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Abstract

Physically based models for light transport using ray tracing have become
standard practice in industry as a result of changing demands and computa-
tional power. This approach simplifies pipelines and naturally solves many
issues found with rasterized methods at the expense of computation. There
has been much research and development into reducing such cost although
there are other factors that contribute to latency, such as memory access
and cache coherence of large production data sets. With ever increasing
scene complexity, out of core access to geometry and texture data become
an issue. This thesis investigates a current solution to this problem as de-
scribed by Eisenacher et al. (2013) in combination with other well established
optimisations for production rendering. This solution involves sorting rays
and hit points into batches that are streamed from disk into main memory,
allowing for optimal ray traversal and perfectly coherent shading. As a result
we negate the need for such methods as irradiance caching that compromise
artistic intent and limit scalability.

Keywords: light transport, rendering, memory coherency
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Chapter 1

Introduction

In recent years there has been a renaissance in research for efficient light
transport methods in computer graphics. This has resulted in unbiased ray
tracing for image synthesis and global illumination becoming popular within
film production and the creative industries. Reasons for this are found in the
physically based nature of these approaches, producing more plausible results
and allowing for greater complexity. They also replace previously biased
methods and as a result they simplify pipelines and improve scalability at the
cost of computation. However the needs of production rendering and that of
predictive rendering are very different with much research being concerned
with the later. Developing more consistent estimators in relation to wave and
quantum optics don’t necessarily benefit production, as it is not concerned
with scientific analysis but rather visual fidelity. Production needs and as
a result research are usually characterised by four distinct areas: sampling
strategies, efficient ray traversal, scalability and memory performance. With
advancement in silicon processors and their scalability as well as the ever
increasing demand on geometric and shading complexity, memory perfor-
mance becomes an issue. This is potentially compounded with incoherent
and out-of-core access commonly found with ray traced methods.

This thesis will focus on the development of a rendering architecture
based upon that described in Eisenacher et al. (2013) which mitigates the
issues surrounding memory performance when processing large data sets.
The implementation involves a two stage sorting procedure of large and
out-of-core ray batches to obtain coherency in both ray traversal and surface
shading. An optimised ray tracing kernel takes advantage of the coherence
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to efficiently traverse scene geometry while sequential and vectorized texture
lookup improves cache coherency when shading. This is then implemented
around a uni-directional pathtracer with modern sampling optimisations and
a highly parallel, concurrent and re-entrant design. Current standards in
colour and image management are also taken into account during development
of a command line tool for testing.

An overview of the development of ray traced solutions towards image
synthesis is covered in chapter two while the relevant theory behind physically
based rendering is explained in chapter three. In chapter four we develop upon
the theory discussed in chapter three and describe an algorithmic solution to
the lighting integral as well the architecture that is later implemented. Then
for chapter five there will be a detailed explanation of the implementation
itself and it’s design methodology. Finally in chapter six we will conclude
with suggestions for further development and optimisation.
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Chapter 2

Related Work

Ray tracing for computer graphics was originally suggested by Whitted (1980)
and has become a very popular area of research. This is partly due to the
simplicity and elegance of its design as well as the visual fidelity it can repro-
duce. After this initial paper, it was developed upon by Cook et al. (1984)
with distributed ray tracing that used stochastic sampling to produce a more
accurate lighting model. This allowed for such physical phenomenon as depth
of field, motion blur and glossy surfaces but also introduced variance. As a
result it meant that multiple samples needed to be taken to resolve an image,
increasing the computational cost.

Later Kajiya (1986) proposed the rendering equation that allowed for a
more physically based representation of energy redistribution and transport
in non-participating media. The same paper also introduced an algorithmic
solution to this integral equation called uni-directional pathtracing that solved
the problem with a Monte Carlo based numerical integration. This extended
the concept of a ray into a path that was randomly chosen and accumulated
radiance throughout a scene. Pathtracing can produce very plausible results
in comparison to previous ray tracing and rasterized approaches but was too
computationally expensive to be practical in a production environment.

Sampling optimisations were then introduced in the seminal paper by
Veach (1998) that took advantage of both classical importance sampling as
well as methods for combining multiple sampling strategies called multiple
importance sampling.
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Other biased approaches are also suggested such as irradiance caching
which was originally proposed by Ward et al. (1988) and methods based on
nearest neighbour estimation called photon mapping, introduced by Jensen
(1996). These amortised the rendering equation and will cache forms of light
transport to save on computation. When used with traditional ray tracing
they are referred to as multipass methods and require pre-render passes and
a specific shader design. This can improve performance considerably but also
complicates production pipelines and compromises artistic intent.

Veach also defined the path integral formulation of the rendering equation
to combine both multiple importance sampling with a bi-directional path
tracing algorithm. This was then further developed with Markov Chain Monte
Carlo sampling strategies that was originally noted in Kajiya (1986). More
recently there has been work done on combining bi-directional pathtracing
and photon mapping in Georgiev et al. (2012), known as vertex connection
and merging.

An overview of these different solutions to the rendering equation can
be found in both Dutre et al. (2006) and Pharr and Humphreys (2010).
Many of these methods significantly improve sampling performance for scenes
with complex light transport. However for scenes that don’t exhibit such
complexity, it incurs considerable computational overhead in comparison to
standard uni-directional pathtracing. Another issue is that these advanced
sampling strategies and algorithms only solve the sampling problem. They
do not address ray traversal, memory performance or scalability.

There has been work on utilising single instruction multiple data to im-
prove ray traversal. This research has a direct impact on production rendering
as it does not address corner case scenarios but rather the overall performance
of the system. Ray packets were introduced with Wald et al. (2001) which
aligned rays into vector lanes for instruction level parallelism on modern pro-
cessors. This meant that multiple rays could be tested against a single node
within an acceleration structure simultaneously, resulting in faster traversal.
This however relies on ray coherence in both location and direction which is
unlikely due to the random nature of pathtracing algorithms. Without coher-
ence the effectiveness of this optimisation decreases and sometimes negatively
affects performance as vectorized instructions can have potential overheads.
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An alternative to this is described in Wald et al. (2008) where the nodes of
a bounding volume hierarchy are vectorized allowing for better performance
with both coherent and incoherent rays. Results have shown however that
this approach does not perform as well as using coherent ray packets.

A highly optimised framework for ray traversal called Embree is described
in Wald et al. (2014) which implements both ray packets and vectorized
bounding volume hierarchies while automatically optimising for the process-
ing architecture. This however is still dependent upon ray coherence for
optimal results.

The issue of memory coherence when ray tracing was addressed in Han-
rahan (1986) where breadth first traversal was used to allow for geometric
cache coherency. Memory limitations meant that this was done for every
individual scanline which gave significant increase in performance but was
not optimal. Ray queueing at grid boundaries was introduced by Pharr
et al. (1997) which focused on efficient caching of out-of-core geometry. This
was also a breadth first approach and as a result has the same issues with
memory limitations when sorting rays. They mitigate this problem by taking
advantage of computational decomposition and storing path information such
as probability and importance with the original samples. This however means
that other common methods used within global illumination algorithms such
as adaptive light sampling can not be implemented.

This research into memory coherence has shown significant improvement in
performance when considering ray traversal of scene geometry. However there
has been little work on explicitly improving shading and texture coherence
apart from that found naturally as a result of sorting for traversal. This
has been the primary focus of Eisenacher et al. (2013) in which they present
a solution to coherence for both ray traversal and surface shading. They
use a breadth first approach and stream compressed ray batches to disk to
handle memory limitations. Each batch will pass through a two stage sorting
procedure to find coherence in both ray traversal and hit point shading. This
has shown to substantially improve performance when handling data sets
with considerably large and layered textures during the shading process.
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Chapter 3

Theory

Physically based rendering involves accurately modelling the transport of
electromagnetic radiation through space and its interaction with objects and
volumes. The energy is measured across a surface to resolve an accurate two
dimensional representation of a three dimensional scene. This scene is usually
defined as surfaces that reflect, transmit and radiate energy using parametric
data as well as statistical models to describe the surfaces on a micro level.

3.1 Radiometry

Here we will define light as the visual range within the electromagnetic spec-
trum and use the geometric model as described in Dutre et al. (2006). Light
can be measured according to several radiometric quantities. The most basic
of these is flux which is commonly written as Φ and is represented in watts.
Irradiance and radiosity are the incident and exitant quantities with respect
to unit area and are both expressed as watts/m2. Radiance is the most
applicable measurement in light transport and is expressed as flux per unit
projected area per unit solid angle.

The reason for radiance being commonly used when discussing light trans-
port is that it is invariant along straight lines when not taking into account
participating media. If the incident and exitant positions of radiance are
reversed or the distance changed, the amount of energy measured is constant.
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Figure 3.1: Definition of radiance (Dutre et al., 2006)

When considering radiance, the projected area as seen in figure 3.1 is
equivalent to the cosine of the surface normal and the incident direction. This
is due to the projected area distributing the energy across a large surface and
as a result reducing irradiance which is measured per unit area.

3.2 The Rendering Equation

A mathematical formulation for the distribution of light in a graphical context
was first introduced by Kajiya (1986) and named the rendering equation. This
describes the radiance at a position on a surface as the sum of emitted and
reflected energy in a particular direction. We also make the assumption that
light travels instantaneously, is not spectrally dependent and travels through a
vacuum without interacting with participating media. The rendering equation
can be written as

L(x→ Θ) = Le(x→ Θ) +

∫
Ωx

L(x← Ψ)fr(x,Ψ→ Θ)cos(Nx,Ψ)dωΨ (3.1)

where L(x→ Θ) is the total radiance in a direction and equals the summation
of both the emitted and reflected energy. Emitted radiance is written as
Le(x → Θ) while reflected radiance is an integration of three parts across
the unit hemisphere above the surface. The first part being written as
L(x ← Ψ) is the incident radiance from all directions. This is then scaled
by fr(x,Ψ→ Θ) which represents the bidirectional reflectance distribution
function of that position. The final part is the cosine term which converts
the surface irradiance into radiance, accounting for the projected area.
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As there is an unknown quantity of radiance on both sides, it is known
as a Fredholm equation of the second type, making it a recursive integral.
This becomes an issue for computing an unbiased estimate, but this will be
addressed later in section 3.5 of this chapter.

A bidirectional reflectance distribution function (BRDF) describes how a
surface reflects the incident light and must have at least two properties as
stated in Pharr and Humphreys (2010) to be considered physically correct.
The first of these is called Helmholtz reciprocity which states that if both
the incident and exitant directions are interchanged then the amount of light
reflected is the same. The second property is the law of energy conservation
which means that the total amount of energy reflected in all directions must
be equal to or less than the total amount of energy received from all incident
directions.

Another equation known as the response function measures the propaga-
tion of importance instead of radiance in the opposite direction. This can
allow for a more intuitive description of the problem as computation that has
no effect on the image plane is never taken into consideration. It is written as

W (x→ Θ) = We(x→ Θ) +

∫
Ωx

W (x← Ψ)fr(x,Ψ← Θ)cos(Nx,Ψ)dωΨ

(3.2)
where the bidirectional reflectance distribution function is reversed and all
radiance terms are replaced with their equivalent variant for importance.

In Dutre et al. (2006) other formulations of this equation are described
that can become useful when efficiently solving the problem. The original
rendering equation takes the integral of radiance across the hemisphere but it
can also be described as the integration of all visible surfaces at that position.
This is called the surface area formulation and is written as

L(x→ Θ) = Le(x→ Θ) +

∫
A

L(y → −→yx)fr(x,Ψ↔ Θ)V (x, y)G(x, y)dAy

G(x, y) =
cos(Nx,Ψ)cos(Ny,−Ψ)

r2
xy

(3.3)
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where V (x, y) is the visibility term between both positions and G(x, y) is the
geometric term that defines the probability of radiosity being received from
that surface area.

The surface area formulation allows for a decomposition of the rendering
equation as shown in Dutre et al. (2006) into separate integrals for both direct
and indirect contribution. This can be written as

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ)

Lr(x→ Θ) =

∫
Ωx

L(y ← Ψ)fr(x,Ψ→ Θ)cos(Nx,Ψ)dωΨ

Lr(x→ Θ) = Ldirect + Lindirect

(3.4)

where direct and indirect integrate according to both the surface area and
hemispherical formulation respectively as

Ldirect =

∫
A

Le(y → −→yx)fr(x,
−→xy → Θ)V (x, y)G(x, y)dAy

Lindirect =

∫
Ωx

Li(x← Ψ)fr(x,Ψ→ Θ)cos(Nx,Ψ)dωΨ

Li(x← Ψ) = Lr(r(x,Ψ)→ −Ψ)

(3.5)

and r(x,Ψ) is a position on the hemisphere. This means that separate sam-
pling strategies can be used for each integral and correctly weighted according
to some sort of heuristic.

The path integral formulation was introduced by Veach (1998) and is
another useful representation of the original rendering equation. It describes
the throughput of light through all possible paths of any length within global
path space. This is better suited than the original recursive equation for
discussion of more complex algorithms such as bi-directional pathtracing. It
can be written in the form of

Φ(S) =

∫
Ω∗
f(x̄)dµ(x̄) (3.6)

where Ω∗ denotes the path space and x̄ is a path of any length with f(x̄)
being the throughput of radiance along that path. This throughput takes
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into account all weighting along the path as well as the light radiance and
camera importance at both ends.

3.3 Monte Carlo Integration

Solving the rendering equation in all but the most trivial of scenarios involves
numerical integration and is done using a Monte Carlo estimator. This can
be written as

〈I〉 =
1

N

N∑
i=1

f(xi, yi)

p(xi, yi)
(3.7)

for a two dimensional integration where f(xi, yi) is the function and p(xi, yi)
is the probability density (PDF) of the sample taken. The advantage of
Monte Carlo methods for numerical integration is that it makes expanding
into higher dimensional space relatively simple and computational linear.

An optimisation noted by Kajiya (1986) is that importance sampling
can be used to substantially reduce variance within the estimator. This
involves sampling according to a probability density function that is equal
or similar to the function being evaluated. The value is then divided as
seen in equation 3.7 by the probability, resulting in an unbiased estimate.
If however the probability density function from which a sample is created
does not resemble the function being evaluated, then the variance will increase.

Figure 3.2: Different importance functions (Dutre et al., 2006)

Sampling according to the function itself can be very difficult or impossible,
so usually a similar function is used that has a known probability density.
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This function is called an importance function and is illustrated in figure
3.2 with a worst to best case scenario from left to right respectively. The
function is then converted into a cumulative distribution function (CDF) and
finally inverted to allow for uniform variables to be mapped onto the correct
distribution.

3.4 Multiple Importance Sampling

Multiple sampling strategies can be used to evaluate the same rendering equa-
tion as is seen with equation 3.1 and equation 3.3. These different strategies
can both be importance sampled but only one might be effective. Multiple
importance sampling is a method introduced by Veach (1998) as a means
to sample multiple strategies and weight them according to their respective
probability. When using multiple importance sampling, the estimator is
written as

〈I〉MIS =
m∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
(3.8)

where we have m different sampling strategies. The wi(x) function is a
weighting term called the balance heuristic and is described as

wi(x) =
nipi(x)∑m
k=1 nkpk(x)

(3.9)

where the denominator takes into account all other sampling strategies.
Although the balance heuristic is proven by Veach (1998) to be near optimal
in most scenarios, another combination strategy named the power heuristic
can sometimes be more effective. This is best used when noise is evident from
low-variance problems as it will favour sampling strategies that match the
integral very well. The power heuristic is written as

wi(x) =
[nipi(x)]β∑m
k=1[nkpk(x)]β

(3.10)

where the probability of the sampling strategy is raised to the power of β
which is divided by all strategies that are also raised to the same power.
Veach recommends β = 2, as this performs well in most scenarios that the
balance heuristic does not.
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3.5 Russian Roulette Termination

As the rendering equation is a recursive integral it is clear that a fixed stopping
procedure will introduce bias into the estimate. This can be solved by using
a technique called russian roulette termination. Using russian roulette also
has the benefit of terminating paths that have a low probability of giving a
significant contribution but will also increase variance. This technique involves
picking an absorption probability and a uniform random variable between zero
and one. If the random variable is below the absorption probability then the
evaluation is terminated, contributing nothing to the estimate. Compensating
for this loss of energy is done by scaling the contribution when the random
variable is above the absorption probability by the multiplicative inverse of
the absorption probability itself. The estimator can be written as

〈I〉RR =

{
1
P
f( x

P
) if x ≤ P

0 if x > P
(3.11)

where P is equal to one minus the absorption probability. The absorption
probability can be any value but in Dutre et al. (2006) it is noted that using
the hemispherical reflectance of the surface will produce better results than a
constant variable.

Another improvement noted by Veach (1998) is defining the absorption
probability as min(1, ti/δ) where ti is the original probability and δ is a
threshold that can be used to control variance. This prevents russian roulette
from increasing variance until the original probability is below the threshold.
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Chapter 4

Algorithms

In the previous chapter the integral equation to light transport was described
as well as various improvements that all maintain an unbiased estimate
when numerically integrating. Efficiently computing this integral can be very
expensive so consideration of memory performance and sample contribution
must be taken into account when considering an algorithmic solution.

4.1 Uni-directional Pathtracing

When Kajiya originally published his paper (Kajiya, 1986) he also proposed
an algorithm to solve the rendering equation. This is called uni-directional
pathtracing and uses a Monte Carlo estimator to solve the recursive integral.

This took work done previously in radiosity approximation and adapted it
to ray tracing so that only visible points from the camera need computation.
The concept of a ray was extended into a path that represented a set of se-
quential rays. This path would be constructed with each intersection creating
the next ray within the set according to some importance function. This
importance sampling technique is only effective if the importance function
resembled the BRDF, increasing variance if not. Each segment is an estimate
of the reflective integral while any radiance found being emitted from the
surface contributes to the estimator while taking into account the path’s
weight and probability. Evaluating the path as a whole means finding the
product of its initial state and each transition until the contributing state is
reached.
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This becomes computationally very expensive as each segment or ray
requires scene traversal without any guarantee that it or any resulting ray
will contribute to the final estimate. Multiple paths are then averaged using
a Monte Carlo estimator to produce the final pixel value.

4.2 Sampling Strategies

Much variance in the original pathtracing algorithm is due to only sampling
with an importance function based upon the BRDF of the surface. Another
approach is to sample direct and indirect lighting as described in equation
3.5 and combine the two results.

4.2.1 Next Event Estimation

Sampling the both integrals separately is called next event estimation and
involves creating a deterministic ray for each intersection towards a stochastic
sample upon the light’s surface to determine its visibility. Then evaluating
the light’s radiosity as well as its probability in respect to the projected solid
angle. These satisfy both the geometric and visibility terms when integrating
across all visible surfaces. The BRDF is then used to continue the path. This
can be seen illustrated in figure 4.1 with each intersection tracing deterministic
rays towards the light. Both of the sampling strategies are then combined to
produce an unbiased result.

This approach however can also increase variance if the BRDF has a
specular surface distribution and the projected solid angle of the light area
onto the hemisphere has an even distribution. In this scenario the BRDF
sampling strategy better matches the direct lighting integral than sampling
according to the area formulation. This can be improved by allowing both
the light and BRDF sampling strategies to contribute to both the direct and
indirect integrals and weighting their contribution.

4.2.2 Combining Strategies

This weighting can be determined by using multiple importance sampling as
described in equation 3.8 with either the balance or power heuristic. This will

14



Figure 4.1: Pathtracing with next event estimation (Dutre et al., 2006)

result in a weighting that takes advantage of both strategies and maintains
an unbiased estimate. When a highly specular surface is being shaded with
area lights that project evenly across the hemisphere, the heuristic will give
more weight to contributions from the BRDF sampling strategy. When the
surface has a very diffuse distribution and the area lights projected area
across the hemisphere is small, then the heuristic will weight more towards
the contribution from the light sampling strategy.

4.3 Sorted and Deferred Shading

Uni-directional pathtracing with next event estimation and multiple impor-
tance sampling is a robust solution to the sampling problem as well as being
highly scalable. Latency that results from inefficient sampling has been
recognised and substantially reduced but with larger data sets, other forms
of latency have become very apparent. Production scenes are constantly
becoming more complex and the incoherent nature of pathtracing and the
resulting memory access have become a real problem when traversing and
shading.
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In the paper (Eisenacher et al., 2013) an architecture for coherent uni-
directional pathtracing is described to mitigate this problem with memory
coherency. Traditionally a depth first approach is used when pathtracing
where each path is constructed, evaluated and then discarded. This prevents
any form of sorting for coherency between rays when considering traversal or
shading, resulting in very incoherent memory access. What Eisenacher et al.
(2013) proposes is a breadth first approach where rays from multiple paths
are processed according to a two stage sorting procedure. Allowing enough
rays to fit within memory requires them to be stored in directional batches
that are streamed to and from disk. During the shading procedure each ray
can create a subsequent ray that is feed back into another batch representing
the last segment of a path. These two stages are referred to as ray sorting
and deferred shading respectively.

The ray sorting stage first takes rays from either the camera or a surface
being shaded and compresses them for streaming. This is very important
as the primary latency cost for coherency is not sorting but rather writing
and reading batches to disk. Rays are compressed and stored in local thread
buffers before being added to one of six cardinal direction bins. Every bin
will hold a single batch of rays in a memory mapped file with an incremented
atomic pointer to allow for lock free write access. When a bin’s capacity is
reached it’s scope is locked while the file is closed and its address gets added
to a batch queue. When this is done, a new file is created and the scope is
unlocked allowing for compressed rays to be written.

Before traversal an address is taken from the batch queue, rays are then
loaded and decompressed into main memory. Concurrent loading and pro-
cessing of ray batches are used to minimise thread downtime. Batches are
first sorted using a recursive median partition according to position until a
subset of no more than 4096 rays are found. Then they are further sorted
according to direction until groups of 64 coherent rays are produced. This
then allows for a memory coherent traversal of an acceleration structure using
vectorized packets or bounding volume hierarchies. Taking advantage of the
ray coherency can substantially reduce traversal times.

When traversal of the batch is complete and the intersection hit points
are found, then the differed shading stage begins. Each intersection from
the batch will have some differential information that is used for sorting.
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Using this information, all intersections are sorted according object and then
primitive identification.

This results in faces that are intersected being only accessed once during
a single batch. When shading the surface at each intersection point, per-face
textures are loaded with perfect coherence and whole textures are loaded
with minimal overhead in regard to memory performance. Texture lookup
can also take advantage of vectorization to maximise performance. Finally
new rays that are created to continue the path, are compressed and added to
the threads local buffer which is later passed to the directional bins.
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Chapter 5

Implementation

This thesis is concerned with the development of a uni-directional pathtracer
based upon the architecture described in Eisenacher et al. (2013). The lan-
guage chosen for development is C++03 and other third party libraries are
used for added functionality.

The intended outcome is to produce a robust architecture as a program-
ming library that can handle large data sets while still maintaining efficiency
and being extendible. The requirements and standards of production envi-
ronments have been taken into account within the design and when adding
dependencies. The scope does not cover the implementation of a graphical
tool for end users nor the implantation of advanced modules or shaders.
However the design accommodates for the extension of the pathtracer using a
modular interface of which basic examples have been implemented throughout.

Despite previous work done on similar projects, almost none of the code
written for such projects has been used here. The only notable exception to
this is the ThinLensCamera class which has been extensively modified as well
as the Common utility header that has also been extended. There is a generic
Framebuffer class that is used in the example program to visualize the output.
This is also a development upon something very similar originally developed
for a previous project.
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5.1 Libraries

Dependencies were chosen to conform to industry standards as well as reduce
the amount of development for things that the project was not directly
investigating. The most notable of these is a hit testing library named
Embree that is maintained by Intel for CPU architecture. Embree is a highly
optimised system for constructing acceleration structures and traversing rays
to find closest intersections. This performance however is dependent upon
ray coherence and as result naturally benefits from any improvements in this
area. The project requires that the rtcore enable ray mask option be
enabled when compiling Embree as it takes advantage of the libraries masking
functionality to avoid float point precision errors. Required dependencies are
as follows:

• Boost 1.55

• TBB 4.2

• Embree 2.6.1

• OpenEXR 2.2

• OpenColorIO 1.0.9

• OpenImageIO 1.5.13

• Yaml-Cpp 0.5.1

• Eigen 3.2.4

• Python 2.7

• GLFW 3.0

• GLEW 1.11

All libraries that can be found within the VFX Reference Platform conform
to the versions stated in the CY2015 standard. When building the project,
the CMake system with a version of at least 2.8 is recommended and all
non-standard modules are included with the source code. Another third
party library named tinyobjloader is also included with the source for loading
geometry data.
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5.2 Requirements

Development goals have been oriented around production needs rather than
implementing research for corner case scenarios. These needs in a broad
sense can be categorised into three distinct areas. These being extendibility,
iteration and system performance as described by Křivánek et al. (2013).
Performance can be further decomposed into sampling strategies, efficient ray
traversal, scalability and memory performance. Colour pipelines are another
issue that should be addressed when working with and creating images.

When considering the complexity of industry pipelines it is important
to allow for the extension of a system through generic interfaces. This is
accomplished here with the use of a modular design inspired by the Physically
Based Rendering Toolkit (Pharr and Humphreys, 2010). There are a total
of seven different module types that allow the extension of lights, cameras,
filters, objects, shaders, samplers and textures.

Iteration is also important to allow for fast creative feedback of artistic
changes. This has been accommodated for using a two stage sampling routine,
enabling a user to trade in overall efficiency for iteration speed.

With the last requirement being performance, all sampling techniques
from the previous chapter have been used to allow each individual sample
to have a greater contribution with minimal overhead. The system is highly
parallel and concurrent while implementing the design described in Eisenacher
et al. (2013) which has the added benefit of allowing for faster traversal when
using the Embree library.

The colour pipeline assumes that all calculations are performed in float
point linear space. This means that all textures are converted to linear space
and mipmapped using the maketx command line program before rendering.
The maketx program is distributed with OpenImageIO which needs to be
compiled against OpenColorIO. The implementation will then either display
the image using sRGB colour space or save to file in linear space after rendering
is complete.
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5.3 Design

When designing the implementation a balance between two paradigms were
taken into account. The first being object orientation which encourages encap-
sulation and extendibility through polymorphism. This allows for abstraction
at a higher level of the system without affecting performance critical pro-
cesses. However the object oriented paradigm amortises data and as a result
degrades performance with cache misses while also preventing instruction
level parallelism. This has meant that a data oriented paradigm has been
used on more performance critical areas of the project.

Data oriented programming structures computation around data with
access being local in time and address space. This means representing data in
continuous arrays that are processed using iteration, minimising the chance
of a cache miss and reducing instruction calls to polymorphic classes. An-
other benefit to data orientation is that it makes instruction level parallelism
through vectorization more applicable. Generally throughout the project
there has been an effort to maintain locality in both access and location of
information. Functions are designed to take arrays of continuous data over
being called iteratively and being passed individual elements when there is a
chance of multiple elements needing to be processed.

Scalability has been considered from the beginning as thread synchronisa-
tion can have a considerable impact on performance. Workloads for a parallel
task are also rarely well balanced so the project uses a task based system
that amortize these workloads and allows for better thread utilisation. The
Threaded Building Blocks (TBB) library was chosen to handle tasks which
also provided thread safe containers for data synchronisation. When local
thread storage is required, TBB also provides templated classes to access
local thread data, avoiding contention entirely. This is used when accessing
random number generators or texture caching systems. Information that
represents the scene description is considered immutable during processing to
prevent data races.

Concurrency is a broader term than parallelism which is the execution of
similar tasks simultaneously. The difference is that a concurrent system refers
to one where tasks can work independently from each other, with the possibil-
ity of working simultaneously. These tasks however are not necessarily similar
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or improving performance but are a way in which a process is performed. An
example of where this concept is implemented can be given in how batches
are loaded and processed. When processing a single batch many tasks are
used in parallel while another task that is potentially working simultaneously,
loads the next batch to be processed. This results in improved performance
as it prevents threads from hanging while waiting for the operating system to
read batches from disk.

Allowing for progressive rendering meant that combining samples to
represent the colour of a pixel is done in two separate stages. The first stage
involves creating multiple samples on a sub-pixel level and then filtering
them to produce a result. This result is then combined with previous results
and averaged for every iteration over the image. Larger sample counts and
lower iterations will allow for better coherency between the rays as well as
more advanced sampling and filtering routines. Lower sample counts and
more iterations allow for a faster progressive feedback while losing some
performance. This design also allows for the system to be re-entrant as the
processing can be stopped between iterations and started again at a later
time.

Figure 5.1: Simplified diagram of the main system
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5.4 Details

Development of the implementation was structured around the Pathtracer
class which is also used as the main interface when integrating the library
into other software. Everything is written in accordance to the NCCA coding
standard while also using namespaces to prevent pollution of global context.
Shared headers, utilities and linear algebra types are all found in the Common
header file which is included throughout the code base.

5.4.1 Pathtracer Class

The Pathtracer class is the only one needed to be included in external appli-
cations to render an image. Construction involves passing a path to a scene
description file as a std::string. The scene is then passed using the Yaml-Cpp
library with each constructible object handling its own construction. Required
objects also have defaults that are used when that particular object is not
found within the scene file. The internal image can be accessed and reset using
the image() and clear() functions respectively. Terminating the pathtracers
execution can be done using terminate() while querying its current state is
done using active().

Figure 5.2: Overview of the Pathtracer class

Creating an image is done using process() which will render the scene and
store the result internally. This method will first create the primary rays
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from the camera, writing them as batches to disk and storing the reference
as a BatchItem in a concurrent queue. When the queue is finished being
populated, batches are taken from the queue and processed in a while loop.
While batches are being processed the next batch is being read in using a
Boost thread in a concurrent manner. When the queue is found to be empty,
the DirectionalBins object is flushed to populate the queue with another
BatchItem. DirectionalBins will decide upon which internal bin to flush to
the queue based upon the bins size. Deciding upon the correct bin can have
a substantial impact upon performance but taking the largest has proven to
give best results.

Within the while loop the pathtracer will decompress the batch and call
four methods that are described in Eisenacher et al. (2013). These methods
are raySorting(), sceneTraversal(), hitPointSorting() and surfaceShading()
with each being amortised into tasks and processed in parallel. The first
method takes the decompressed ray batch and sorts the results with a recur-
sive median partition. Scene traversal uses the Embree library to populate
the decompressed ray batch with intersection data. The third method uses a
parallel sort algorithm provided from the TBB library to sort rays according
to both the geometry and then the primitive identification numbers found
during traversal. Surface shading then uses a custom Range type that allows
TBB to divide the batch into tasks according to intersected objects and then
integrates the light distribution at each intersection point.

As each batch is taken from the queue and processed, new batches are
created from the surfaceShading() method and added to the queue. When
all batches have been processed and each path has been terminated the final
image is then filtered. This is done using the imageConvolution() method
which uses a filter to convolve the samples and stores the resulting image
internally.

Compressed rays are streamed to and from disk while being managed by
the DirectionalBins class. This class handles the synchronisation of adding
ray buffers to the six cardinal direction bins as well as writing these bins to
disk when their capacity is used. Flushing the largest bin to disk when new
batches are required is also handled internally within the class.
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5.4.2 Parallel Processes

This is a broad outline of the Pathtracer classes process() method although it
can be described in more detail when looking at the individual classes that
are integrated into TBB to allow each part of the method to be parallelised.

The Camera class is used with a parallel for loop and a blocked range to
divide the image pixels in tasks that are processed in parallel. Then for all
samples within a pixel, the sampler interface creates sample positions. These
samples are then used by the camera interface to generate compressed rays
which are stored within the tasks buffer. When the task has finished creating
all rays for that block it gives the buffer to the DirectionalBins object to
stream the data to disk.

When ray batches are loaded they need to be decompressed before being
processed. This is done using the RayDecompress class and a parallel for
loop with a standard range. The range is divided automatically using a
auto partitioner which attempts to reduce splitting while also allowing for
task stealing between threads to balance workload.

Before ray batches can be sorted for traversal their bounding box needs
to be computed. This is accomplished using the RayBoundingbox class and a
parallel reduce algorithm with a standard range. This will divide the batch
into tasks where each sub-range computes a bounding box according the the
ray positions. When the task is has completed, the bounding box is combined
with that of other tasks in a hierarchical structure. This process allows for
best use or parallel computation.

Sorting the ray batches for traversal is done using the RaySort class
which takes the bounding box created by the RayBoundingbox class and
divides it using a median partition along the longest edge. This class acts
as a recursively parallel functor with the use of the parallel invoke algorithm
which allows for parallel branching. Every invocation of the functor sorts
the sub-range according to ray position with a parallel sort algorithm. Task
scheduling between the parallel invoke and parallel sort tasks is then handled
with TBB for optimal results. Rays are sorted according to position until the
sub-range falls below 4096, as sorting is then done according to ray direction
until coherent groups of no more than 64 rays are found.
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Scene traversal is then done using the RayIntersect class that uses a
parallel for algorithm and a standard range. The Embree library then takes
the sorted and uncompressed ray batch and creates intersection data. The
configuration of Embree has been set to allow for optimal traversal with
coherent rays to take advantage of the sorting procedure.

Uni-directional pathtracing is performed within the Integrator class during
surface shading. This class uses the parallel for algorithm and a blocked range
with a partitioner template called RangeGeom. The RangeGeom template
will split the computational workload according to some comparable value of
the data being processed. The result will be tasks working on data with a
continuous value although ranges that are too large will still be divided to
distribute workload. This requires that the data be sorted according to this
value before being partitioned. Sorting of the intersected ray batches is done
using the parallel sort algorithm.

The Integrator class first loads in or creates thread local storage. Then
it finds the object intersected which is guaranteed to be the same for all
intersections within this task due to the RangeGeom partitioner. Then it
proceeds through five parts before completing, taking advantage of the shared
intersection information between the rays. First if an object was not hit then
the task completes, terminating all rays. Then if the object hit was a light,
then the radiance transmitted through the path represented by each ray is
weighted and balanced with multiple importance sampling. The resulting
value is then added to the sample and all paths are terminated, completing
the task.

When the procedure has passed both first and second parts, it is known
that an intersection with an object has occurred. The third part is cloning the
surface shader and calculating the colour coefficients of all intersections with
perfect coherence. These values are then stored internally within the shader
and used in the last two parts of the procedure. Then we integrate across the
combined surface area of all lights with an even pick probability. The chosen
light for each ray intersection is sampled and tested for visibility using a ray
traced approach. Geometry masks are used so that visibility testing does not
have to consider float point precision errors that result in self intersections.
Radiance from the light is then weighted according to the surface shader
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and the throughput of the represented path. Finally the result is balanced
for multiple importance sampling and added to the sample. The last part
continues the random walk of the path by sampling the surface shader and
adding compressed rays to the tasks buffer. Before the task completes, the
buffer is given to the DirectionaBins class which stores the new rays internally.

When the batch queue is completely empty and all samples have been
evaluated, the Convolve class is used to produce the final colour. This class
uses the parallel for algorithm and a blocked range in the same manner as
the Camera class. It then passes the blocked range to the filter interface
which stores the resulting colour information within the Pathtracer’s image
structure.

5.4.3 Modular Interface

There are seven modular components to the system and basic examples of
each module type have been developed. These modules allow the system to be
extendible but for performance purposes take ranged data where appropriate.
This adds flexibility and also means that other compute devices can be used
to accelerate modules internally if required.

Figure 5.3: Simplified diagram of the module interfaces

The interface for a light module requires that two methods are imple-
mented for multiple importance sampling. When an intersection requires
radiance from a light, the illuminate() method is used and passed the in-
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tersection position. This method then returns the direction to a sample on
the lights surface area, the distance to that sample, radiance leaving the
sample and finally the probability density in respect to the hemisphere. The
second method is called radiance() and is called when a light is intersected.
It takes the direction of the intersecting ray and returns the light radiance,
the probability in respect to surface area and the cosine angle between the
reversed ray direction with the light normal. The QuadLight class is an
implementation of the light interface and represents a planar light which
illuminates in single direction.

Primary rays are generated using a camera module that inherits from the
camera interface. This interface requires a single method to be implemented
called sample() which takes a range of sample positions and produces com-
pressed rays. There are two example implementations of this module type
being the PinHoleCamera and ThinLensCamera classes. The PinHoleCamera
class creates a perspective project upon the image plane through a single nodal
point. This class has a variable focal length that is measured in millimetres
and assumes a film plane size of 35mm horizontal. When depth of field is
required, the ThinLensCamera can be used which extends the PinHoleCamera
class with variables for focal depth and aperture size.

When convolving the image a filter module is passed samples and produces
colour values for each pixel. The filter interface requires a convolve() method
to be implemented which takes the samples that are to be filtered as well
as an image to store the results. Along with this, the images width, height,
sample count as well as the blocked range to compute must also be passed.
There are two example implementations that are the BoxFilter and TentFilter
classes. The BoxFilter class will evenly average all samples within the pixel
while the TentFilter class should produce better result and considers samples
in neighbouring pixels.

Geometric objects are represented with object modules and must inherit
from the object interface. This interface requires that texture() and shader()
methods are implemented which retrieve the texture coordinate and shader
index respectively. The texture() method requires a primitive identifier and
barycentric coordinate to find the corresponding texture coordinate for an
intersection. The PolygonObject class is an implementation of the object
interface and represents triangulated meshes built from vertices, texture coor-
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dinates and face indices.

Shading of surfaces is described through shader modules that inherit from
the shader interface. The shader interface requires that five methods be
implemented. These are clone(), initialize(), continuation(), evaluate() and
sample() with the last two being used for multiple importance sampling.
The clone() and initialize() methods are used to duplicate the shader and
lookup texture values for each range of hit points being processed within the
Integrator class. This is so that thread contention is avoided and to allow
textures to be accessed in perfect coherence with vectorised instructions. The
initialize() method takes the amount of texture coordinates to be evaluated,
the texture coordinates themselves and a texture cache. The continuation()
method allows the shader to give an approximation of the surfaces reflectance.
This is used when evaluating for russian roulette termination within the
Integrator class.

When lights have been deterministically sampled, the radiance distribution
on the surface is found by calling the evaluate() method. This takes the colour
index of the intersection created during the initialize() method, input light
direction, output light direction and surface normal. This returns a weighting
distribution, the cosine angle of the sample direction with the surface normal
and finally the probability density of the sample direction in respect to the
hemisphere. The sample() method is used to create a direction according
to some probability that resembles the surface distribution. This takes the
colour index of the intersection created during the initialize() method, output
light direction and surface normal. Unlike the evaluate() method it does not
take an input light direction as this is what it returns. The method will
also return a surface weighting distribution, the cosine angle of the sample
direction with the surface normal and finally the probability density of the
sample direction in respect to the hemisphere. The weighting distribution
returned by both evaluate() and sample() must conform to the requirements
of a BRDF in their physical correctness so that bias is not introduced.

There are two shader implementations being the NullShader and Lam-
bertShader classes. The NullShader class does not contribute any radiance to
a scene and is used as an index when mapping objects to lights. Perfectly
diffuse surfaces are created using the LambertShader class which gives a
perfectly lambertian distribution. When sampling this shader it will give a
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direction and a probability density proportionate to the cosine distribution
around the surface normal as described in Dutre et al. (2006).

Sampling the image is done using a sample module that inherits from the
sampling interface. This only requires a method called sample() be imple-
mented that takes the base sample count and will return sample positions
across the pixel area. There are three implantations of this module being
the IndependentSampler, GridSampler and StratifiedSampler classes. When
stochastic sampling is required with each sample having no relation to other
samples, the IndependentSampler class should be used. Both the GridSampler
and StratifiedSampler classes will structure samples evenly across the area of
a pixel with the later stratifying their positions.

Textures are handled with texture modules that inherit from the texture
interface. They have the same requirement as shader modules for implement-
ing both the clone() and initialise() methods. They also require a colour()
method that is passed a single colour index and returns the texture value
created during initialise(). There are three texture modules implemented
being the ConstantTexture, StandardTexture and LayeredTexture classes.
When dealing with constant colour, the ConstantTexture class is used which
does not store any values during initialisation and returns just a single colour
member. The StandardTexture class is used when dealing with variant texture
values from a file. When looking up textures from file, the OpenImageIO
library is used to handle caching and access. As textures are accessed with per-
fect coherency, vectorised instructions are used by OpenImageIO to increase
performance.

5.4.4 Scene Description

Scene construction is accomplished with a description file that is passed to the
Pathtracer class on construction. This file description format was designed to
be clear and easy to read while also being reasonably flexible. Paths within
the file to external object and texture files are relatively referenced. It was
decided that the language for this description and for possible re-serialisation
would be YAML due the clarity of the language and its actively supported
libraries. This can be seen in an example file included within Appendix B.
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5.5 Example Program

A command line program was developed as an example of integrating the
library into an external program and was also used for testing purposes. This
program takes a relative path to a scene description file and by default will
display a progressively rendered image using a framebuffer. The resulting
image can also be saved to disk using the ‘–output’ argument followed by a
file name. Help information can be displayed with the ‘–help’ argument.

The Framebuffer class is compiled and loaded as a separate library and
was originally developed for a previous project but was designed to be generic.
When the framebuffer is initialised it is passed a pointer to the Pathtracer
class and returns a pointer to the context. Using the context pointer, the
default key callbacks are then overridden to allow users to terminate the
pathtracer’s execution. This allows the Pathtracer class to close correctly and
clean-up any batches left on disk. The pathtracer’s process() method is then
called in a loop on a separate thread while events are polled on the main
thread. Colour is displayed using an sRGB gamut when using the Framebuffer
but is left as linear when a file is saved.

When compiling the project it is advised to enable compiler optimisations
as code has been written accordingly while some libraries used will also have
a significant performance increase.
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Chapter 6

Results

This chapter outlines the results found from using different sampling strategies
as well as changing parameters to allow for memory coherence. All images
are produced using the implementation described above and the command
line program. Measurements taken at Cornell University gave a baseline to
validate the physical correctness during development. The dragon model in
the test renders was created using data from Stanford University’s scanning
repository. The images shown in figure 6.1 give an example of the working
implementation.

Figure 6.1: Physically correct image created using the implementation
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6.1 Variance Reduction

Before optimising the system for coherency, the sampling strategies that allow
for reasonable variance reduction needed to be implemented. Sampling the
direct and indirect integrals separately and evenly weighting the results are
shown to give significant variance reduction. This can be seen in figure 6.2
with the first image being a naive approach, sampling just using importance
sampling of the surface. The second samples the light deterministically as
well as the distribution on the surface and weights the results evenly.

(a) BRDF sampling alone (b) Sampling BRDF and light

Figure 6.2: Equally weighted integrals

This is further improved with the use of multiple importance sampling.
Weighting the contribution from both strategies according their respective
probabilities can be seen to improve variance reduction further. This is shown
in figure 6.3 with the first image being an equal distribution and the second
using multiple importance sampling.

6.2 Coherent Rendering

The primary focus of this thesis was to see if sorting for coherence of a physi-
cally correct and unbiased pathtracing algorithm can increase performance.
Testing this meant processing a scene with a considerable memory footprint.
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(a) Equal sampling (b) Sampling with MIS

Figure 6.3: Multiple importance sampling

This was done procedurally with python by generating a data set containing
700MB of geometry data and 5.15GB of texture data. The scene contains
64 non-instanced models contained within a box, each with a unique shader.
Every shader has four colour textures that are layered using three texture
masks. A single light is used for illumination and the camera models a thin
lens. This can be seen in figure 6.4 from a standard and zoomed view.

(a) Standard view (b) Zoomed view

Figure 6.4: Performance test scene
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Tests were taken to evaluate performance, each with a varying batch size
and ray depth. Batches are measured as an exponent of two and when set
to smaller values will limit the coherency that can be found within each
batch. However when using higher ray depths the coherency naturally is
increased. The results are very encouraging and show that sorting for co-
herence can increase performance by an order of magnitude as seen in table 6.1.

Depth Batch Size Real User System

0 8 100.01 133.88 36.91
0 11 64.19 77.31 19.38
0 14 49.01 36.16 10.37
0 17 20.39 17.79 4.46
1 8 916.78 1968.96 505.95
1 11 211.46 538.35 138.72
1 14 46.73 122.50 33.08
1 17 26.82 67.16 18.07
2 8 1696.44 4401.65 1199.63
2 11 359.41 1021.20 275.96
2 14 70.06 203.51 55.36
2 17 42.84 119.60 33.20

Table 6.1: Performance test results

These results show the real, user and system time for each test. Physical
time spent is represented by real time and is measured in seconds. This
accounts for the parallelism on the four threads that were available on the test
system. The user and system times represent CPU time within the process
while outside of the kernel as well as time within the process and inside the
kernel.

The performance seen in figure 6.5 shows that sorting rays for traversal
and shading when accessing large data sets is substantially faster. Rendering
with a smaller maximum depth as seen in figure 6.6 also gave a performance
increase despite being more naturally coherent, even when indirect lighting is
not evaluated.
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Figure 6.5: Batch size against run time with a depth of two

(a) Depth of one (b) Depth of zero

Figure 6.6: Batch size against run time with varying depth
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Chapter 7

Conclusion

Physically based rendering has become very popular within production but it
is clear that rendering performance is not a solved problem and will continue
being developed with ever increasing scene complexity. This project effectively
showed that processing scene information without any regard to memory
can have substantial performance costs. The implementation was completed
successfully with respect to the original scope of the project while giving an
opportunity to learn good development practice. It should be noted that there
were some difficulties when creating the texture files, as a result of this they
were not mipmapped. Testing and analysis could definitely be continued on
higher performance hardware and with real world data. Further performance
could be increased with the use of larger batches as the limited memory on
the system used prevented sizes larger than that tested. Using solid state
drives would have also benefited performance.

7.1 Further Development

There are multiple parts of this system that could be developed further to
either give greater functionality or improve performance. More advanced
implementations of the modules and particularly the development of advanced
shaders would add much functionality to the system.

There is currently a known issue in that if a local thread buffer is set larger
than the batch size, there will be a segmentation fault. This will happen
when the sample count in relation to the bucket size is greater than the bin
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exponent, although this could be handled with standard exception handling.

Geometry passing could be improved, replacing the tinyobjloader library
with something more tailored. This would allow object passing to accept a
greater range of formats as well as increasing performance with parallelism.
Writing of batches to and from disk could be improved with a more advanced
synchronisation between the threads. Another way to increase performance
with regard to streaming batches would be to increase the compression of the
rays themselves. Sorting intersections might be faster if a radix algorithm
was integrated although this would use significantly more memory and the
performance benefit would need to be tested. Packeting the rays before
handing them over to the Embree library would allow for faster ray traversal
as this would take better advantage of the rays coherency.

Finally, there has been much research done into the development of ray
tracers in regard to graphic processing units. However this has not been
adopted widely in production due to the limitations of massively parallel
computation. Production rendering might seem well suited to this type of
architecture when in fact there are issues that need to be addressed. Ray
traversal is a massively parallel concept as long as all rays are traversing
and intersecting homogeneousness data. This however is rarely the case
with different types of geometry and shading models being used that cause
divergence in the computation. Using the sorting procedure described by
Eisenacher et al. (2013) and implemented here, a design could be developed
to allow graphic processors to evaluate homogeneousness data.
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Appendix A

Detailed Diagrams

Figure A.1: Detailed diagram of the main system

41



Figure A.2: Detailed diagram of the modules
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Appendix B

Example Scene File

image :
width : 1024
he ight : 429
sample base : 1

s e t t i n g s :
min depth : 2
max depth : 5
th r e sho ld : 0 . 1
bucket s i z e : 32
shading s i z e : 4096
bin exponent : 15

camera :
type : PinHole
t r a n s l a t i o n : [ 0 , 120 , 1000 ]
r o t a t i o n : [ 0 , 90 , −3 ]
f o c a l l ength : 150

f i l t e r :
type : Tent

sampler :
type : S t r a t i f i e d
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ob j e c t :
type : Polygon
f i l ename : o b j e c t s /model . obj
t r a n s l a t i o n : [ 15 , 0 , 25 ]
r o t a t i o n : [ 0 , 45 , 0 ]
s c a l e : [ 10 , 10 , 10 ]
shader : 0

shader :
type : Lambert
r e f l e c t a n c e : 0 . 3
t ex tu re :

type : Layered
upper :

type : Standard
s t r i n g : t e x t u r e s / t ex tu r e one . tx

lower :
type : Standard
s t r i n g : t e x t u r e s / texture two . tx

mask :
type : Constant
co l ou r : [ 0 . 5 , 0 . 5 , 0 . 5 ]

l i g h t :
type : Quad
t r a n s l a t i o n : [ 100 , 100 , 35 ]
r o t a t i o n : [ 0 , 135 , −25 ]
s c a l e : [ 50 , 50 ]
i n t e n s i t y : 25

l i g h t :
type : Quad
t r a n s l a t i o n : [ −120, 120 , 50 ]
r o t a t i o n : [ 0 , 45 , −25 ]
s c a l e : [ 100 , 100 ]
i n t e n s i t y : 1
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