Robust Point Membership
For Polygonal Meshes

IoNA VINCENT

Master of Science

Computer Animation and Visual Effects

BU

Bm_:merpouth
University

August 2014

Contents

(Iable of Contents| i
[List of Figures|. iii
[Cist of Tabled vi
[List of Acronyms| vii
[Abstractl viii
[Acknowledgements| ix

(1 Introductionl 1
[2° Background| 3
9
[3.1 Angle Weighted Pseudo Normals| 10
[3.2 Generalised Winding Number| 11
3.3 Mesh Defects 14
[3.3.1 Flipped Faces| 14

[3.3.2 Degenerate Triangles| 15

[3.3.3 Duplicate Vertices| 16

3.3.4 Self Intersections|. 17

B35 Holes. 20

[3.4 Polygon Soups|. 21
[3.5 Proposed Algorithm Overview| 22

[4 Engineering & Implementation| 25
(4.1 Hole Patching 25
4.1.1 Hole Identificationl 26

[4.1.2 Advancing Front Mesh Patch Creationl 26

[4.2 Internal Triangle Exclusion|. 31

[4.3 Selt Intersecting Triangle Identification|

[4.4 Generalised Winding Number|

5_Results

6 Conclusion|

(6.1 Summary|

i

38

44
44
44

45

List of Figures

2.1 Ray Casting Point Classification (Requicha and Voelcker| |
LO8B)[. . . . 3
[2.2 3D Edge neighourhoods denoting on which side of each |
edge the geometry lies (Requicha and Voelcker|[1985) . . 4
[2.3 Classification with edge neighbourhoods to a ray has en- |
tered the geometry or not (Requicha and Voelcker||[1985)) 5
[2.4 Classifying vertices through the classification of the mid |
point of the ray either side of the vertex (Requicha and |
Voelcker/[1985). 5
[2.5 Incident Angles ay,ay and aj for vertex x (Baerentzen |
and Aanaes 2005)[. 6
[2.6 Winding Number Segmentations (Jacobson et al.[2013)| . 7
[2.7 Thin sheets cause (b) and (c) to have different inside/outside |
classifications (Jacobson et al./2013)|. 8
(3.1 Winding Number Generalisation to Three Dimensions(Jacobson|
et al 2013)] 12
3.2 The Generalised Winding Number (GWN]) evaluated over |
meshes with self intersections, non-manifold attachments |
and duplicate faces (Jacobson et al./[2013)] 13
[3.3 A flipped normal on the triangle with the thick edges|. . 15
(3.4 Klein Bottle: A Non-Orientable Surface (Bourke/|1996)| . 15
[3.5 Resolving caps by cutting the mesh at vertices with a large |
angle, such as A and D. Alternative methods may results |
in further caps, as highlighted in grey (Botsch and Kobbelt| |
2001)[. . ..o 16

1l

[3.6 Duplicate vertices cause incorrect classification of bound- |
ary edges, marked with thicker lines|. 17
(3.7 Triangle Triangle Intersection Possibilities (Ericson|2004)[18
(3.8 Triangle Line Intersection Possibilities (Moller|[1997). . . 19
[3.9 Projecting the vectors of triangle 1 onto the plane of tri- |
angle 2 (Moller|[1997) 20
(3.10 The original cat model (Jacobson et al. 2013)[. 22
{3.11 A polygon soup based on the cat model (Jacobson et al.| |
2013)[. . .. 22
(3.12 The [GWNI| Field for Open Curves (Jacobson et al.[2013)| 24
[4.1 'Triangle Creation Rules left to right: 6 < 75°, 75 < 6 < |
135°, 60 > 135°| 28
[4.2 Correct Edge Directions tor additional triangles 30
4.3 Checking where the angle required is the reflex one by |
taking the sum of ¢, psand ¢3 and comparing with the |
angle already calculated| 30
[4.4 Patching a Stanford bunny using the AFM technique| . . 31
[4.5 Selecting the triangles tully inside the geometry| 32
[4.6 Evaluating the [GWN| at the Centre of Removed Triangles | 33
[4.7 Selecting the selt intersecting triangles on a mesh| 34
4.8 Winding Number Discretization in Two Dimensions (Ja- |
cobson et al[2013)o 36
[>.1 Classification of a plane through a telephone model con- |
taining 83998 faces and 1780 self intersecting triangles. |
Model available from |Jacobson et al.| (2013) supplemen- |
tary materiallo 40
[5.2 Classification of a plane through the Stantord Dragon con- |
taining 12500 faces and 8 selt intersecting triangles. Model |
available from the Stanford University Computer Graph- |
ics Laboratory (2013) | o oL 41
[>.3 Classification of a plane through an Apollo Soyuz Model |
containing 4642 taces, 2585 self intersecting triangles and |
977 holes. Model available from INASAI 42

v

51

Intersection of two Stanford bunnies containing 2130 faces,

2 holes in the base and 110 self intersecting triangles.

Original model available from the Stanford University Com-

puter Graphics Laboratory (2013)[.

[0.5

Classification of a plane through the Utah teapot contain-

ing 6376 faces, 4 holes and 309 self intersecting triangles.

[5.6

Triangle Triangle Intersection Detection Error using the

algorithm by Moller (1997)[.

[5.7

Our method of classification using an alternative triangle

triangle algorithm|

List of Tables

[>.1 Computation time comparisons

vi

List of Acronyms

AWPN Angle Weighted Pseudo Normal
PIP Point in Polyhedron
GWN Generalised Winding Number

AFM Advancing Front Mesh

vil

Abstract

Boundary descriptions of solid shapes are used throughout computer
graphics and are often represented using polygonal meshes. For such
meshes, the ability to determine if a point is inside or outside the mesh
is of great importance in both computer graphics and the fabrication
industry. For instance it is necessary for 3D printing, collision detection,
rendering and voxelisation. Existing techniques either compromise on
efficiency or robustness, often resulting in the misclassification of points
with the most time efficient methods. This thesis presents a new algo-
rithm to classify a point as inside or outside a mesh. This is done through
the careful combination of existing techniques and the introduction of an
original algorithm. In this way we are able to produce a classification
method robust to the usual mesh defects of self intersections and holes

without the usual large time implications.

viil

Acknowledgements

I would like to thank Mathieu Sanchez for his continued support and
advice both on this project, and throughout the year. I would also like
to thank Oleg Fryazinov and Prof. Alexander Pasko for their theoretical

input and advice.

Thank you also goes to Mathieu Sanchez for granting permission to
use his SDF library.

1X

Chapter 1
Introduction

The Point in Polyhedron ([PIP]) test is one of the fundamental problems
in both computer graphics and fabrication. Necessary for procedures as
elementary as boolean operations to more complex collision detection,
rendering and voxelization, it is a test that is frequently applied. For
instance, in an animated sequence it may be necessary to determine if
the tip of an object has penetrated the surface of another in each frame.
This means an efficient and robust algorithm to classify points is often

required.

The three most commonly used methods for the [PIP] test are ray
casting (Requicha and Voelcker||1985)), using the Angle Weighted Pseudo
Normal (AWPN]) (Baerentzen and Aanaes/2005) and a method utilising
the (Jacobson et al|2013)). Whilst it is clearly important that the
techniques work for ideal cases, namely clean watertight meshes, consid-
eration also needs to be taken for meshes that do not conform to such
strict requirements. Holes, duplicate faces, non-manifold attachments
and self-intersections often appear in meshes, and ideally classification

methods should be able to cope with such situations.

This thesis presents an algorithm for the [PIP] test which combines the
method with the method through the introduction of a new
unique algorithm. The aim is to produce a classification algorithm which

is robust to the usual mesh defects, whilst being more time efficient than

the method. To achieve this the technique is only utilised in
ambiguous areas of the mesh and the [AWPN] elsewhere. In this way we
aim to combine the time efficiencies of the with the robustness
of the GWNI

In Chapter 2, we present an overview of existing methods to conduct
the[PIP|test and the benefits and drawbacks of each. Particular attention
is paid to their ability to deal with mesh defects.

In Chapter 3, the theory behind the [GWNI and [AWPN| methods is
explained before the different types of mesh defects are outlined. The
theory behind the key steps in the proposed algorithm is then explained.

In Chapter 4, the implementation details of the techniques used are
presented. Pseudo code for the main algorithms is included, as well as
explanations of the difficulties which arose during their implementation

and the solutions used to overcome them.

In Chapter 5, we present the results of the algorithm. These are
compared to the other main [PIP] algorithms.

In Chapter 6, we summarise the method presented and discuss its

advantages and disadvantages. Potential future work is also outlined.

Chapter 2
Background

There are three key methods used to carry out the [PIPltest: ray casting,
pseudo normals and the generalised winding number. In this section
an overview of each method will be given, along with the situations in
which each can be used, before outlining another alternative method of

classification.

Ray Casting is the oldest and most widely used method to determine
a point’s location as inside or outside a polyhedra in computer graphics.
At the most basic level, a ray is fired in a random direction from the
point of interest to infinity and the number of intersections with the
mesh are counted. An odd number of intersections denotes that the

point is outside the mesh and an even number inside (Requicha and
Voelcker|[1985)), as shown in Figure [2.1]

e
XoutS

X (//Xins
S

Figure 2.1: Ray Casting Point Classification (Requicha and Voelcker
1985))

Unfortunately if the cast ray hits the mesh at a vertex, edge or is

collinear to an edge this method comes across difficulties (Requicha and

'Voelcker|[1985)). Similarly, if the ray passes through a hole in the mesh,

or is itself within numerical precision of the boundary of the mesh, it
may result in the incorrect classification of the point. However as the
vast majority of rays will not hit any ambiguities, a simple solution to
overcome this is to simply discard any rays that hit degeneracies
1998)). Alternatively multiple rays can be fired in different directions for

each point, and the value that occurs most often used.

Another solution is to only take note of intersections that change the
inside or outside parity. To establish the type of edge intersections,
neighbourhoods can be introduced (Requicha and Voelcker||1985). Such

neighbourhoods essentially highlight the areas containing material and

can be represented by the signs of the normals and tangents at the edge
and the edges that bound it, as shown in figure[2.2] For edges which are
not 2-manifold, lists of neighbourhoods can be stored as opposed to just

the one.

é/'&":f (F1)

- — 15}

m
Surf (F2) [,

t2
< Surf(F)ytiym >, < Surf (F3), t24 n2 >

Figure 2.2: 3D Fdge neigbourhoods denoting on which side of each edge
the geometry lies (Requicha and Voelcker |1985)

With these neighbourhoods established, the direction of the ray can
be compared with the 3D edge neighbourhood, as shown in figure
to establish whether or not the ray enters, leaves or simply touches the

mesh.

To resolve ambiguous intersections with vertices [Requicha and Voel-|

I 4 |

n; m

out — out out — in

Figure 2.3: Classification with edge neighbourhoods to a ray has entered
the geometry or not (Requicha and Voelcker |1985)

cker| (1985)) highlight a method in which they need not be directly taken
into consideration. Instead, at any vertex singularity, the midpoint of
the line segment either side of the point is found, and classified. These
two classifications can then be used to determine the nature of the in-

tersection, as shown in figure
/vertzx singularity

/¥

classify -~ %.. -
midpoints I

Figure 2.4: C(Classifying vertices through the classification of the mid
point of the ray either side of the vertex (Requicha and Voelcker||1985)

If an acceleration structure is used, the time implications of this
method are O(log N), where N denotes the number of faces and oth-
erwise it is linear. Whilst there are methods to reduce the classification
ambiguity if the cast ray hits the mesh at a vertex, edge or is collinear
to an edge, as highlighted above, the classification from such rays may
still be incorrect. Similarly if a ray passes through a hole in the mesh, or
is itself within numerical precision of the boundary of the mesh, it may

result in a missclassification of the point.

Pseudo Normals on the other hand are a natural extension to face
normals which have long been used to determine the inside and outside

of closed, orientable and smooth surfaces. Unlike face normals though,

pseudo normals are defined at edges and vertices where there is a lack of

C' continuity (Baerentzen and Aanaes|[2005).

Many pseudo normals have been proposed, however Andreas Beerentzen
and Henrik Aanzes suggest that the AWPN] presented independently by
both Thiirmer and Wiithrich [1998] and Sequin [1986] is best suited for
the inside or outside classification of points. As the name suggests, the
[AWDPN] for a vertex is defined as the weighted average of the face normals
of the surrounding triangles, where the weighting comes from the size of

the incident angle for that triangle, as shown in figure 2.5

aq /

e

Figure 2.5: Incident Angles oy, and s for vertex x (Baerentzen and

With the AWPN] defined, the classification principle is then simple.

For an arbitrary point p, and closest point ¢ on the mesh, the inner

product is taken between the the vector (p - ¢) and the pseudo normal
at c¢. The sign of this inner product is then used to determine if p
is inside or outside the mesh, with a negative sign denoting the latter
and a positive the former. As the closest point on the mesh is required
for this method, it has a complexity of O(N) without an acceleration
structure, where N is the number of triangles in the mesh. However if
the closest point is already known this reduces the complexity to O(1).
As with ray casting, the [AWPN] classification can only be used with
closed, 2-manifold meshes. As a mesh comes within numerical precision
of being non-manifold, or the distance between the point of interest and

the mesh is with the numerical precision, numerical instabilities occur.

This method is also not able to close all meshes. Take for example a
mesh shaped like a trumpet. Pseudo normals will create a discontinuity

across the plane created by the end of the cone.

The Generalised Winding Number is a more recent approach
to the [PIP] test. First proposed in two dimensions by [Meister| (1769),

the winding number is a signed integer representing the total number of
times a given curve travels anti clockwise around a point, as shown in
Figure A value of 1 signifies that the point is inside and 0 outside
whilst 2 denotes a point which is doubly inside and -1 a point on a flipped

TSeE

Figure 2.6: Winding Number Segmentations (fJacobson et a1.||2013|)

face.

By generalising this idea to three dimensions, so that the [GWN] anal-

ogously represents the signed number of times a surface wraps around a

point, |Jacobson et al.| (2013) propose a method to segment meshes based

on this value in a similar manner to the two dimensional case. This
method allows for the classification of points within meshes containing
non-manifold geometry or holes. However it is considerably slower than
the previous two methods, with a time complexity of O(N) which can-
not be improved with an acceleration structure. It also struggles to
classify areas which contain thin, almost two dimensional features, such
as clothing on figures, or the leaves on trees. Similarly, if a duplicate face
encloses a region, it may cause a misclassification of the interior points
as outside, as shown in figure[2.7 Whist Jacobson et al. propose tagging
such sections prior to the winding number calculation so that they are
not included, there is currently no algorithm to automate this process
(Jacobson et al|2013).

Figure 2.7: Thin sheets cause (b) and (c) to have different in-
side/outside classifications (Jacobson et al.[2013)

Liu et al. have also proposed a method somewhat similar in nature
to pseudo normals, however theirs contains an interesting preprocessing
step (J. et al][2010)). First an octree is constructed using the bounding
box of the polyhedra as the root before each vertex is inserted into the
tree. If the pre-decided maximum number of vertices in a leaf node is
reached, the tree is split. After this each cell is labelled as either black,
if it is entirely outside the polyhedron, white if it is entirely inside and
grey otherwise. In this way those points in unambiguous areas can be
quickly classified without the need for further tests. For those in grey

cells further tests are carried out similar to pseudo normals.

Chapter 3
Theory

When considering techniques for the [PIP] test it is important to take
into account the robustness, complexity and behaviour for different types
of input meshes, be it perfectly closed and watertight meshes, or non-
manifold meshs with many holes and self intersections. This is particu-
larly crucial due to the high prevalence of meshes containing defects such
as holes, duplicate faces, flipped normals and self intersections which of-
ten go unnoticed in the design process. Similarly, computer aided design
models often comprise multiple connected components which regularly

lead to multiple holes and self intersections.

As outlined above for closed manifold meshes, the AWPN| and
ray casting methods are all able to correctly classify points, however as
artefacts begin to appear in a mesh the reliability of each method varies
considerably. It is clear from the previous chapter that the[GWNlis by far
the most robust of the three algorithms, however the time implications
of this method render it far from ideal on input geometry with a large
number of faces. Instead a method combining the AWPN] and [GWNI is
proposed as follows. By identifying holes and self intersections within the
input mesh, areas of potential classification ambiguity can be found. The
can then be utilised in these areas whilst the [AWPNI algorithm
can be used on the rest of the mesh. In this way the robust nature
of the generalised winding number algorithm can be utilised in areas of

potential classification instability without a large time overhead when

using it for the entire mesh.

In order to explain this new proposed method in more detail, the
theory behind the and [TWNJ[PIPl methods will now be presented.
After this the usual defects in meshes will be covered as well as ways
to overcome them before a more concrete explanation of the proposed

algorithm is given.

3.1 Angle Weighted Pseudo Normals

As explained previously, the AWPN| method classifies points by taking
the inner product between the AWPN] at the closest point on the mesh
to the point p being classified, and the vector from this closest point to
p. Specifically, for a point x on a closed, orientable 2-manifold mesh M
in R? Euclidean space the AWPN] n,, is defied as follows:

n, = M (3.1)
122 aima|

where 7 runs over all the incident faces to x and «; are the incident

angles, as shown in figure [2.5]

With this definition of the [AWPN| Andreas Beaerentzen and Henrik
Aanses propose it is then possible to classify points as inside or outside

a mesh using the following equations:

ne - (p—c) >0 if pis outside the surface (3.2)
N - (p—c) <0 if pisinside the surface (3.3)
Ne-(p—c)=0 if pis on the surface (3.4)

where p is the point of interest and c the closest point on a closed,
orientable 2-manifold mesh M in R?® Euclidean space (Baerentzen and
Aanaes [2005)).

To avoid a linear time complexity when implementing this algorithm

a spacial partitioning is required. Andreas Baerentzen and Henrik Aanses

10

suggest using a hierarchy of oriented bounding boxes (OBB) as an ad-
equate compromise between the time and accuracy implications. To
access the hierarchy a priority queue is stored, with the lower bound of

the shortest distance to the mesh as the key.

This method however requires the meshes to be both 2-manifold and
closed and thus cannot be used with non watertight or self intersecting
meshes. Its robustness heavily relies on the manifold assumption too. If
the mesh comes within numerical precision of becoming non-manifold,
then it is possible for all the normals to be perpendicular to r and all
the a; to be small, both of which would cause the method to become
numerically unstable. We can see this by considering the equation used

to categorise points:

Zr-niai—i—e>0 (35)

For any values of epsilon which are of similar magnitude to > r - n;ay,
such as in the previous two cases, numerical instabilities will occur. Sim-
ilarly, if the length of r is similar to that of the numerical precision, then
p is essentially on the surface of the mesh, and thus the sign becomes

irrelevant.

3.2 Generalised Winding Number

As outlined in the previous section, an alternative more recent approach
is to generalise the winding number to three dimensions to create inside-
outside mesh segmentations. As explained above, for a closed, self-
crossing Lipschitz curve C in R?, around a point p, the winding number,
Q(p), is a signed integer representing the total number of times the curve
travels anti clockwise around p (Rossignac et al|2013)). Without loss of

generality if p = 0, and C is parameterised using polar coordinates then:

1

w(p) = o-]{de (3.6)

11

where the result of 0 denotes that the point p is outside C and 1

inside.

In order to generalise this to R? we require the notion of a solid angle.
For a point p in R® and a Lipschitz surface S is defined in spherical

coordinates the solid angle €2 is defined as:

op) = [[sinto)avao (3.7)

where without loss of generality we let p = 0 (Jacobson et al. 2013)).
Thus it measures the signed surface area of S, when projected onto a
unit sphere centred at p, as shown in figure With this definition the
winding number w(p) in R? of a point p and a closed surface S is defined
to be:

w(p) = B (3.8)

Hence the winding number measures the signed number of times a

surface wraps around a point [Baerentzen 2005].

Figure 3.1: Winding Number Generalisation to Three Dimen-
sions(Jacobson et al.||2015)

If the original mesh is entirely free of ambiguities, then the generalised
winding number produces an exact segmentation. That is, it will evalu-
ate to integers which unambiguously classify points. However for meshes
with duplicate faces, the winding number is locally shifted. Similarly, as

ambiguities begin to appear, the generalised winding function smoothly

12

shifts to a confidence measure, as shown in figure[3.2] In this way Jacob-
son et al. claim it correctly handles duplicate, or close to being duplicate,
faces, holes and non-manifold attachments. For this reason however, if a
simple threshold is used to classify points as inside or outside based on
the integral average of the winding number for each element, incorrect

classifications may be seen.

2
1% I
1
2
]
_1/2
Figure 3.2: The [GWN evaluated over meshes with self intersections,
non-manifold attachments and duplicate faces (Jacobson et al.||2015)

Instead Jacobson, A. et al. present an energy functional with enforced
smoothness, and hence better behaviour, with a minimum respecting the

winding number. This is defined as follows:

m

B=lufw) +rg 3 olr) (39

=1 JEN(3)

where N(i) is the set of all elements who share a facet with the el-
ement e;, x; is the unknown binary segmentation function at e; and
is a parameter to control the balance between the data and smoothness

terms.

The data term is defined as:

{ max(w(e;) —0,0) if z; = outside
u(z;) =

max(l —w(e;),0) otherwise

Whilst the smoothness term is defined as:

vl ;) = auemp(_‘ﬁfﬁ)‘w(%>'2 otherwise

13

This method does however assume that a mesh “intuitively represents
or loosely approximates the surface of some solid” (Jacobson et al.[2013),
an assumption Jacobson et al. justify by proposing that most meshes

are designed to represent the surface of a solid when lit from one side.

3.3 Mesh Defects

Mesh defects are a very common problem in the computer graphics and
fabrication industry. The 3D printing company Shapeways estimates
that 90% of meshes they received for printing contain defects. The result
of most defects is the lack of a well defined normal which causes many
further algorithms to fail, or unexpected behaviour, notably with the
Such defects can be split into the following categories: flipped
faces, degenerate triangles, duplicate faces, self intersections and holes,
all of which will now be explained along with methods to potentially

overcome them.

3.3.1 Flipped Faces

The most obvious cause of an incorrect normal is when a face on the mesh
is flipped, as shown in figure [3.3] That is, the direction of its normal is
opposite to the majority of the surrounding faces. More precisely if two
triangles have the same start and end vertex then they must have normals
which point in opposite directions. In order to resolve this, a correct
normal direction must be chosen, after which this direction is essentially
propagated through the mesh. To do so every triangle excluding the seed
one is marked as having an undefined orientation. The orientation of the
faces sharing a vertex with the seed vertex are then checked, and if they
don’t match that of the seed they are flipped, otherwise their orientation
is stored.The same process is then carried out on the newly flipped faces,
continuing until all faces have been assigned a normal direction. If the
mesh contains disjoint geometry then it is necessary to define multiple

seed faces for each disjoint section of geometry. This process is known

14

as unifying normals (Sanchez|2011)).

Figure 3.3: A flipped normal on the triangle with the thick edges

There is however one type of geometry this method will not work for.
These are known as non-orientable surfaces. This is because all faces are
simultaneously correctly orientated and in need of flipping. The Klein
bottle is possibly the best known of these, as shown in figure As
the name suggests however such surfaces have no correct orientation and

thus are rejected by the algorithm.

Figure 3.4: Klein Bottle: A Non-Orientable Surface

3.3.2 Degenerate Triangles

Similarly, degenerate triangles in a mesh cause anomalies in many al-

gorithms carried out on it due to their lack of well defined normals.

15

Degenerate triangles are those with a very close to zero area. These tend
to fall into two categories, those with an angle close to 180° and those
whose longest edge is significantly longer than its shortest edge.
and Kobbelt| (2001) name the former type caps and the latter needles.

They suggest that for needles we need only collapse the shortest edge
to resolve the degenerate triangle. Caps, on the other hand, must be
treated with greater care as simply collapsing one of their relatively long
edges may cause the neighbouring triangles to become degenerate. In-
stead they suggest splitting them into further faces with smaller angles.
To maintain continuity the neighbouring triangles must also be split after

this operation.

Figure 3.5: Resolving caps by cutting the mesh at vertices with a large
angle, such as A and D. Alternative methods may results in further caps,
as highlighted in grey (Botsch and Kobbelt 2001)

3.3.3 Duplicate Vertices

Duplicate vertices occur when there are multiple vertices at close to, if
not identical, positions. There are common on meshes made up from
multiple components. For instance there Utah Teapot contains many
duplicate vertices. These cause problems with detecting holes and self
intersecting triangles, often resulting in false classifications of both, as
shown in figure|3.6] To resolve such issues vertex welding can be applied.

This process combines all vertices within a set threshold of each other,

16

thereby eliminating the problem.

Figure 3.6: Duplicate vertices cause incorrect classification of boundary
edges, marked with thicker lines

3.3.4 Self Intersections

Self intersections also occur frequently in meshes, often simply as a re-
sult of an artist’s creativity. For instance, when modelling animals it is
common to simply intersect each whisker with the face geometry. Unfor-
tunately however, self intersecting geometry causes anomalies with many
algorithms and some to fail completely and thus detecting such triangles

is incredibly useful.

There are many algorithms in existence to isolate self intersecting tri-
angles. The most intuitive of these relies on the fact that when two
triangles intersect, either one or two edges of the first triangle normally
protrude the interior of the other, as shown in figure 3.7, Then by check-
ing each triangle edge in turn for intersection with the other triangle,
triangle triangle intersections can be found. On the other hand if all
six such tests for each triangle pair are false, there is no intersection be-
tween them.The algorithm unfortunately fails if the two triangles being
tested are coplanar and due to the large number of checks is also slow to

implement.

An alternative method is known as the separating axis test. As the

17

Figure 3.7: Triangle Triangle Intersection Possibilities (Ericson 2004)

name suggests, a series of tests are carried out to determine whether
one of eleven axes separate the two triangles being tested. These are
the nine edge combinations taking one from each triangle, and the two
axis parallel to the normal of each triangle. For each axis in turn the
vertices are projected onto it and the interval of each triangle’s projection
is tested against the interval of the other to see if there is an overlap.
Two triangles only intersect if they have overlapping intervals on all
eleven intervals. This allows the test to end early if any axis has two
disjoint projection intervals, thereby cutting down the computation time.
Nonetheless this method still requires a large number of checks and is

unable to correctly classify coplanar triangles.

An alternative algorithm similar in vein to the separating axis test
but less computationally expensive is presented by [Moller| (1997)). The
algorithm essentially splits into two key steps. First a check is carried
out to see whether either triangle intersects the plane the other lies on.
If no intersection occurs the triangles are marked as not intersecting. In
this way more complicated checks can be eliminated for many triangles
early on. This is done as follows. For triangle (v}, vi,vl) the distances
between each vertex and the plane w5 which the second triangle lies in
are found. By checking whether all the distances have the same sign or
not, we are able to determine whether or not the two overlap. The same
calculations are then done for the second triangle with vertices (v, v}, v3)

and the plane m; which the first triangle lies on.

If any two distances for each triangle have a different sign, the two

planes containing each triangle must intersect along a line with direction

18

Figure 3.8: Triangle Line Intersection Possibilities (Moller||1997)

N1 x Ny where N is the normal of the first triangle, and N, is the normal
of the second. This is because at least one vertex of the first triangle
must lie on the opposite side of the plane in which the other triangle lies
to the other two triangle vertices. If this overlap is found there are then
two possible cases of intersection along this line, as shown in figure [3.8]
Namely, either the two planes intersect but the triangles do not, or both

the planes and the triangles intersect.

In a similar manner to the separating axis test, the projection interval
of each triangle vertex onto this line of intersection is then found to
establish which of these two cases we are in. For each vertex its projection

onto the line of intersection is given by:

Py = (N1 x No) - (V' = 0) (3.10)
as shown in figure 3.9 where O is a point on the line of intersection.
However as translating the interval does not affect the classification re-

sult, this can be simplified to:

Py = (Vi x No) - (V) (3.11)

As with all the methods outlined above though, if the distance to
the plane for any one of the six vertices is 0 then the two triangles
are coplanar the test will fail. For this reason a second check must

be carried out to ensure intersecting coplanar triangles are also marked

19

Figure 3.9: Projecting the vectors of triangle 1 onto the plane of triangle
2 (Moller | 1997)

as self intersecting. This can be done through the use of Barycentric
coordinates. For a triangle Barycentric coordinates allow us to express
any point in the same plane as the triangle as a linear combination of
its vertices. So for a triangle with vertices A, B and C' we can express
a point p as p = uA + vB + wC where (u,v,w) are the Barycentric
coordinates and v + v + w = 1. With such a representation we can
then very easily test whether a point lies within the triangle by checking
whether 0 < u,v,w < 1 (Ericson|2004).

3.3.5 Holes

Holes in meshes cause significant problems with many algorithms, par-
ticularly ray casting and classifying points using the [AWPN| There are
many hole patching algorithms in existence for triangular meshes. For
instance (Carr et al.| (2001)) use polyharmonic Radial Basis Functions to
build an implicit surface to fill a given hole. This results in smooth
hole filling and extrapolation of the surface around the hole. Whilst this
method works well for complex holes and convex geometry, for more com-
plex surfaces it becomes difficult to describe them using a single-value
function and thus problems arise. Another approach which is able to deal

with more complex holes is proposed by Jun (2005). It works by split-

20

ting complex holes into more simple sub holes before individually filling
each. To do so the sub holes are projected onto a projection plane, before
being patched using two dimensional Delaunay triangulation. Unfortu-
nately though, if a hole contains a large number of overlapping sections
or twists the process becomes incredibly slow. Perhaps a more intuitive
approach is known as ear cutting. This makes use of Meister’s Two Ears
Theorem which states that for any simple closed polygonal plane curve
other than a triangle with a finite number of sides there exists at least
two non overlapping ears (Meisters |1975). This allows us to take the
two consecutive hole edges with the smallest angle between them and
form a triangle between them, known as an ear. By applying this step
repeatedly we are able to close a hole through the repeated creation of
ears. Unfortunately however this method often leads to multiple self

intersections and counterintuitive geometry.

An alternative similar but more robust method is known as the ad-
vancing front mesh technique. This works by creating an initial front
consisting of all the edges surrounding the hole, known as boundary
edges. Starting with the two consecutive edges with the smallest angle
between them, either one, two or three triangles are inserted in the plane
created by the two edges. The number of triangles inserted is dependant
on the size of the angle between the edges. The front is then updated
with the new front created by the addition of these triangles before the
process starts again. This allows for a robust method to fill holes, whilst

remaining fairly intuitive and efficient.

3.4 Polygon Soups

A polygon soup is the name given a series of polygons with no particular
relationships, as seen in figure [3.11} In this particular case the polygon
soup is created by rotating each triangle on the original cat mesh (figure
by a random amount in an arbitrary direction (Jacobson et al.
2013). Whilst polygon soups do not intuitively represent a solid, they

could be meshed using the marching cubes algorithm (Lorensen and Cline

21

1987) based on the value of the [GWN] Such a process would produce a
watertight mesh which could then be used with aPIP] algorithm.

. . o Figure 3.11: A polygon soup
Figure 3.10: The original cat based on the cat model

model (fJacobson et al.l |2013|)
et al.

3.5 Proposed Algorithm Overview

As explained at the start of the chapter, the proposed algorithm com-
prises a combination of the and the AWPN|[PIPl methods. For this
reason it is important to consider the limitations of each method prior to
combining them. As previously noted the [AWPN] algorithm is not able
to correctly classify points if the input mesh is not a closed 2-manifold.
This could be the case for instance if the input mesh contains holes or

self intersections. Thus in both scenarios further attention is needed.

Considering first the case where the input mesh contains self inter-
secting geometry we note the following. As the algorithm uses
the closest triangle on the mesh to classify each point, only the points
for which this triangle is either inside the geometry or intersected by
another triangle will be incorrectly classified. For this reason we propose
excluding the triangles inside the mesh from the [AWPN] algorithm. To

22

do so a new algorithm utilising the [GWN] is presented below to estab-
lish whether a triangle lies fully inside the geometry. In this way we are

able to prevent such triangles from incorrect classifying points using the

[AWPN] algorithm.

For the second case in which the triangles themselves are intersected,
it is clear these cannot be excluded from the algorithm as they form the
edge of the mesh. Instead once such triangles have been identified using
the triangle triangle intersection algorithm proposed by Moller| (1997)),
we use the algorithm to classify all points for which their closest
triangle is one of these self intersected ones. This prevents the

algorithm being used for such points, as it may incorrectly classify them.

On the other hand, areas which contain holes must be treated with a
different approach. Whilst the method can be used in such areas,
the affect of such a hole on the field can be far reaching, as shown
in Figure [3.12] This proposes the question of how to identify the areas
affected by any given hole. One approach considered was to construct an
octree for the input mesh, using the bounding box of the mesh as the root.
The[GWN] was then evaluated using interval arithmetic for each cell, and
cells containing an interval crossing +0.5 were split. In this way the areas
affected by the holes could be identified and evaluated using the
and the rest classified using the AWPN| method. Unfortunately though,
the large overestimations often seen with interval arithmetic resulted in

this being unusable. To see such overerstimations consider the equation

2+ % (3.12)

for x in the range [—1,1]\{0}. Using interval arithmetics the output

range would be [0,1] for the 2 term and [,
15

sums to [, 7]. However we need only consider the equation briefly to

] for the § term which

see that as the first term must always be positive and as zero is excluded

from our range it is impossible to ever achieve a value of _Tl and thus

interval arithmetics has overestimated the possible output values.

Instead the approach used is to calculate a patch for any holes on the

23

1
‘Ir
)

)

Figure 3.12: ThelGWN Field for Open Curves (fJacobson et al.||20131)

mesh. This is done as a two step process. First the edges surrounding
each hole are identified, before a patch is calculated for each using the
Advancing Front Mesh (AFM]) algorithm, as presented by
. Provided all self intersecting geometry has already been consid-
ered in the manner outlined above, the algorithm can then be
utilised with these additional triangles which form a valid closing of the
mesh. This allows the [AWPN] to correctly classify points closest to a
hole.

In this way we can use a combination of both algorithms at differ-
ent parts of the mesh to classify points without the time implications
of using the everywhere but still gaining robustness through its
targeted use. As the algorithm uses either the or for the
classification of each point, it has a best case complexity of O(log(N))
where N is the number of triangles and an acceleration structure is used
to calculate the AWPN] and a worst case complexity of O(N).

24

Chapter 4

Engineering &

Implementation

We will now give implementation details for each step of our proposed
[PIP] algorithm which has been implemented in C++ as a Maya plugin.
The plugin inherits from the MPxNode which is Maya’s base node for
custom dependency nodes. It allows the user to input the mesh they
wish to classify points on and easily create and orientate a plane for
which they would like to visualise the results. The plugin then creates a
new mesh to show the patches used to fill holes, and which triangles have
been removed. In order to determine the world coordinates for each point
a SamplerInfo node is used, and the classification value of each is then
passed to a blender node to visualise the result. For ease of comparison
the plugin also has the option to use just the AWPN or methods.

4.1 Hole Patching

The first step in the algorithm is to patch any holes on the input mesh.
This is done as a two part process. First the edges surrounding each
hole are found before a patch is calculated to close the hole using the
advancing front method outlined by Zhao et al.[(2007). It is worth noting

however that this patch is simply for classification purposes, the input

25

mesh is not altered in any way. Instead a copy is made which is patched

and used for calculations.

4.1.1 Hole Identification

In order to calculate patches to close holes in the mesh it is necessary
to identify all the edges which enclose each hole, known as border edges.
Furthermore for use in later algorithms these need to be stored in order.
To do so all the edges in the mesh are iterated through until the first
border edge is found, or until all edges have been considered and found
not to be border edges, in which case there are no holes within the mesh.
Assuming a border edge is found, all edges connected to this border edge
are tested until another border edge is found. This process is repeated
until the next border edge found is the same as the first border edge
established. In this way all the edges around the hole are found in order.
The iteration through all the edges then continues until either another
border edge not already accounted for is reached and the process starts

again, or until all edges have been checked as shown in algorithm [I}

When implementing this in Maya it is necessary to get the edge in-
formation from Maya’s own iterator using the MitMeshEdge class. This
returns both vertices of each edge, however the orientations of these ver-
tices are inconsistent. This necessitates an extra step whereby the vertex
positions of the ends of two adjoining edges are compared to establish
which vertex is shared between them. In this way we are able to store all

the hole vertices in the correct order for later use as we traverse around
the hole.

4.1.2 Advancing Front Mesh Patch Creation

The advancing front mesh (AFM) technique explained in was cho-
sen to patch holes in the input mesh. To recap, the idea is as follows.
Given the boundary edges of a hole, the angle between every two adja-

cent edges is calculated. For the two edges with the smallest angle either

26

Input: FEdges : the edges of the input mesh

Output: holeEdges : the edges around each hole in order
holeIn fo: the number of edge in each hole, and the index into
hole Edges of the first edge for each

foreach Fdge i do

if 7 is a boundary edge then
| boundaryEdges < 1

end
end
while holeEdges.size() # boundaryEdges.size() do
foreach Boundary Fdge j do
currentEdge < j ;
hole Edges[0] < j ;
while current Edge # holeEdges|0] do
get edges connected to currentFEdge ;
foreach connectedEdge k do
if k € boundaryFEdge and k ¢ holeEdges then
holeEdges < k ;
currentFEdge = k ;
count+ =1 ; break ;
end

end

end

hole Edges < count ;
holeEdges < holeEdges.size();
end

end
return holeFEdges, holeInfo ;
Algorithm 1: Finding all holes in the mesh

one, two or three triangles are then created in the plane formed by the
two edges to fill the gap. The decision as to the number of triangles used
to close the hole is dependant on the angle between the two edges, theta.
For 8 < 75° one additional triangle is created, if 75 < # < 135° the two
are added and for 6 > 135° three are. This can be seen in Figure
where v,,.,, denotes the new vertices created to form each additional tri-
angle. To prevent the additional triangles becoming significantly smaller
than the original triangles on the mesh, a check is made as to whether
any new vertex is within a set threshold of an existing one. If so, the
original vertex is used rather than creating a new one. In essence this

means that ear clipping is carried out in such scenarios, as shown in

27

algorithm [2| Such a threshold is calculated as a fraction of the average

length of the edges in the original advancing front.

Figure 4.1: Triangle Creation Rules
left to right: < 75°, 75 < 6 < 135°, 6 > 135°

When implementing this algorithm there were a few extra considera-
tions which will be explained now. Firstly the paper doesn’t explicitly
say how to determine the location of the additional vertices beyond that
the new triangle must be on the same plane as the two adjacent bound-
ary edges. For this reason a decision was made to calculate the location
of each new vertex by ensuring that the length of the new edge was a
weighted average of either boundary edge, and the direction a weighted
average of each edge vector. For the case where 75 < 6 < 135° the
weighting of the additional edge is simply an average of the two existing
boundary edges. However when 6 > 135° and thus two new edges must
be added each is weighted % and % with the greater fraction correspond-

ing to the closest border edge.

Secondly extra consideration has to be taken into the order in which
the indices of each new triangle are stored. This is because this or-
der determines the direction of the triangle’s normal. Thus special care
must be given to ensure the normal direction of any additional triangles
matches those already on the mesh. This order can be seen in figure
4.2l This is done by establishing the face id of the triangle connected to
the first boundary edge found. The MitMeshPolygon class is then used
which provides an iterator to each face on the mesh, with which we can
establish the faces vertex indices. As these must be orientated correctly
for the mesh, we can use this order to store the direction of the boundary

edge and thus the new triangle indices.

28

Input: hole BoundaryVerts : the vertices around the hole in order
Output: triangleIndices : the indices of the patch triangles
triangleVertices : the vertex positions of the patch triangles
while hole BoundaryVerts.size() > 2 do
0 < the smallest angle between two consecutive hole edges;
1 < the index of the first edge corresponding to 6;
if 8 < 75° then

| add a single new triangle with vertices (V;_1, Vii1 , Vi)
end
if 75 < 0 < 135° then
add two new triangles with vertices (V;_1, Vyew, Vi) and
(Vneun ‘/iJrl and V;)
end

if & > 135° then
add three new triangles with vertices (V;_1, Vhew,, Vi) and
(Vnewp Vnewg and ‘/z) and (Vnew27 ‘/;—l-l and ‘/z)
end
remove vertex V; from hole BoundaryVerts ;
foreach new verter do
foreach related vertex do
d < the distance to each related vertex ;
if d < threshold then
‘ merge the new vertex with the existing one ;
end

ot

end

end

triangleIndices <— the new triangle indices ;
triangleVertices : the new triangle vertices ;

end
return trianglelndices, triangleVerticds ;
Algorithm 2: AFM patch calculation to close a given hole

Finally, difficulties arose in calculating the smallest internal angle be-

tween two consecutive border edges at the start of the algorithm. This is

because formulas such as the well known 6 = acos(a,b), where 6 is the

angle between vectors a and b return the smallest angle between the two.

However there may well be cases where the angle we wish to calculate

is the larger of the two. Unfortunately the same problem occurred using

the more robust formula

[la x bl|
= 4.1
0 atan(5 (4.1)

29

" existing edge
direction

Figure 4.2: Correct Edge Directions for additional triangles

and hence a further check was implemented. After finding the angle
between two adjacent edges using equation this is checked by taking
the sum of the angles in all the existing triangles with a vertex at that
position. In two dimensions this can be seen in figure 4.3 By taking
the sum ¢ + ¢o + ¢3 we can compare this angle with ¢. If the two are
equal, then we know the angle required is the greater of the two so we

set 0 to equal 21 — ¢.

/

Figure 4.3: Checking where the angle required is the reflex one by taking
the sum of ¢1, paand ¢3 and comparing with the angle already calculated

There is one slight complication however when translating this to three
dimensions. As it is not necessary for the triangles on the mesh to lie
on the plane created by the two border edges, and indeed they normally
do not, we cannot simply measure the angle between each edge. Instead

each edge must be projected into the plane created by the border edges,

30

before the angles between each can be measured. This is done using the

following equation:

€proj = N X (e X n) (4.2)

where e is the edge to be projected, n is the normal to the plane
created by the two border edges either side of it and ep,o; is the projection

of e into this plane.

Once projected however we can measure and compare the angles as
previously described and take a comparison between that and the pre-

viously found angle to check if we have measured the correct side. The

result of the AFM hole patching with these extra steps can be seen in
figure

Stanford bunny containing a hole Patched using the AFM technique

Figure 4.4: Patching a Stanford bunny using the AFM technique

It is worth noting there are few requirements for this algorithm which
have implications for the applicability of our method. Firstly, the input
geometry must be manifold, as well as connected and orientated and
secondly it must not contain any islands. These are areas of geometry
which are part of the mesh, but entirely separated by a surrounding hole,

thus forming an island.

4.2 Internal Triangle Exclusion

As noted in the [AWPN] classifies points using the closest triangle

on the mesh. However, it not able to correctly classify points close to

31

self intersecting triangles. Thus, by removing any triangles fully inside a
mesh we are able to increase the number of points for which the AWPN]

can be used, thereby reducing the computation time for our algorithm.

To do so an original algorithm is presented which utilises the [GWN
As explained previously the GWNI represents the signed number of times

a surface wraps around a point (Jacobson et al[[2013). To evaluate the

winding number for a point on the mesh, we take the sum of the signed
projections of each triangle onto the unit sphere centred at that point,
before dividing by 4w, as explained further in section In this way
each triangle on the mesh affects the overall winding number. It is this
fact we use to establish whether triangles lie fully inside the mesh as

follows.

Figure 4.5: Selecting the triangles fully inside the geometry

Each triangle in turn is removed from the mesh, and the eval-
uated at the centroid of the removed triangle. The value of the
evaluation at that point is then used to establish whether the triangle
being tested lies on the edge of the mesh or not. This is because the pro-
jection of the triangle onto the unit sphere will contribute either +0.5 or
-0.5 to the overall As we know for watertight meshes the
evaluates to exactly 1 inside the mesh and 0 outside, any point evaluated
in the way described above that results in a of less than or equal
to 0.75 must lie on the exterior of the mesh as it’s inclusion would either
take the below or above to 0 or 1, thereby being outside or inside.
This can be seen in Figure and is summarised in Algorithm [3| As

32

the only evaluates exactly for watertight meshes this check must
be carried out after any holes have had patches calculated for them. It
is also necessary to leave those triangles which themselves are self inter-
sected as these form the boundary of the shape and are therefore required
for the AWPN] algorithm to be able to evaluate points correctly. For this
reason such triangles are dealt with later. The result of this algorithm
can be seen in figure [4.5]

Figure 4.6: Fvaluating the [GIWWN at the Centre of Removed Triangles

Input: indices : the vertex indices of the input mesh

vertices : the vertices of the input mesh

Output: externalTriangles : the triangle indies of all triangles not
fully inside the mesh

foreach Triangle i on the patched mesh with vertices (x1,y1, 1),

(T2, Y2, 22), (21, 22, 23) do
Centroid (_ (w1+m2+:fc3 Y1+y2+ys3 Z1+z2+23) .
3 3 3

GW N <« [GWN] evaluated at the centroid of triangle ¢ over all
triangles excludmg i itself ;

if GWN < 0.75 then
| externalTriangles < 1

end

end
return externalTriangles ;
Algorithm 3: Removing Fully Inside Self Intersecting Triangles

4.3 Self Intersecting Triangle Identification

The final problematic triangles to identify are those which are themselves
intersected by another triangle. As previously noted these cannot be

removed from the mesh as they form the boundary of the object. Instead

33

they are marked as self intersecting so that the [GWN] technique can
be used to classify all points closest to a self intersecting triangle. To

do so we have implemented the triangle triangle intersection algorithm

presented by (1997).

Figure 4.7: Selecting the self intersecting triangles on a mesh

As explained in this algorithm works by first checking if the
planes containing any two triangles intersect anywhere. If so, then eleven
axis checks are carried out by projecting the vertices of each triangle
onto the axis and comparing the intervals for each. This is summarised
in algorithm 4 and can be seen applied to two intersecting Stanford

bunnies in figure

4.4 Generalised Winding Number

In order to evaluate the [GWN] for a given point we use the following
two observations. If C is piecewise linear, then we immediately have
an analogous discrete equation for the two dimensional winding number

given in equation [3.6| as follows:

wlp) = 5= >0 (4.3)

where 6; is the angle between the vectors from p to two consecutive

34

Input: indices : the indices of the input mesh

vertices : the vertices of the input mesh

Output: intersectingT'ri: the indices of all intersected triangles
foreach triangle i with vertices (vy,vs,v3) do

foreach other triangle j on the mesh with vertices (uy,us,us) do
distToJ < calculate the distances from vy, v and v to the

plane triangle j lies in ;

distTol < calculate the distances fromfrom u;, us andus to the
plane triangle i lies in ;

if all distToJ and distTol have the same sign, and none are

equal to 0 then
| break;

end

else
L < the line of intersection between the planes each triangle

lies in ;
itV < the interval of the projection of v, vy and v3 onto L ;
intU < the interval of the projection of uq, us and uz onto L

if itV and intU overlap then
| intersectingTri < i

end
else
| break;
end
end
end
end

return intersectingI'ri ;
Algorithm 4: Finding triangle triangle intersections

vertices ¢; and ¢; 1 on C, see figure 4.8

Similarly the three diminutional generalised winding number given in
equation [3.8] can be directly discretised for piecewise-linear triangulated

surfaces as follows:

™

wlp) = D" 29(p) (4.4
f=1

where (¢ is the solid angle of the oriented triangle (v;, vj, vy) with

respect to p as previously explained and shown in figure Thus,

35

Figure 4.8: Winding Number Discretization in Two Dimensions (Ja-
cobson et al.||2015)

utilising the work of [Van Oosterom and Strackee| (1983), we have the

following discrete formula for the solid angle, €2,

det([abc])
Q(p) = 2arct 4.
(p) = 2arctan(T b et e ap))
wherea=v;-p,b=v;-p,c=v,-panda=||al|,b=]|| b|| and

c= |l <l

With equations [4.5] and [4.4] we are able to calculate the winding num-
ber for any given point as highlighted in algorithm [5}

Input: p: the point to evaluate the for
indices : the indices of the input mesh
vertices : the veracities of the input mesh
Output: wn: the winding number for point p
wn < 0

foreach Triangle in triangle Verts with corners v;, v;, vy do
A+ v;i-p;

B+ V;-P;

C+v-p;

a < length of A ;

b < length of B ;

¢ < length of C';

det < determinant of matrix [ABC' | ;

det)
abc+(A-B)c+(B-C)a+(C-A)b

val < 2 x arctan(

wn+ = val;
end

return wn ;
Algorithm 5: [GWN| Evaluation in Three Dimensions

36

4.5 Point Classification

With the preprocessing in place, the actual [PIP] test is fairly simple. As
the copy of the input mesh now contains patches to close all holes, and
has all the fully internal triangles removed we are able to use the
to evaluate most points. However self intersecting triangles will still
cause misclassifications with this method, and thus any point closest
to a triangle marked as self intersecting is evaluated using the
technique. In this way we are able to evaluate unambiguous cases using
the and the time efficiencies that come with the method, whilst
reserving the for areas of potential ambiguity. This is shown in
Algorithm [6]

Input: p: the coordinates of the point being classified

¢ : the index of the closest triangle

Output: result : The inside (1) or outside (0) classification of point p
if 7 is self intersected then

W N <« the evaluated at p ;

if WN > 0.5 then

‘ result =1 ;
end
else
‘ result = 0 ;
end
end
else

PN «+ evaluated at p on a mesh (excluding all self
intersecting triangles entirely inside the input mesh and include all
hole patches previously calculated)

if PN >0 then

‘ result =1 ;
end

else

‘ result = 0 ;
end

end
return result ;
Algorithm 6: Point Classification Algorithm

37

Chapter 5

Results

The algorithm has been tested on a series of different meshes as shown in
figures[5.1) to[5.5] To visualise the classifications a plane has been placed
through each mesh and red assigned to those points classified as inside
and blue to those outside. Additionally a breakdown of our method
is shown detailing where each technique is used. For such images red
denotes the and blue the As the techniques for resolving
flipped faces, degenerate triangles, degenerate vertices and triangulating
meshes are well know and outside the scope of this project all meshes have
had such operations applied to them prior to being classified. Results
for classifications using the [AWPN] and [EWN| methods are also shown

to help evaluate the performance of our algorithm.

The computation times for each mesh and technique can be seen in
table fl For each mesh the computation time for our method is at least
2.5 times faster than that of the [GWNl As expected this computation
time increases relative to the AWPN] computation time as the number of
self intersecting triangles on the mesh increase, due to the increased use
of the[GWNl The precomputation times for our method were measured
on a Linux Workstation with twelve Intel Xeon E5-1650 3.20GHz CPU
with 32GB of memory by calculating the difference in seconds between
the time at the start and end of the function call. Whilst not negligible,
these are at most 25 percent of the computation time required for the
Including the pre calculation time our algorithm it is still at least

38

2.4 times faster than the [GWNl and up to 31 times faster, as in the case
of the Dragon.

Computation Times

Mesh Name NF NV NH NSIT | PN GWN OM POM
Telephone 83998 42003 0 1780 | 0:0:10 3:09:14 0:1:07 0:46:16
Dragon 12500 6250 0O 8 0:0:11 0:34:54 0:0:20 0:1:1

Apollo Soyuz 4642 4829 977 2585 | 0:0:07 0:22:14 0:8:48 0:0:27
Double Bunny | 2130 1088 2 110 | 0:0:05 0:5:39 0:0:12 0:0:2
Utah Teapot 6376 3231 4 309 | 0:0:09 0:16:37 0:2:35 0:0:19

Table 5.1: Computation time comparisons

NF is the number of faces, NV the number of vertices, NH the number
of holes and NSIT the number of self intersecting triangles found by the
triangle triangle intersection algorithm presented by |Moller| (1997). OM
denotes our method and POM the pre calculation times for our method
i hours, minutes and seconds

As seen in figures to 5.5} unlike the AWPN method, our technique
is able to correctly classify points on meshes containing holes and self
intersections. This is done in at most 40 percent of the computation
time required for the algorithm, but has a considerably greater
accuracy than the technique. Additionally, as manifold meshes
without any holes or self intersections are always classifiably by both
the AWPN] and [GWN] methods, it is evident that our method is able to
unambiguously classify such points too. Whilst there is a small increase
in calculation time compared with simply using the [AWPN]| method in
such cases, it is still considerably quicker than the [GWNL This means in
scenarios where it is not known at the outset whether the mesh for which
the classifications are desired contains defects, our method will obtain the
correct results within a time scale similar to that of the AWPN method
without the user having to specify whether there are self intersections or
holes within the mesh. This is particularly useful as such defects are both
difficult to detect and often go unnoticed during the modelling process.
The Apollo Soyuz model provides a good example of the type of meshes
often found in industry containing many holes and self intersections, as

well as large variations in triangle sizes.

39

The telephone mesh

Our Method 0:01:07

OM breakdown [AWPN 0:00:10 [GWN 5:09:14

Figure 5.1: Classification of a plane through a telephone model con-
taining 83998 faces and 1780 self intersecting triangles. Model available
from | Jacobson et al.| (2015) supplementary material

Careful observation of the classifications of points on the this mesh
and the Utah Teapot in figures [5.3| and [5.5| show small areas where our
algorithm incorrectly classifies points, for instance around the handle on
the teapot. This is due to the triangle triangle intersection algorithm
used not marking all intersecting triangles as such. In the case of the
Utah Teapot, this can be seen in figure [5.6] where none of the triangles
on the upper side of the handle are marked as intersecting, despite being
partially inside the teapot. Similarly those triangles on the surface of
the pot itself which are interested by the handle are not highlighted.
As a consequence our algorithm will classify all points for which one of
the unmarked self intersecting triangles is the closest to the point being
classified using the AWPNI technique. As this method is not able to deal
with self intersecting geometry this causes the incorrect classification of
points in this area. This means our method is as reliable as the triangle

triangle intersection algorithm.

Robust triangle triangle intersection detection however is still a cur-
rent open area of research (Sabharwal and Leopold| (2013)), Elsheikh

40

The Stanford Dragon mesh
Our Method 0:20

OM breakdown [AWPN 0:11 [GWN 34:54

Figure 5.2: Classification of a plane through the Stanford Dragon con-
taining 12500 faces and 8 self intersecting triangles. Model available
from the Stanford University Computer Graphics|Laboratory (2015)

and Elsheikh (2014)) and |Wei| (2013)) and thus outside the scope of this
project. However as work in this area improves, our technique will see
direct improvements too. This is highlighted in figure [5.7| where all trian-
gle triangle intersections have been found by placing oriented bounding
boxes around each triangle and checking for intersections between each
using the separating axis theorem. However this method is still not per-
fect as any two self intersecting triangles which share a vertex will still
not be marked as intersecting, hence the thin line of misclassified points
by the handle on the left hand side of the teapot. Nonetheless we can
already see improvements to the method and this confirms that once the
robust triangle triangle intersection problem is solved, our method will
be robust.

41

The Apollo Soyuz mesh
Our Method 8:48

OM breakdown [AWPN 0:07 22:14

Figure 5.3: Classification of a plane through an Apollo Soyuz Model
containing 4642 faces, 2585 self intersecting triangles and 977 holes.
Model available from |[NASA

The intersecting bunnies

mesh
Our Method 0:12

OM breakdown [AWPN 0:05 [GWN 5:39

Figure 5.4: Intersection of two Stanford bunnies containing 2130 faces,
2 holes in the base and 110 self intersecting triangles. Original model
available from the Stanford University Computer Graphics |Laboratory
(2015)

42

The Utah Teapot mesh
Our Method 2:35

OM breakdown [ATWPN 0:09 [GTWN 16:37

Figure 5.5: Classification of a plane through the Utah teapot containing
6376 faces, 4 holes and 309 self intersecting triangles. Model available
from Martin Newell

Figure 5.6: Triangle Triangle Figure 5.7: Our method of classi-
Intersection Detection Error using fication using an alternative trian-

the algorithm by gle triangle algorithm

43

Chapter 6

Conclusion

6.1 Summary

In this thesis we have presented a new point membership algorithm for
triangulated meshes which combines two existing techniques, the AWPNI
and the It has been highlighted that the computation time for
classifications with this method is faster than the method and
certainly more robust than the AWPN] technique. This is because unlike
the [AWPN] technique it is able to deal with meshes containing both
holes and self intersections. This is of particular significance as the vast
majority of meshes used in industry contain such defects. For instance
CAD models are often made up of multiple connected components which

makes them particularly susceptible to holes and self intersections.

The implementation of this technique as a Maya plugin allows for
both an intuitive visualisation of classification results, and the ability for

users to classify different models with ease.

6.2 Future work

There are two key areas for improvement with the proposed method.

Firstly, as previously mentioned there are cases in which the |Moller

44

(1997) triangle triangle intersection algorithm fails to mark all intersect-
ing triangles, and thus misclassifications occur at any point for which
a missed self intersecting triangle is the closest on the mesh. As this
is an open area of research, when a robust triangle triangle intersection
algorithm is found this will result in our method being able to correctly

classify all points on meshes with self intersecting geometry.

Our method could also benefit from an improved hole filling algo-
rithm. Not only does the current algorithm restrict the method both to
manifold geometry and geometry which does not contain islands, but as
is highlighted in fig [£.4] the advancing front mesh method implemented
often flattens concave shapes. Whilst this still forms a valid closing of the
mesh, it is often somewhat unintuitive. An possible solution would be
to snap each new vertex to a radial basis function, thereby maintaining
a more intuitive shape (Carr et al|2001)). Another possibility presented
by [Zhao et al| (2007) is to compute the desired normals for each new
triangle added using the AFM technique. By solving the Poisson equa-
tion based on the hole vertices and desired normals the new vertices can
then be repositioned so that they more appropriately fill the hole. The
calculation of the desired normals however is dependant on whether the
hole is closer to being planar or curved and thus the user must specify
this for each hole.

The project could also benefit from further optimisations, particu-
larly to reduce the precomputation time as at present no acceleration
structures are used and many of the algorithms employ a brute force
method.

45

Bibliography

Baerentzen J. and Aanaes H., 2005. Signed distance computation using
the angle weighted pseudonormal. IEEE Transactions on Visualization
and Computer Graphics, 11(3), 243-253.

Botsch M. and Kobbelt L. P., 2001. A robust procedure to eliminate
degenerate faces from triangle meshes. In Proceedings of the Vision
Modeling and Visualization Conference 2001, 283-290.

Bourke P., 1996. Klein bottle image.
http://paulbourke.net/geometry/klein/.

C S., 1986. Procedural spline interpolation in unicubix. Proceedings of
the 3rd USENIX Computer Graphics Workshop.

Carr J. C., Beatson R. K., Cherrie J. B., Mitchell T. J.; Fright W. R.,
McCallum B. C. and Evans T. R., 2001. Reconstruction and repre-
sentation of 3d objects with radial basis functions. In Proceedings of

the 28th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH 01, 67-76.

Elsheikh A. H. and Elsheikh M., 2014. A reliable triangular mesh in-
tersection algorithm and its application in geological modelling. En-
gineering with Computers, (30), 143-157.

Ericson C., 2004. Real Time Collision Detection. CRC Press, San Fran-

cisco.

G.T.and C. W., 1998. Computing vertex normals from polygonal facets.
Journal of Graphics Tools, 3(1), 43-46.

J. L., Q. C. Y., Maisog J. M. and G. L., 2010. A new point contain-

46

ment test algorithm based on preprocessing and determining triangles.
Computer-Aided Design, 42, 1143—-1150.

J. 0., 1998. Computational geometry in C. Cambridge University Press,
England.

Jacobson A., Kavan L. and Sorkine-Hornung O., 2013. Robust inside-

outside segmentation using generalized winding numbers. ACM Trans.
Graph., 32(4), 33:1-33:12.

Jun Y., 2005. A piecewise hole filling algorithm in reverse engineering.
Computer-Aided Design, 37(2), 263 — 270.

Laboratory S. U. C. G., 2013. The stanford 3d scanning repository.
Available from: https://graphics.stanford.edu/data/3Dscanrep/.

Lorensen W. E. and Cline H. E., 1987. Marching cubes: A high resolution
3d surface construction algorithm. In Proceedings of the 14th Annual

Conference on Computer Graphics and Interactive Techniques, 163—
169.

Meister A., 1769. Generalia de genesi gurarum planarum et inde penden-

tibus earum ajfectionibus. Nowvi. Comm. Soc. Reg. Scient., 180-189.

Meisters G. H., 1975. Polygons have ears. The American Mathematical
Monthly, 82(6), 648-651.

Moller T., 1997. A fast triangle-triangle intersection test. Journal of
Graphics Tools, 2, 25-30.

NASA . Apollo soyuz.

Requicha A. G. and Voelcker H. B.; 1985. Boolean operations in solid
modeling: Boundary evaluation and merging algorithms. Proceedings
of IEEFE, 73(1), 30-34.

Rossignac J., Fudos I. and Vasilakis A., 2013. Direct rendering of boolean
combinations of self-trimmed surfaces. Computer Aided Design, 45(2),
288-300.

Sabharwal C. L. and Leopold J. L., 2013. A fast intersection detec-

tion algorithm for qualitative spatial reasoning. Research Journal on

47

Computer Science and Computer Engineering with Applications, 48,
13-22.

Sanchez M. Continuous signed distance field representation of polygonal

meshes. Master’s thesis, Bournemouth University, 2011.

Van Oosterom A. and Strackee J., 1983. The solid angle of a plane
triangle. IEEE Transactions on Biomedical Engineering, 30(2), 125—
126.

Wei L.-y., 2013. A faster triangle-to-triangle intersection test algorithm.

Computer Animation and Virtual Worlds.

Zhao W., Gao S. and Lin H., 2007. A robust hole-filling algorithm for
triangular mesh. Vis. Comput., 23(12), 987-997.

48

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Abstract
	Acknowledgements
	Introduction
	Background
	Theory
	Angle Weighted Pseudo Normals
	Generalised Winding Number
	Mesh Defects
	Flipped Faces
	Degenerate Triangles
	Duplicate Vertices
	Self Intersections
	Holes

	Polygon Soups
	Proposed Algorithm Overview

	Engineering & Implementation
	Hole Patching
	Hole Identification
	Advancing Front Mesh Patch Creation

	Internal Triangle Exclusion
	Self Intersecting Triangle Identification
	Generalised Winding Number
	Point Classification

	Results
	Conclusion
	Summary
	Future work

	References

