the default SimulationElementBuilders

from appendix B. Consequently, the parameter names and their

possible values for elements can also be found in said appendix.

• The particles tags are not mandatory. They denote the start of the

particle specification, where particles can be added to objects at

particular frames. There are three different ways of doing this, as

can be seen in the XML skeleton. These three different ways and

their parameters are explained in section C.3.

C.2 Simulation Parameters

The global simulation parameters that are settable within the simulation

tags directly are as follows. M denotes mandatory parameters:

Parameter Type Default Remarks

iterations int M Frame count for the simulation

solverIterations int 5 Iterations for the constraint solver

timestep float 0.1 The time-step between two frames

overRelaxation float 1 The amount of over-relaxation in the system

stabilize int 0 The amount of pre-stabilization iterations

adaptive bool FALSE Whether or not to use adaptive solver itera-

tions

75

C.3 Particles Parameters

There are three different ways of specifying particles within the particles

tags. The simplest is adding one particle through the particle tags, with

the following parameters. M denotes mandatory parameters:

Parameter Type Default Remarks

time int M The frame number the particle should be in-

troduced

object int M The ID of the object to add the particle to

position vector M The start position of the particle

velocity vector (0, 0, 0) The start velocity of the particle

More involved, but also more efficient, is adding a complete list of

particles at once, through the list tags, with parameters:

Parameter Type Default Remarks

time int M The frame number the particle should be in-

troduced

object int M The ID of the object to add the particle to

file string M List of start positions (and optionally veloc-

ities) to create particles with (txt or OBJ)

Again more efficient is adding a list of particles every frame for a

certain range of frames:

76

Parameter Type Default Remarks

time int M The frame number to start adding the parti-

cles

endTime int M The frame number to stop adding the parti-

cles

object int M The ID of the object to add the particle to

file string M List of start positions (and optionally veloc-

ities) to create particles with (txt or OBJ).

This is a template, and exactly one ’*’ char-

acter is excepted. Every frame in the spec-

ified range, a file will be opened with that

character replaced by the frame-number, no

padding.

C.4 Example

To conclude this section, we give a simple example of an XML file. In

this example a simulation is supposed to run for 50 frames with 7 solver

iterations. It contains two sand particles, added at different times. More

complex examples of XML-files will be included in the hand-in.

The example:

77

<simulation>

<iterations>50</iterations>

<solverIterations>7</solverIterations>

<elements>

<element>

<type>sand</type>

<radius>0.8</radius>

<mass>0.05</mass>

</element>

</elements>

<particles>

<particle>

<time>0</time>

<object>0</object>

<position>1 1.2 0</position>

</particle>

<particle>

<time>13</time>

<object>0</object>

<position>5 8 3.2</position>

<velocity>0 -1 1</velocity>

</particle>

</particles>

</simulation>

78

	Table of contents
	List of figures
	Abstract
	Introduction
	Related Work
	Mathematical and Physical Framework
	Algorithm Outline
	Constraint types

	Software Design & Implementation
	Class Diagrams
	Discussion
	Implementation

	Results & Discussion
	Included effects & functionality
	Performance
	Limitations & Future Work
	Adaptive Position Based Dynamics

	Conclusion
	References
	Glossary
	Default SimulationElementBuilders
	Basic Application Manual
	XML skeleton
	Simulation Parameters
	Particles Parameters
	Example

