
Towards Realistic Hair Animation Using 
Discrete Elastic Rods 

 

Mila Grigorova 
Master Thesis 

 
 

MSc Computer Animation and Visual Effects 
Bournemouth University 

NCCA 
September 2014 

 
 
 

 

 



 
 
Abstract 
 
When animating virtual humans, hairstyle is one of a most noticeable features 
that contribute to the authenticity of the character. Despite being a common task 
for visual effects industry, adequate simulation of hair still remains a challenging 
problem. Difficulties arise due to complex mechanical behaviour it exhibits, 
especially when considering the wide range of different hair styles. Although 
numerous method have been proposed in the literature there still is no well 
accepted model for hair. The objective of this thesis is set on accurately capturing 
the dynamics of the curly hair by investigating  a physical model of a closely 
related phenomena, namely discrete elastic rods and its viability towards 
realistic hair animation.  
 
 
 
 



 
1 Introduction 
 
Realistic hair is an essential part in the creation of  believable virtual characters 
for both visual effects industry and computer games.  When animating virtual 
humans, one of the major challenges is to reproduce the hair movement in 
visually plausible and  physically accurate manner. Although realistic hair 
simulation is a relatively old research topic in the field of computer graphics, 
finding a representation that provides efficient and  accurate animation of hair 
motion remains an open challenge.  
 
Human hair has inherently complex behaviour, being comprised of hundreds of 
thousands of thin and inextensible strands that interact with each other and with 
the body. This is further complicated when considering arbitrary shaped fibers. 
Each individual strand exhibits intricate nonlinear mechanical behaviour, which 
strongly correlates to its natural shape - straight, wavy or curly. In reality the 
structure, visual appearance and behaviour of hair is affected by multitude of 
factors. Some of them are intrinsic and vary from person to person such as strand 
cross-section, natural curvature and natural twist. Others depend on chemical, 
thermal or mechanical forces. This makes it very difficult, if not impossible,  for 
any simulation scheme to account for all factors. Furthermore there is very little 
knowledge available regarding mutual hair interactions. Unlike other domains 
like solids or fluids where the underlying algorithms and techniques are 
governed by well established equations, there’s still no single accepted model  for 
hair [Ward et  al. 07]. Due to its complex nature, algorithms that provide high 
visual fidelity pose strict requirements on simulation time steps. This, combined 
with the fact that a typical human has over 100,000 individual hair strands has an 
overwhelming effect on the performance and  makes them unsuitable for 
interactive applications. Depending on the application area different simulation 
techniques focus on different goals - visual appearance, accuracy or 
performance.  
 
The objective of this thesis is set on accurately capturing the dynamics of the 
curly hair by exploring  an existing physical model of a closely related 
phenomena, namely elastic rods, and its applicability towards simulation of hair. 
As the hair’s cross section is significantly smaller than its length it falls in the 
same category with other naturally curved filamentary structures such as ropes, 
plant tendrils, cables and even DNA .  Surprisingly all of them show similar 



mechanical behaviour strongly dependant on their intrinsic shape, though on 
widely different length scales [Reis et al. 14].  
 
A standard physical framework that best describes the equilibria and ongoing 
deformations during motion for elastic rods in the continuous case is the 
Kirchhoff model. Kirchhoff theory of elastic rods assigns an elastic potential 
energy to each possible configuration of the rod in space which is expressed in 
terms of its curvature and twist. Equations governing the time evolution of the 
rod towards its equilibrium state are then derived from Lagrangian mechanics 
by feeding the Lagrangian equations of motion with  the expression for the 
elastic energy [Audoly and Pomeau 10]. A number of recent papers aim to give a 
valid discretization of the underlying theory. Perhaps the most notable and 
popular amongst them is “Discrete Elastic Rods” by [Bergou et al. 08]. The authors 
present a discretization of the problem in an elegant manner using concepts 
from Discrete Differential Geometry and generalize their solution to naturally 
curved rods while accounting for anisotropic bending response. Although the 
paper is often cited in hair related literature, very little information could be 
found on actual implementations which confirm its viability to hair animation. To 
our knowledge only one such exists. More details about it could be found in a 
paper by [Kmoch et al. 09]. Furthermore it is surprising that no publicly available 
source code for the generalized case  could be found online, although the method 
is mentioned in nearly every course on physically based animation. With this 
said, this thesis sets as a main goal to verify the paper’s relevance and 
adaptability towards realistic simulation of curly hair. 
 
This document is structured as  follows. Section 2 provides a cursory overview of 
the related literature.  Section 3 gives brief overview of the theory behind 
Cosserat curves and Kirchhoff elastic rods. Section 4 presents the discretization 
model proposed  by [Bergou et al. 08] and implemented for this project . Section 
5 outlines of the scope of this project and goes into details regarding the key 
features and flaws of the current implementation of the proposed technique and 
the hair system itself and describes some deviations taken from the original 
solution. Section 6 concludes the subject with a discussion of the achieved results 
and applicability of the model to hair simulation. Furthermore it proposes future 
work directions. 
 
 
 
 



 
 
2 Related work 
 
Many computational models for simulation of individual hairs have been 
researched and developed for the past 25 years. They could be divided into two 
general categories: volume based and strand based. Methods based on 
continuum are more appropriate for smooth and straight hair while strand 
based approaches demonstrate better results for wavy and curly hair.  As there 
are broad range of publications on this topic it is not possible to examine all of 
the techniques here in great detail. Therefore only a short description of the 
above mentioned methods is provided with a focus on most relevant work. For 
more extensive survey on the subject the reader is referred to [Ward et  al. 07] 
and [Hadap et al. 07]. 
 
First attempts to achieve plausible animation of hair utilize mass- spring systems 
and were presented to the field by [Rosenblum et al. 91]. Mass- spring remains 
the most conventional model used in the industry due to its simple 
implementation and effectiveness. These models treat the hair explicitly as chain 
of hinges connected by stiff springs. Each particle in the chain has several 
degrees of freedom - positional and angular to account for bending. 
Inextensibility and bending rigidity are enforced by making the corresponding 
connective springs stiffer. One of the major drawbacks of such approach is its 
stability when dealing with stiff systems. Strong spring forces and enforcing 
inextensibility by limiting the stretching causes instabilities unless very small 
timesteps are used. A possible solution could be employing implicit integration as 
proposed by [Baraff and Witkin 98]. This however is often omitted for 
performance or other reasons. Many advances in mass-spring formulation were 
recently proposed. [Selle et al. 08] presented separate edge, bend,twist, and 
altitude springs which form implied tetrahedron, thus preventing volume 
collapse. [Petrovic et al. 12] incorporated a simplification of the elastic rod model 
by utilizing bending springs to reorient the material frame on a smoothed 
version of the curve describing the hair strand. In addition they used altitude 
springs to preserve its overall shape. A limitation to the spring model, however, 
remains fact that it can not properly account for twist. 
 
Volume representation techniques were first introduced by [Hadap et al. 01]. 
Within this framework hair is treated as a volume of matter and simulated using 
continuum mechanics. A rough approximation of the motion is computed using 



smoothed particles. Individual hair strands are still represented as chains of rigid 
links but  motion is driven by the continuum particles. Other volumetric methods 
abandon the notion of individual strands even more markedly. In [Volino et al. 
04], hair volume is modelled as a free-form lattice with nodes acting as simulated 
particles. Strands are attached to the lattice as viscoelastic springs.  
 
As mentioned in the introduction, Kirchhoff theory of elastic rods provides valid 
and accurate physical model for thin, one- dimensional elastic structures such as 
hair. It was first introduced to the graphics community by [Pai 02] with 
application to the visualization of surgical wires. Later, this approach was 
extended by [Bertails et al. 06]  to correctly reproduce the dynamics of helical 
elastic rods and was used to animate curled hairs. It was the earliest in this area 
of research and has provided the foundation for many of the papers proceeding 
it. Very recently [Bertails and Casati 13] presented super-clothoid model  which 
introduces novel dedicated integration scheme to find the centerline 
deformation guaranteeing a stable simulation at the same time. All of these 
works use implicit representation of the rod by employing its curvature and 
twist as degrees of freedom in order to characterize the shape.  
 
On the other hand several other methods use explicit representation, meaning 
that rod is approximated with a finite number of segments. Each segment has a 
material frame associated with it, which defines its orientation. Moreover this 
frame needs to track the tangential direction of the rod as it moves. This, 
however, can not be enforced in a straightforward manner when using the finite 
element definition. The suggested techniques differ in their parameterization 
and methodology used to update the segments’ orientation and end-points. 
[Spillmann and Teschner 07] use quaternions to represent the material frame 
and utilize penalty forces in order to constrain it to follow the rod. The algorithm 
proposed by [Bergou et al. 08]  was a breakthrough because of the elegant 
parametrization they used to describe the material frame at each segment. It is 
reconstructed from a reference frame called Bishop frame, which can be easily 
computed taking into account  only the points on the centerline. This allows the 
orientation of the segments to  automatically follow the deformation of the rod 
without the need to explicitly model torques acting on it. The method , however, 
requires smaller time steps as the stiffness of the rod and the number of 
approximating segments increases. To ensure proper stability at an acceptable 
computational cost, the authors recommend a fully implicit integration scheme 
based on Newton’s method in a later paper [Bergou et al. 2010]. Lastly [Stam et 
al. 14],  in their paper “Position- based Elastic Rods”, provide formulation of the 



problem within the efficient framework of position based dynamics where the 
elasticity is expressed as a system of constraints.  As the authors outline, physical 
accuracy is not of particular concern to them. Rather, an efficient simulation is 
targeted capable of producing visually plausible results.  
 
3 The physics behind Kirchhoff rods 
 
A rod Γ is a deformable body whose one dimension (length) is significantly larger 
than the other two (cross section) i.e. a curve. It can be entirely described by the 
position of its centreline x(s) and an orthonormal material frame {t(s), m1 (s), m2 
(s)} assigned for each point x(s). Here s denotes the arc- length parameter 
ranging from 0 to the total length L of the rod, x(s) is centreline position and m1,2 
(s) are axes which define the cross section of the rod. The material frame is 
picked in such a way that t(s) is tangential to the curve at the particular point x(s) 
and its derivative with respect to s, t’(s) , represents the normal (curvature) 
vector of the curve. During deformation the material frame always stays 
orthonormal. 
 
Energy  
 
Kirchhoff’s theory assigns an elastic energy E(Γ) to any configuration of the rod in 
space. The energy is a scalar function which measures strain - the rate of change 
of the material frame. The material frame itself is expressed in its own local 
coordinates ω1, ω2, m: 
 

ω1 = t’(s) · m1(s) , ω2 = t’(s) · m2(s) , m = m1’(s) · m2(s) 
 
Here ω1, ω2 represent the rod’s curvature in local coordinates and measure 
bending of the material frame. Usually they are denoted together as a 2- vector ω 
= (ω1 , ω2 )T. The other term m represents the twist around the tangent direction 
t(s). The expression for energy is composed of a bending and twisting component 
and is given by the following formulas: 
 

 

 



 
 

where  is a 2x2 symmetric matrix describing the rod’s bending stiffness, β is a 

scalar describing the twisting stiffness and  denotes the curvature of the rod 
for its rest shape. Since inextensibility is assumed no stretching component is 
considered and length preservation is enforced as a separate post- integration 
step. 
 
Bishop frame and parallel transport 
 
The twist of the rod can be expressed as a scalar variable if we consider a twist 
free reference frame. Such frame is called Bishop frame and is denoted by {t(s), 
u(s), v(s)}. It is uniquely determined by fixing  u(s0 ) and v(s0 ) at one of the ends 
of the rod. The evolution of the Bishop frame along the centreline can be 
expressed in terms of its Darboux vector Ω (s), for which the following holds true: 
 

t’ = Ω × t  u’ = Ω × u  v’ = Ω ×v 
 
By definition the Bishop frame is twist free meaning that m = u’ * v = 0 , thus Ω 
has no tangential component and coincides with the curvature binormal kb = t × 
t’. 
 
The Darboux vector of the Bishop frame is used to define the concept of parallel 
transport. Parallel transporting a vector v from one point of the centreline to 
another is achieved by integrating the equation v’ = kb × v.  This effectively 
corresponds to a rotation around the binormal kb. Parallel transport can be used 
to track the evolution  the twist-free Bishop frame along the length of the 
centerline.  
 
Twist representation  
 
As said earlier we can can represent the twist m as scalar function θ(s) , which 
measures the angle (around the tangent t(s)) between the material frame and the 
reference Bishop frame. By doing so, the material axes m1 and m2 can be 
expressed in terms of the twist angle and the Bishop frame. This reduces the 



number of parameters used to describe the rod at a particular point to 4 i.e. the 
position x(s) and the twist angle θ(s). 
 

m1 = cos(θ)u + sin(θ)v, 
m2 = − sin(θ)u + cos(θ)v 

 
4 Discretization model 
 
For a rod Γ(s) = {x(s), t(s), m1 (s), m2(s)}, its discrete description can be obtained 
by approximating it with n + 2 points x0 , . . . , xn+1 connected by n + 1 segments e0 , 
. . . , en .  

 
Throughout this document, lower indices are used to denote quantities assigned 
to points and upper indices for those assigned to segments. A material frame {t j , 
m1 , m2 } to each segment 
ej with the requirement to be adapted to the centreline, meaning t j = ej / ||ej ||. 
 
As shown in [Bergou et al. 08] , a distinction must be made between quantities 
defined pointwise and those representing a value integrated over a domain. 
When an integrated quantity is associated with a point, its domain are the 
nearest halves of segments adjoined to the node. For node xi , the domain has 
length li /2, where li = ||ei−1 || + ||ei ||. 
 
Bending energy 
 
Discrete curvature binormal is an integrated quantity and together with the 
material curvature can be expressed by the following equations: 

 

 
 



Note that there are two curvature values  ωi
j defined for each point, one 

expressed for each adjoining segment. These allow to derive the following 
formula for bending energy: 

 
 
Bishop frame  
 
In order to calculate the Bishop frame, within the discrete setting parallel 
transport is defined as a rotation Pi around the curvature binormal kbi, or 
identity if kbi = 0. We then fix the value of vector u0 (at the root of our rod) and 
parallel transport it along the centerline, thus obtaining     ui = Pi (u

i−1 ) and then 
set vi = ti × ui . 
 
Twisting energy  
 
With the Bishop frame defined, the material frame of segment j can be expressed 
using a rotation θ j  analogously to the continuous case: 
 

m1 = cos θ j u j + sin θ j v j m2 = − sin θ j u j + cos θ j v j 
 

The same is done for the twisting energy: 

 
Material frame update 
 
One of the important principles of the model described in [Bergou et al. 08] is the 
quasistatic treatment of twist. As the authors note the smaller the cross section of 
the simulated rod is the faster twist waves propagate. Thus twist can safely be 
removed as unknown from the equations.  
 
When a simulation step finishes, before twist can be computed, the Bishop frame 
must be 
updated. In general, after a simulation step ts , it can happen that u0 * t0 ≠ 0 . To 
realign the Bishop frame, we need to parallel transport it in time. This 
corresponds to rotation around axis defined by t0(t)x t0( t + ᇫt). The Bishop frame 
of the rest of the segments is then updated using normal parallel transport Pi . 



 
With the Bishop frame updated, we can compute new twist, thereby updating 
the material 
frame. The rod twists to minimize its internal energy E(Γ) only at unclamped 
segments. For clamped ends is value is already prescribed. 
 
Equations of motion 
 
The elastic force strives to minimize elastic energy. This is expressed in terms of 
the energy derivative :  

Felastic(xi)= − dE(Γ) / dxi  
 
The total derivative of elastic energy takes into account both explicit dependence 
on centreline position and implicit dependence on it via the material frames. 
Therefore, to obtain an integrable formula, we must substitute into the total 
derivative: 
 

 
The material frame was obtained by requiring the derivative of E(Γ) with respect 
to θj to be 0 for unclamped points. Thus most of the terms in the summation 
above are 0. Remaining individual terms are given by the following expressions: 

 
 

 
 

 
 



 

 

 
5 Implementation Details 
 
This project implements the core concepts behind “Discrete Elastic Rods“ as 
described by [Bergou et al. 08] in an attempt to capture the complex mechanical 
behaviour of the individual hair filaments. The main idea was to incorporate the 
proposed solution as part of a more elaborate simulation system and put to a test 
its viability towards realistic hair animation. Some features mentioned in the 
paper,  however, have been left out due to their irrelevance to the problem 
setup. One simplification that has been made is that just one- way coupling is 
considered as mainly the rod is affected by the motion of the body and not the 
other way around. As a consequence torque transfer on the rigid body described 
in the document has been omitted. Secondly, in contrast to the rods proposed in 
the paper, strands are allowed to self- intersect. Although in real life such 
scenario is virtually impossible this simplification doesn’t impair the model too 
much as the hair cross section is very small and in 3D setting self- collisions 
although possible are highly unlikely. Lastly, only isotropic bending response is 
considered meaning that the rod does not have a prefered bending direction. The 
anisotropic characteristics of the rod predominantly depend on its local cross- 
section which for hair can vary from oval to circular and is almost uniform along 
the strand length ([Bertails et al. 06]).  Therefore, although this is not generally 
the case,  for our model we assume that the filament has uniform circular cross 
section. Once the main algorithm is working, taking into consideration 
anisotropic bending should not be too cumbersome to add. This could be 
achieved by maintaining separate values for the bending stiffness along each of 
the two different material axes defining the cross sectional plane.  Together they 
form  a 2x2 diagonal matrix describing the rod’s flexural rigidity when no 
twisting is present. Thus to account for twist this matrix needs to be rotated by 
the twist angle for the corresponding segment. 
 
The system simulates hair as an assembly of filaments. The hair volume is 
achieved with the use of interpolation. Only modest collection of individual 
leader strands are simulated and much larger number of follower strands are 



generated from the leader ones for rendering purpose only. This allows to keep 
the simulation time manageable and in the same time capture the non-uniform 
behaviour of the hair volume. Because the typical hair consists of the large 
number of strands most of them will be in permanent contact with each other so 
self- collisions and stiction should also be considered in order to achieve 
appropriate level of realism. Different techniques exist for handling hair to hair 
contact. Some of them group the filaments into wisps and consider collisions only 
between wisps, while others accommodate methods from fluid dynamics such as 
SPH or FLIP. For this project an approach similar to the latter one is taken, where 
self- interactions are computed on a grid and added as external forces using a 
method described by [Petrovich et al. 05]. Its actual implementation was 
developed as a part of the CGIT assignment and has been modified and adapted 
to the current system. It should be noted, however, that any other method for 
handling the self contacts can to be used.  
 
The implementation of the system utilizes three external libraries to achieve its 
goal - CML (Configurable Math Library) for general math calculations involving 
vectors, matrices and quaternions; dlib for numerical optimization and NGL to 
facilitate the work with the openGL API. The system has been designed with 
reuse in mind and attempts have been made to relieve it of as much specific data 
as possible. The configuration of the system is loaded at runtime from an external 
file containing the scene description in terms of geometry and specifying  hair 
and simulation specific parameters. More extensive description of the available 
parameters can be found in the accompanying README file.  
 
The following listing describes the algorithm and the main simulation loop: 
 
(1) generate strands and precompute rest- state values 
(2) compute quasi- static material frame based on Bishop frame from initial 
configuration 
(3) for each simulation step: 
(4)      recalculate grid values based on strands’ current configuration 
(5)      accumulate internal and external forces  
(6)      integrate equations of motion 
(7)      enforce inextensibility and handle collisions with body 
(8)      correct velocities 
(9)      update Bishop frame 
(10)     update quasi- static material frame 
 
 

http://www.google.com/url?q=http%3A%2F%2Fcmldev.net%2F&sa=D&sntz=1&usg=AFQjCNHetH_7_usLjQU-PV7siFIg8clZaA
http://www.google.com/url?q=http%3A%2F%2Fdlib.net%2F&sa=D&sntz=1&usg=AFQjCNEZK4XoUP0iBL0NbChQs1zDetlTvw
http://www.google.com/url?q=http%3A%2F%2Fnccastaff.bournemouth.ac.uk%2Fjmacey%2FGraphicsLib%2F&sa=D&sntz=1&usg=AFQjCNERHA_XdRaPbaDFClJz-LcYcDE32w


 
Hair generation 
 
Hair generation process is carried out within the HairGenerator class. The hair 
can be attached to an arbitrary geometry. The strands’ distribution and 
generation is controllable to some degree by the user. The filaments are placed 
only at the vertices of specified faces and their shape is fixed but configurable. 
Selection of faces is facilitated through Maya interface and python script is used 
to output the selected primitives. A huge disadvantage of placing the strands at 
the vertices of the mesh is that in this way the number of filaments and their 
location is coupled with its topology. An alternative and better approach would 
be to sample the surface of the geometry so that the number of generated 
strands and their distribution can be varied independently. A good solution to 
this problem could be utilizing Poisson sampling which distributes points in 
evenly spaced fashion. 
 
As [Bertails et al. 06] state, the hair strand is entirely synthesized inside the 
follicle. Its mold pretty much determines the form of the strand, which is 
characterized by almost uniform cross section, natural curvature and twist. Thus, 
the fact that currently supported shapes are hard- coded in HairGenerator and 
can be either straight or helical with parameter controlling the radius and pitch 
of the helix, does not impair the visual output too much. This, nevertheless, limits 
the overall look of the hair volume. However, a flexible hairstyling tool falls 
outside the scope of this project.  
 
Elastic rod initialization  
 
Hair filaments are represented in the system by the ElasticRod class. Each 

elastic rod is initialized by its rest shape, a vector u0  fixing the Bishop frame for 

the rest shape at the root of the strand, the current configuration shape, mass 
and initial velocity for each point on the centerline as well as a set of boundary 
conditions denoting which points are clamped. Usually the hair strands are 
clamped only at their root position. However, the elastic rod was intended to be 
more general object  and this is reflected in the code. Initial twist angles for each 
segment can also be suggested. These, however, will be overwritten by the 
minimization procedure in case energy minimization is switched on. After 
generating stress free rest shape for the strand, it is initialized using the same 
shape for the current configuration. During initialization curvature for the rest 



shape is precomputed and stored using the formulas described in previous 
Section 4, after which the current state of the rod is updated.  
 
Parallel transport and Bishop frame calculation  
 
Updating the rod’s state involves calculating a valid orientation for each segment 
and ensures that internal forces computed in the following simulation step are 
correct. It comprises of several steps. First, the fixed frame at the root segment is 
parallel transported in time, thus obtaining its orientation for the current 
configuration. Then the resultant frame is parallel transported along the the 
length of the curve thus obtaining the reference Bishop frame of the centerline. 

Parallel transport is effectively a rotation around the curvature binormal kbi 

with an angle phii defined by the two consequent segments ei-1 and  ei: 

cos( phii ) = dot(ei-1, ei) 
 

Therefore it is most convenient this computation to be carried out with the use of 

quaternions. Moreover, the quaternion can constructed by extracting sin(phii / 

2) and cos(phii / 2) from the length of the curvature binormal. As mentioned in 

the paper, the formula for kbi produces: 

 
||kbi|| = 2 * tan( phii / 2 ) 

 
thus  speeding up the calculations a little bit. The above expression  holds true 
only if the length of the corresponding  edges is the same as their length for the 
rest shape, otherwise errors will occur in consequent frame rotations and 
thereby in the force calculations. Note that tan is a function that maps (-pi / 2, pi 
/ 2) to (-inf, inf), so for arbitrary real number an arbitrary angle would be 
extracted. As inextensibility of the rod is enforced explicitly through a system of 
constraints, in general deviations from the rest length should be small enough. 
However, a remark should be made that the above assumption can be violated if 
the constraint enforcement does not guarantee inextensibility at all cost  as is the 
case with position based dynamics, described later in this section.  
 
Energy minimization 
 



As a final step of the update, energy minimization is performed to obtain the 
twist angle rotating the Bishop frame around the tangential direction of the rod 
and match it to the actual material frame. Within our discrete setting the 

curvature at a particular point xi  is dependant on the material frame at the 

adjacent segments ei-1 and  ei and in turn on twist angles θi-1  and  θi at those 

segments. In addition, the elastic potential energy affecting the deformation of 
the rod is expressed in terms of curvature and twist angle of all segments and 
establishes a non-linear relationship between them. For our model it is required 

that at any particular time the twist angles θi minimize this elastic energy of the 

rod (see Section 4). Thus the current bending of the curve drives the values for 
the twist angles and removes them as unknowns for the next simulation step. 
Energy minimization is achieved with the use of dlib library. Dlib is a general 
purpose library with support for numeric algorithms and several optimization 
strategies for functions of higher dimensions - Newton, BFGS and conjugate 
gradient. The current implementation of ElasticRod provides the option the 
minimization method to be configured and changed at runtime as well as no 
minimization to be performed at all. The latter gives visually plausible results but 
reduces the stiffness of the rod and is not accurate (please refer to the video 
demonstrating differences in the deformations arising from using the different 
minimization methods). 
 
Updating the rod’s state is a routine that is also executed at the end of each 
simulation step and because of energy minimization is the bottleneck of the 
program. 
 
Time integration 
 
The equations of motion governing the rod’s dynamic behaviour are expressed in 
terms of internal elastic force and external forces: 
 

mi * ai = Felastic(xi) + Fexternal(xi, vi) 
 
Computation of  Felastic(xi) is detailed in the previous section. Fexternal(xi, vi) is the 
net external force affecting the particle i. In our demonstration scenarios, we use 
gravity and friction against ambient air i.e. 
 

Fexternal(xi, vi) = mi * g − ν * ||vi|| * vi  

http://www.google.com/url?q=http%3A%2F%2Fdlib.net&sa=D&sntz=1&usg=AFQjCNFsEOwC17nmPgZH5TmRSbQoofDRRA


 
where g is gravitational acceleration and ν is air drag coefficient. The equations 
of motion are integrated using the symplectic Euler method. 
 
Internal and external forces acting on the rod are computed for all of its points at 
once. This, together with the fact that some additional state variables are 
maintained (edges, curvature binormals, material axes), improves the code 
readability which was given a preference over possible memory and 
performance gains. On the other hand given the large amount of computations 
involved in a single simulation step, it becomes infeasible to handle even 
moderate number of strands without the use of multithreading. Use of 
parallelism was also encouraged  by the fact that the most intense part of 
calculations can be localized to the update routine of individual rods. Hence, it 
was possible the simulation to be easily distributed across multiple threads with 
the help of OpenMP (open multi processing). 
 
Constraint enforcement 
 
Stretching of the rod should also be considered when accounting for internal 
forces. So far the integration scheme involves no mechanism to maintain 
inextensibility, so length preservation must be ensured in some other way. As 
noted by [Bergou et al. 08] handling inextensibility by introducing stretching 
forces is undesirable as it leads to unnecessary stiff equations which pose 
restrictions on the time step which in turn impacts efficiency. Instead the authors 
deal with this in a separate post- integration step and enforce inextensibility and 
boundary conditions through satisfying a system of geometric constraints. 
Constraints are expressed as mathematical functions C(x1,x2,...,xn) whose output 
is zero when the constraint is satisfied and non- zero otherwise. For instance the 
inextensibility constraint can be written as follows: 
 

C(xi,xi+1) = ||xi+1 - xi|| - di 

 
where d is the desired length of the corresponding segment. Another constraint 
applicable to our system is rigid- body coupling. In hair scenario it is used only to 
attach the root segment to the head. Thus the corresponding constraint takes the 
form: 
 

C(x0) = x0 - p 
 

http://www.google.com/url?q=http%3A%2F%2Fopenmp.org%2Fwp%2F&sa=D&sntz=1&usg=AFQjCNHi2RsKzCLylGbjgRpaLv48ne1P7w


where p is the position of attachment. Finally collision response is also modeled 
as a constraint. Only collisions with ellipsoids are considered. The corresponding 
constraint can be expressed as: 
 

C(xi) = (xix - cx)2 / rx
2 + (xiy - cy)

2 / ry
2 + (xiz - cz)

2 / rz
2

 - 1 
 

where c is the center of the ellipsoid. 
 
There are a number of available approaches in the literature for maintaining 
constraints acting on a mechanical system. For example a method proposed by 
[Goldenthal et al. 07] and the one used in the paper by Bergou takes an 
unconstrained configuration and finds a “nearby” constrained one by iteratively 
solving a system of equations using Newton minimization. The word “nearby” is 
defined in terms of kinetic energy of the system.  
 
Here, however, a different approach is taken and constraints are handled in 
Gauss-Seidel manner also known as position based dynamics(PBD) [Mueller et al. 
06]. PBD is a technique that tries to resolve geometric constraints by 
manipulating the positions directly. The constraints have to be expressed in 
terms of positions. The main idea behind this method is that if a new eligible 
position for each point can be found which respects the constraints, then the 
unconstrained position and velocity of the point can be corrected explicitly. The 
positions are always modified directly, so the computations take into account 
previous corrections. The velocity is updated by assigning the difference 
between the new and the old positions just like when using Verlet integration 
scheme. This approach has the benefit of automatically correcting numerical 
errors accumulated during the integration step. 
 
A point may be limited by multiple constraints and constraints may affect 
multiple points, therefore it is necessary to solve for all of the constraints at once. 
The problem here is that the constraints can generally take non- linear form 
(such as distance function above), so the new eligible positions can not be 
computed by solving a linear system of equations. Instead an iterative approach 
is taken where at each iteration the constraints are satisfied one by one in some 
order. When solving a constraint the relevant positions are directly manipulated 
and therefore the order in which the constraints are processed matters. In each 
iteration, particles may be moved closer or further away from each other and 
violate some of the previously solved constraints. This, however,  is always 



corrected in the following iteration, so the error becomes smaller and smaller 
with each loop. 
 
Within the framework of PBD the attachment constraints can be satisfied by 
simply setting the position of the root to the attachment position: 
 

x0 = p 
 
For the distance constraint the two points are moved towards or away from each 
other proportional to their mass  along the axis connecting them. 
 

xi = xi + mi+1/(mi + mi+1) * ( ||xi+1 - xi|| - di) * normalize(xi+1 - xi) 
xi+1 = xi+1 - mi/(mi + mi+1) * ( ||xi+1 - xi|| - di) * normalize(xi+1 - xi) 

 
A possible optimization to relief the above calculations is to avoid computing the 
square root. To accomplish that the length of the corresponding segment is 
approximated with first order accurate Taylor expansion of sqrt function in the 
neighbourhood of (di)2. The reasoning behind it is that if the constraints are 
almost satisfied, the current length will not differ much from the rest one. This 
proved to be very useful as it removed some of underlying stiffness and made the 
simulation more stable. 
 

li = 1 - 2 * (di)2 / ( (di)2 + dot(xi+1 - xi, xi+1 - xi) ) 
 

In addition, clamped particles are thought to have infinite mass and thus their 
positions are never modified.  
 
As mentioned before, collisions are handled as constraints. We approximate the 
colliding geometry with a number of ellipsoids. In this way a relatively accurate 
response can be generated at a very low computational cost. An arbitrary 
ellipsoid can be expressed as a 4x4 transformation matrix mapping the unit 
sphere to the ellipsoid itself. The actual collision is performed by projecting the 
offending points on closest point on its surface. In theory, this does not guarantee 
that all points will have valid positions after the projection step. Because of the 
multiple pbd iterations performed, however, penetrations go unnoticeable. 
 
PBD produces good results even for small number of iterations (3  to 5),  when the 
length of the segments is not too big. However, when testing with relatively long 
hair strands and small amount of elements per strand the stretch becomes 



disturbingly apparent. To overcome this either the number of points or the 
number of iterations needs to be adjusted. 
 
Hair to hair interactions 
 
To achieve realistic results it is necessary to take into consideration interactions 
between individual fibers of the hair. Computing the hair-hair interactions on a 
particle level can be very time consuming considering the large amount of 
particles that are simulated. Searching for particles’ neighbours is the bottleneck 
of such approach. To accelerate the computations a rough approximation of 
hair-hair interactions can be calculated on a grid. In their paper [Petrovic et al. 
05] propose to construct a regular voxel grid which is rebuilt at the beginning of 
every simulation step. The grid should encompass the whole space where the 
hair can potentially move. Each voxel represents a volumetric sample of the hair 
volume and stores the average density and velocity of all the particles that 
happen to be within its range for the current frame. Using  this information two 
forces are calculated for each particle - stiction force modelling the stiction 
between colliding strands and repulsion force modelling self collisions. When a 
particle is inserted into the grid, density with value one and its velocity are 
distributed amongst the eight neighbouring voxels using trilinear interpolation 
scheme. After all particles are considered  each voxel holds a weighted average 
of the particles’ velocities. 
 
As already mentioned self stiction and self repulsion are accounted for as 
external forces. Hair stiction is computed by applying linear relaxation of the 
particle’s  current velocity vi and an average velocity calculated based on the 
data held inside the grid vi_grid. So a lookup for must be performed which in turn 
involves trilinear interpolation to calculate the velocity at the queried position. 
Obviously the voxel size determines how many particles contribute to the 
average velocity. 
 

vi = (1 − sstiction ) * vi + sstiction * vi_grid / d(xi) 

 

Here sstiction  controls the strength of the stiction force and d(xi) denotes 
interpolated the density at the particle’s position. 
 
To simulate hair repulsion, the pressure gradient g at the particle’s position is 
approximated again from the grid data. The gradient is a vector pointing away 
from denser regions and is treated as a force. srepulsion parameter controls the 



strength of this force and acts as a constant multiplier.The pressure gradient is 
computed by performing six trilinear interpolations utilizing finite difference 
method. 

 
Here d(x,y,z) is the interpolated the density for the queried  position (x,y,z). 
 
Hair geometry and visualization 
 
The visualisation of the system has both a basic representation via openGL and 
exported output.The basic openGL preview is capable to display the simulated 
data at real time, though the simulation itself can achieve interactive rates only 
for small number of hairs (approximately 200), even with parallelization at hand. 
For preview only simulated strands are rendered. 
 
Internally the simulated rod is represented as a sparse sequence of points. To 
obtain a smoother approximation of the centerline Catmull-Rom spline is used 
where particles’ positions are treated as control points The reason behind this 
choice is that the resultant curve has couple of desired properties - it passes 
through all of the control points and closely approximates the available data and 
the tangent information is implied by the control points themselves. Strands are 
visualized as smooth tubes utilizing interpolation and the available material 
frame data. The generation of the necessary geometry is realized on the GPU, 
through the use of tessellation shader. 
  
In addition, the simulation can be exported as a series  of  .obj files and post- 
processed and rendered using external 3D software package. For example 
interpolation of follower strands is handled inside SideFX Houdini. All the results 
shown in the accompanying videos were shaded and rendered also using 
Houdini. 
 
6 Results and conclusion 
 
The model has been tested with  several different scenarios. For all of them a 
separate configuration file is provided and for most of them a demo animation is 
compiled. The scenes are setup so the model is validated against its capability to 



handle different hair styles - straight, wavy, curly. As well as hair of different 
length was used to verify the model’s independence on hair length. The obtained 
simulation results clearly show that elastic rods represent a valid solution to 
capturing the complex dynamics of curly hair. Rendered results demonstrate 
that visually pleasing animation can be achieved with even moderate amount of 
simulated  data. Controlled and accurate experiments, however, have not been 
performed due to the short time span left for testing. Screenshots from the 
animations can be seen below.  
 
Computational costs to obtain those results, however, were high. All tests were 
performed on an Intel Xeon E5-1650 @3.20GHz CPU running on all 12 cores with 
31Gb RAM, NVIDIA Quadro K2000 2Gb GRAM machine. As mentioned previously, 
interactivity is hampered even for moderate number of strands (approximately 
200) with relatively small number of particles up to 25. Thus the solution proves 
to be inappropriate when performance requirements are strict. Major 
bottleneck are energy minimization and handling self contacts. Moreover as 
[Kmoch et al. 09] note, simulating correct hair behaviour requires stiffnesses 2–3 
orders of magnitude larger than scenarios considered by [Bergou et al. 08]. This 
poses restrictions on the simulation time step which for all tests performed here 
was set to 10ms. In addition to limitations imposed by higher stiffness it has been 
observed that increasing the number of elements also impacts stability. Thus 
possible production application at this point is arguable. 
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