
Towards Realistic Hair Animation Using
Discrete Elastic Rods

Mila Grigorova
Master Thesis

MSc Computer Animation and Visual Effects
Bournemouth University

NCCA
September 2014

Abstract

When animating virtual humans, hairstyle is one of a most noticeable features
that contribute to the authenticity of the character. Despite being a common task
for visual effects industry, adequate simulation of hair still remains a challenging
problem. Difficulties arise due to complex mechanical behaviour it exhibits,
especially when considering the wide range of different hair styles. Although
numerous method have been proposed in the literature there still is no well
accepted model for hair. The objective of this thesis is set on accurately capturing
the dynamics of the curly hair by investigating a physical model of a closely
related phenomena, namely discrete elastic rods and its viability towards
realistic hair animation.

1 Introduction

Realistic hair is an essential part in the creation of believable virtual characters
for both visual effects industry and computer games. When animating virtual
humans, one of the major challenges is to reproduce the hair movement in
visually plausible and physically accurate manner. Although realistic hair
simulation is a relatively old research topic in the field of computer graphics,
finding a representation that provides efficient and accurate animation of hair
motion remains an open challenge.

Human hair has inherently complex behaviour, being comprised of hundreds of
thousands of thin and inextensible strands that interact with each other and with
the body. This is further complicated when considering arbitrary shaped fibers.
Each individual strand exhibits intricate nonlinear mechanical behaviour, which
strongly correlates to its natural shape - straight, wavy or curly. In reality the
structure, visual appearance and behaviour of hair is affected by multitude of
factors. Some of them are intrinsic and vary from person to person such as strand
cross-section, natural curvature and natural twist. Others depend on chemical,
thermal or mechanical forces. This makes it very difficult, if not impossible, for
any simulation scheme to account for all factors. Furthermore there is very little
knowledge available regarding mutual hair interactions. Unlike other domains
like solids or fluids where the underlying algorithms and techniques are
governed by well established equations, there’s still no single accepted model for
hair [Ward et al. 07]. Due to its complex nature, algorithms that provide high
visual fidelity pose strict requirements on simulation time steps. This, combined
with the fact that a typical human has over 100,000 individual hair strands has an
overwhelming effect on the performance and makes them unsuitable for
interactive applications. Depending on the application area different simulation
techniques focus on different goals - visual appearance, accuracy or
performance.

The objective of this thesis is set on accurately capturing the dynamics of the
curly hair by exploring an existing physical model of a closely related
phenomena, namely elastic rods, and its applicability towards simulation of hair.
As the hair’s cross section is significantly smaller than its length it falls in the
same category with other naturally curved filamentary structures such as ropes,
plant tendrils, cables and even DNA . Surprisingly all of them show similar

mechanical behaviour strongly dependant on their intrinsic shape, though on
widely different length scales [Reis et al. 14].

A standard physical framework that best describes the equilibria and ongoing
deformations during motion for elastic rods in the continuous case is the
Kirchhoff model. Kirchhoff theory of elastic rods assigns an elastic potential
energy to each possible configuration of the rod in space which is expressed in
terms of its curvature and twist. Equations governing the time evolution of the
rod towards its equilibrium state are then derived from Lagrangian mechanics
by feeding the Lagrangian equations of motion with the expression for the
elastic energy [Audoly and Pomeau 10]. A number of recent papers aim to give a
valid discretization of the underlying theory. Perhaps the most notable and
popular amongst them is “Discrete Elastic Rods” by [Bergou et al. 08]. The authors
present a discretization of the problem in an elegant manner using concepts
from Discrete Differential Geometry and generalize their solution to naturally
curved rods while accounting for anisotropic bending response. Although the
paper is often cited in hair related literature, very little information could be
found on actual implementations which confirm its viability to hair animation. To
our knowledge only one such exists. More details about it could be found in a
paper by [Kmoch et al. 09]. Furthermore it is surprising that no publicly available
source code for the generalized case could be found online, although the method
is mentioned in nearly every course on physically based animation. With this
said, this thesis sets as a main goal to verify the paper’s relevance and
adaptability towards realistic simulation of curly hair.

This document is structured as follows. Section 2 provides a cursory overview of
the related literature. Section 3 gives brief overview of the theory behind
Cosserat curves and Kirchhoff elastic rods. Section 4 presents the discretization
model proposed by [Bergou et al. 08] and implemented for this project . Section
5 outlines of the scope of this project and goes into details regarding the key
features and flaws of the current implementation of the proposed technique and
the hair system itself and describes some deviations taken from the original
solution. Section 6 concludes the subject with a discussion of the achieved results
and applicability of the model to hair simulation. Furthermore it proposes future
work directions.

2 Related work

Many computational models for simulation of individual hairs have been
researched and developed for the past 25 years. They could be divided into two
general categories: volume based and strand based. Methods based on
continuum are more appropriate for smooth and straight hair while strand
based approaches demonstrate better results for wavy and curly hair. As there
are broad range of publications on this topic it is not possible to examine all of
the techniques here in great detail. Therefore only a short description of the
above mentioned methods is provided with a focus on most relevant work. For
more extensive survey on the subject the reader is referred to [Ward et al. 07]
and [Hadap et al. 07].

First attempts to achieve plausible animation of hair utilize mass- spring systems
and were presented to the field by [Rosenblum et al. 91]. Mass- spring remains
the most conventional model used in the industry due to its simple
implementation and effectiveness. These models treat the hair explicitly as chain
of hinges connected by stiff springs. Each particle in the chain has several
degrees of freedom - positional and angular to account for bending.
Inextensibility and bending rigidity are enforced by making the corresponding
connective springs stiffer. One of the major drawbacks of such approach is its
stability when dealing with stiff systems. Strong spring forces and enforcing
inextensibility by limiting the stretching causes instabilities unless very small
timesteps are used. A possible solution could be employing implicit integration as
proposed by [Baraff and Witkin 98]. This however is often omitted for
performance or other reasons. Many advances in mass-spring formulation were
recently proposed. [Selle et al. 08] presented separate edge, bend,twist, and
altitude springs which form implied tetrahedron, thus preventing volume
collapse. [Petrovic et al. 12] incorporated a simplification of the elastic rod model
by utilizing bending springs to reorient the material frame on a smoothed
version of the curve describing the hair strand. In addition they used altitude
springs to preserve its overall shape. A limitation to the spring model, however,
remains fact that it can not properly account for twist.

Volume representation techniques were first introduced by [Hadap et al. 01].
Within this framework hair is treated as a volume of matter and simulated using
continuum mechanics. A rough approximation of the motion is computed using

smoothed particles. Individual hair strands are still represented as chains of rigid
links but motion is driven by the continuum particles. Other volumetric methods
abandon the notion of individual strands even more markedly. In [Volino et al.
04], hair volume is modelled as a free-form lattice with nodes acting as simulated
particles. Strands are attached to the lattice as viscoelastic springs.

As mentioned in the introduction, Kirchhoff theory of elastic rods provides valid
and accurate physical model for thin, one- dimensional elastic structures such as
hair. It was first introduced to the graphics community by [Pai 02] with
application to the visualization of surgical wires. Later, this approach was
extended by [Bertails et al. 06] to correctly reproduce the dynamics of helical
elastic rods and was used to animate curled hairs. It was the earliest in this area
of research and has provided the foundation for many of the papers proceeding
it. Very recently [Bertails and Casati 13] presented super-clothoid model which
introduces novel dedicated integration scheme to find the centerline
deformation guaranteeing a stable simulation at the same time. All of these
works use implicit representation of the rod by employing its curvature and
twist as degrees of freedom in order to characterize the shape.

On the other hand several other methods use explicit representation, meaning
that rod is approximated with a finite number of segments. Each segment has a
material frame associated with it, which defines its orientation. Moreover this
frame needs to track the tangential direction of the rod as it moves. This,
however, can not be enforced in a straightforward manner when using the finite
element definition. The suggested techniques differ in their parameterization
and methodology used to update the segments’ orientation and end-points.
[Spillmann and Teschner 07] use quaternions to represent the material frame
and utilize penalty forces in order to constrain it to follow the rod. The algorithm
proposed by [Bergou et al. 08] was a breakthrough because of the elegant
parametrization they used to describe the material frame at each segment. It is
reconstructed from a reference frame called Bishop frame, which can be easily
computed taking into account only the points on the centerline. This allows the
orientation of the segments to automatically follow the deformation of the rod
without the need to explicitly model torques acting on it. The method , however,
requires smaller time steps as the stiffness of the rod and the number of
approximating segments increases. To ensure proper stability at an acceptable
computational cost, the authors recommend a fully implicit integration scheme
based on Newton’s method in a later paper [Bergou et al. 2010]. Lastly [Stam et
al. 14], in their paper “Position- based Elastic Rods”, provide formulation of the

problem within the efficient framework of position based dynamics where the
elasticity is expressed as a system of constraints. As the authors outline, physical
accuracy is not of particular concern to them. Rather, an efficient simulation is
targeted capable of producing visually plausible results.

3 The physics behind Kirchhoff rods

A rod Γ is a deformable body whose one dimension (length) is significantly larger
than the other two (cross section) i.e. a curve. It can be entirely described by the
position of its centreline x(s) and an orthonormal material frame {t(s), m1 (s), m2
(s)} assigned for each point x(s). Here s denotes the arc- length parameter
ranging from 0 to the total length L of the rod, x(s) is centreline position and m1,2
(s) are axes which define the cross section of the rod. The material frame is
picked in such a way that t(s) is tangential to the curve at the particular point x(s)
and its derivative with respect to s, t’(s) , represents the normal (curvature)
vector of the curve. During deformation the material frame always stays
orthonormal.

Energy

Kirchhoff’s theory assigns an elastic energy E(Γ) to any configuration of the rod in
space. The energy is a scalar function which measures strain - the rate of change
of the material frame. The material frame itself is expressed in its own local
coordinates ω1, ω2, m:

ω1 = t’(s) · m1(s) , ω2 = t’(s) · m2(s) , m = m1’(s) · m2(s)

Here ω1, ω2 represent the rod’s curvature in local coordinates and measure
bending of the material frame. Usually they are denoted together as a 2- vector ω
= (ω1 , ω2)T. The other term m represents the twist around the tangent direction
t(s). The expression for energy is composed of a bending and twisting component
and is given by the following formulas:

where is a 2x2 symmetric matrix describing the rod’s bending stiffness, β is a

scalar describing the twisting stiffness and denotes the curvature of the rod
for its rest shape. Since inextensibility is assumed no stretching component is
considered and length preservation is enforced as a separate post- integration
step.

Bishop frame and parallel transport

The twist of the rod can be expressed as a scalar variable if we consider a twist
free reference frame. Such frame is called Bishop frame and is denoted by {t(s),
u(s), v(s)}. It is uniquely determined by fixing u(s0) and v(s0) at one of the ends
of the rod. The evolution of the Bishop frame along the centreline can be
expressed in terms of its Darboux vector Ω (s), for which the following holds true:

t’ = Ω × t u’ = Ω × u v’ = Ω ×v

By definition the Bishop frame is twist free meaning that m = u’ * v = 0 , thus Ω
has no tangential component and coincides with the curvature binormal kb = t ×
t’.

The Darboux vector of the Bishop frame is used to define the concept of parallel
transport. Parallel transporting a vector v from one point of the centreline to
another is achieved by integrating the equation v’ = kb × v. This effectively
corresponds to a rotation around the binormal kb. Parallel transport can be used
to track the evolution the twist-free Bishop frame along the length of the
centerline.

Twist representation

As said earlier we can can represent the twist m as scalar function θ(s) , which
measures the angle (around the tangent t(s)) between the material frame and the
reference Bishop frame. By doing so, the material axes m1 and m2 can be
expressed in terms of the twist angle and the Bishop frame. This reduces the

number of parameters used to describe the rod at a particular point to 4 i.e. the
position x(s) and the twist angle θ(s).

m1 = cos(θ)u + sin(θ)v,
m2 = − sin(θ)u + cos(θ)v

4 Discretization model

For a rod Γ(s) = {x(s), t(s), m1 (s), m2(s)}, its discrete description can be obtained
by approximating it with n + 2 points x0 , . . . , xn+1 connected by n + 1 segments e0 ,
. . . , en .

Throughout this document, lower indices are used to denote quantities assigned
to points and upper indices for those assigned to segments. A material frame {t j ,
m1 , m2 } to each segment
ej with the requirement to be adapted to the centreline, meaning t j = ej / ||ej ||.

As shown in [Bergou et al. 08] , a distinction must be made between quantities
defined pointwise and those representing a value integrated over a domain.
When an integrated quantity is associated with a point, its domain are the
nearest halves of segments adjoined to the node. For node xi , the domain has
length li /2, where li = ||ei−1 || + ||ei ||.

Bending energy

Discrete curvature binormal is an integrated quantity and together with the
material curvature can be expressed by the following equations:

Note that there are two curvature values ωi
j defined for each point, one

expressed for each adjoining segment. These allow to derive the following
formula for bending energy:

Bishop frame

In order to calculate the Bishop frame, within the discrete setting parallel
transport is defined as a rotation Pi around the curvature binormal kbi, or
identity if kbi = 0. We then fix the value of vector u0 (at the root of our rod) and
parallel transport it along the centerline, thus obtaining ui = Pi (u

i−1) and then
set vi = ti × ui .

Twisting energy

With the Bishop frame defined, the material frame of segment j can be expressed
using a rotation θ j analogously to the continuous case:

m1 = cos θ j u j + sin θ j v j m2 = − sin θ j u j + cos θ j v j

The same is done for the twisting energy:

Material frame update

One of the important principles of the model described in [Bergou et al. 08] is the
quasistatic treatment of twist. As the authors note the smaller the cross section of
the simulated rod is the faster twist waves propagate. Thus twist can safely be
removed as unknown from the equations.

When a simulation step finishes, before twist can be computed, the Bishop frame
must be
updated. In general, after a simulation step ts , it can happen that u0 * t0 ≠ 0 . To
realign the Bishop frame, we need to parallel transport it in time. This
corresponds to rotation around axis defined by t0(t)x t0(t + ᇫt). The Bishop frame
of the rest of the segments is then updated using normal parallel transport Pi .

With the Bishop frame updated, we can compute new twist, thereby updating
the material
frame. The rod twists to minimize its internal energy E(Γ) only at unclamped
segments. For clamped ends is value is already prescribed.

Equations of motion

The elastic force strives to minimize elastic energy. This is expressed in terms of
the energy derivative :

Felastic(xi)= − dE(Γ) / dxi

The total derivative of elastic energy takes into account both explicit dependence
on centreline position and implicit dependence on it via the material frames.
Therefore, to obtain an integrable formula, we must substitute into the total
derivative:

The material frame was obtained by requiring the derivative of E(Γ) with respect
to θj to be 0 for unclamped points. Thus most of the terms in the summation
above are 0. Remaining individual terms are given by the following expressions:

5 Implementation Details

This project implements the core concepts behind “Discrete Elastic Rods“ as
described by [Bergou et al. 08] in an attempt to capture the complex mechanical
behaviour of the individual hair filaments. The main idea was to incorporate the
proposed solution as part of a more elaborate simulation system and put to a test
its viability towards realistic hair animation. Some features mentioned in the
paper, however, have been left out due to their irrelevance to the problem
setup. One simplification that has been made is that just one- way coupling is
considered as mainly the rod is affected by the motion of the body and not the
other way around. As a consequence torque transfer on the rigid body described
in the document has been omitted. Secondly, in contrast to the rods proposed in
the paper, strands are allowed to self- intersect. Although in real life such
scenario is virtually impossible this simplification doesn’t impair the model too
much as the hair cross section is very small and in 3D setting self- collisions
although possible are highly unlikely. Lastly, only isotropic bending response is
considered meaning that the rod does not have a prefered bending direction. The
anisotropic characteristics of the rod predominantly depend on its local cross-
section which for hair can vary from oval to circular and is almost uniform along
the strand length ([Bertails et al. 06]). Therefore, although this is not generally
the case, for our model we assume that the filament has uniform circular cross
section. Once the main algorithm is working, taking into consideration
anisotropic bending should not be too cumbersome to add. This could be
achieved by maintaining separate values for the bending stiffness along each of
the two different material axes defining the cross sectional plane. Together they
form a 2x2 diagonal matrix describing the rod’s flexural rigidity when no
twisting is present. Thus to account for twist this matrix needs to be rotated by
the twist angle for the corresponding segment.

The system simulates hair as an assembly of filaments. The hair volume is
achieved with the use of interpolation. Only modest collection of individual
leader strands are simulated and much larger number of follower strands are

generated from the leader ones for rendering purpose only. This allows to keep
the simulation time manageable and in the same time capture the non-uniform
behaviour of the hair volume. Because the typical hair consists of the large
number of strands most of them will be in permanent contact with each other so
self- collisions and stiction should also be considered in order to achieve
appropriate level of realism. Different techniques exist for handling hair to hair
contact. Some of them group the filaments into wisps and consider collisions only
between wisps, while others accommodate methods from fluid dynamics such as
SPH or FLIP. For this project an approach similar to the latter one is taken, where
self- interactions are computed on a grid and added as external forces using a
method described by [Petrovich et al. 05]. Its actual implementation was
developed as a part of the CGIT assignment and has been modified and adapted
to the current system. It should be noted, however, that any other method for
handling the self contacts can to be used.

The implementation of the system utilizes three external libraries to achieve its
goal - CML (Configurable Math Library) for general math calculations involving
vectors, matrices and quaternions; dlib for numerical optimization and NGL to
facilitate the work with the openGL API. The system has been designed with
reuse in mind and attempts have been made to relieve it of as much specific data
as possible. The configuration of the system is loaded at runtime from an external
file containing the scene description in terms of geometry and specifying hair
and simulation specific parameters. More extensive description of the available
parameters can be found in the accompanying README file.

The following listing describes the algorithm and the main simulation loop:

(1) generate strands and precompute rest- state values
(2) compute quasi- static material frame based on Bishop frame from initial
configuration
(3) for each simulation step:
(4) recalculate grid values based on strands’ current configuration
(5) accumulate internal and external forces
(6) integrate equations of motion
(7) enforce inextensibility and handle collisions with body
(8) correct velocities
(9) update Bishop frame
(10) update quasi- static material frame

http://www.google.com/url?q=http%3A%2F%2Fcmldev.net%2F&sa=D&sntz=1&usg=AFQjCNHetH_7_usLjQU-PV7siFIg8clZaA
http://www.google.com/url?q=http%3A%2F%2Fdlib.net%2F&sa=D&sntz=1&usg=AFQjCNEZK4XoUP0iBL0NbChQs1zDetlTvw
http://www.google.com/url?q=http%3A%2F%2Fnccastaff.bournemouth.ac.uk%2Fjmacey%2FGraphicsLib%2F&sa=D&sntz=1&usg=AFQjCNERHA_XdRaPbaDFClJz-LcYcDE32w

Hair generation

Hair generation process is carried out within the HairGenerator class. The hair
can be attached to an arbitrary geometry. The strands’ distribution and
generation is controllable to some degree by the user. The filaments are placed
only at the vertices of specified faces and their shape is fixed but configurable.
Selection of faces is facilitated through Maya interface and python script is used
to output the selected primitives. A huge disadvantage of placing the strands at
the vertices of the mesh is that in this way the number of filaments and their
location is coupled with its topology. An alternative and better approach would
be to sample the surface of the geometry so that the number of generated
strands and their distribution can be varied independently. A good solution to
this problem could be utilizing Poisson sampling which distributes points in
evenly spaced fashion.

As [Bertails et al. 06] state, the hair strand is entirely synthesized inside the
follicle. Its mold pretty much determines the form of the strand, which is
characterized by almost uniform cross section, natural curvature and twist. Thus,
the fact that currently supported shapes are hard- coded in HairGenerator and
can be either straight or helical with parameter controlling the radius and pitch
of the helix, does not impair the visual output too much. This, nevertheless, limits
the overall look of the hair volume. However, a flexible hairstyling tool falls
outside the scope of this project.

Elastic rod initialization

Hair filaments are represented in the system by the ElasticRod class. Each

elastic rod is initialized by its rest shape, a vector u0 fixing the Bishop frame for

the rest shape at the root of the strand, the current configuration shape, mass
and initial velocity for each point on the centerline as well as a set of boundary
conditions denoting which points are clamped. Usually the hair strands are
clamped only at their root position. However, the elastic rod was intended to be
more general object and this is reflected in the code. Initial twist angles for each
segment can also be suggested. These, however, will be overwritten by the
minimization procedure in case energy minimization is switched on. After
generating stress free rest shape for the strand, it is initialized using the same
shape for the current configuration. During initialization curvature for the rest

shape is precomputed and stored using the formulas described in previous
Section 4, after which the current state of the rod is updated.

Parallel transport and Bishop frame calculation

Updating the rod’s state involves calculating a valid orientation for each segment
and ensures that internal forces computed in the following simulation step are
correct. It comprises of several steps. First, the fixed frame at the root segment is
parallel transported in time, thus obtaining its orientation for the current
configuration. Then the resultant frame is parallel transported along the the
length of the curve thus obtaining the reference Bishop frame of the centerline.

Parallel transport is effectively a rotation around the curvature binormal kbi

with an angle phii defined by the two consequent segments ei-1 and ei:

cos(phii) = dot(ei-1, ei)

Therefore it is most convenient this computation to be carried out with the use of

quaternions. Moreover, the quaternion can constructed by extracting sin(phii /

2) and cos(phii / 2) from the length of the curvature binormal. As mentioned in

the paper, the formula for kbi produces:

||kbi|| = 2 * tan(phii / 2)

thus speeding up the calculations a little bit. The above expression holds true
only if the length of the corresponding edges is the same as their length for the
rest shape, otherwise errors will occur in consequent frame rotations and
thereby in the force calculations. Note that tan is a function that maps (-pi / 2, pi
/ 2) to (-inf, inf), so for arbitrary real number an arbitrary angle would be
extracted. As inextensibility of the rod is enforced explicitly through a system of
constraints, in general deviations from the rest length should be small enough.
However, a remark should be made that the above assumption can be violated if
the constraint enforcement does not guarantee inextensibility at all cost as is the
case with position based dynamics, described later in this section.

Energy minimization

As a final step of the update, energy minimization is performed to obtain the
twist angle rotating the Bishop frame around the tangential direction of the rod
and match it to the actual material frame. Within our discrete setting the

curvature at a particular point xi is dependant on the material frame at the

adjacent segments ei-1 and ei and in turn on twist angles θi-1 and θi at those

segments. In addition, the elastic potential energy affecting the deformation of
the rod is expressed in terms of curvature and twist angle of all segments and
establishes a non-linear relationship between them. For our model it is required

that at any particular time the twist angles θi minimize this elastic energy of the

rod (see Section 4). Thus the current bending of the curve drives the values for
the twist angles and removes them as unknowns for the next simulation step.
Energy minimization is achieved with the use of dlib library. Dlib is a general
purpose library with support for numeric algorithms and several optimization
strategies for functions of higher dimensions - Newton, BFGS and conjugate
gradient. The current implementation of ElasticRod provides the option the
minimization method to be configured and changed at runtime as well as no
minimization to be performed at all. The latter gives visually plausible results but
reduces the stiffness of the rod and is not accurate (please refer to the video
demonstrating differences in the deformations arising from using the different
minimization methods).

Updating the rod’s state is a routine that is also executed at the end of each
simulation step and because of energy minimization is the bottleneck of the
program.

Time integration

The equations of motion governing the rod’s dynamic behaviour are expressed in
terms of internal elastic force and external forces:

mi * ai = Felastic(xi) + Fexternal(xi, vi)

Computation of Felastic(xi) is detailed in the previous section. Fexternal(xi, vi) is the
net external force affecting the particle i. In our demonstration scenarios, we use
gravity and friction against ambient air i.e.

Fexternal(xi, vi) = mi * g − ν * ||vi|| * vi

http://www.google.com/url?q=http%3A%2F%2Fdlib.net&sa=D&sntz=1&usg=AFQjCNFsEOwC17nmPgZH5TmRSbQoofDRRA

where g is gravitational acceleration and ν is air drag coefficient. The equations
of motion are integrated using the symplectic Euler method.

Internal and external forces acting on the rod are computed for all of its points at
once. This, together with the fact that some additional state variables are
maintained (edges, curvature binormals, material axes), improves the code
readability which was given a preference over possible memory and
performance gains. On the other hand given the large amount of computations
involved in a single simulation step, it becomes infeasible to handle even
moderate number of strands without the use of multithreading. Use of
parallelism was also encouraged by the fact that the most intense part of
calculations can be localized to the update routine of individual rods. Hence, it
was possible the simulation to be easily distributed across multiple threads with
the help of OpenMP (open multi processing).

Constraint enforcement

Stretching of the rod should also be considered when accounting for internal
forces. So far the integration scheme involves no mechanism to maintain
inextensibility, so length preservation must be ensured in some other way. As
noted by [Bergou et al. 08] handling inextensibility by introducing stretching
forces is undesirable as it leads to unnecessary stiff equations which pose
restrictions on the time step which in turn impacts efficiency. Instead the authors
deal with this in a separate post- integration step and enforce inextensibility and
boundary conditions through satisfying a system of geometric constraints.
Constraints are expressed as mathematical functions C(x1,x2,...,xn) whose output
is zero when the constraint is satisfied and non- zero otherwise. For instance the
inextensibility constraint can be written as follows:

C(xi,xi+1) = ||xi+1 - xi|| - di

where d is the desired length of the corresponding segment. Another constraint
applicable to our system is rigid- body coupling. In hair scenario it is used only to
attach the root segment to the head. Thus the corresponding constraint takes the
form:

C(x0) = x0 - p

http://www.google.com/url?q=http%3A%2F%2Fopenmp.org%2Fwp%2F&sa=D&sntz=1&usg=AFQjCNHi2RsKzCLylGbjgRpaLv48ne1P7w

where p is the position of attachment. Finally collision response is also modeled
as a constraint. Only collisions with ellipsoids are considered. The corresponding
constraint can be expressed as:

C(xi) = (xix - cx)2 / rx
2 + (xiy - cy)

2 / ry
2 + (xiz - cz)

2 / rz
2

 - 1

where c is the center of the ellipsoid.

There are a number of available approaches in the literature for maintaining
constraints acting on a mechanical system. For example a method proposed by
[Goldenthal et al. 07] and the one used in the paper by Bergou takes an
unconstrained configuration and finds a “nearby” constrained one by iteratively
solving a system of equations using Newton minimization. The word “nearby” is
defined in terms of kinetic energy of the system.

Here, however, a different approach is taken and constraints are handled in
Gauss-Seidel manner also known as position based dynamics(PBD) [Mueller et al.
06]. PBD is a technique that tries to resolve geometric constraints by
manipulating the positions directly. The constraints have to be expressed in
terms of positions. The main idea behind this method is that if a new eligible
position for each point can be found which respects the constraints, then the
unconstrained position and velocity of the point can be corrected explicitly. The
positions are always modified directly, so the computations take into account
previous corrections. The velocity is updated by assigning the difference
between the new and the old positions just like when using Verlet integration
scheme. This approach has the benefit of automatically correcting numerical
errors accumulated during the integration step.

A point may be limited by multiple constraints and constraints may affect
multiple points, therefore it is necessary to solve for all of the constraints at once.
The problem here is that the constraints can generally take non- linear form
(such as distance function above), so the new eligible positions can not be
computed by solving a linear system of equations. Instead an iterative approach
is taken where at each iteration the constraints are satisfied one by one in some
order. When solving a constraint the relevant positions are directly manipulated
and therefore the order in which the constraints are processed matters. In each
iteration, particles may be moved closer or further away from each other and
violate some of the previously solved constraints. This, however, is always

corrected in the following iteration, so the error becomes smaller and smaller
with each loop.

Within the framework of PBD the attachment constraints can be satisfied by
simply setting the position of the root to the attachment position:

x0 = p

For the distance constraint the two points are moved towards or away from each
other proportional to their mass along the axis connecting them.

xi = xi + mi+1/(mi + mi+1) * (||xi+1 - xi|| - di) * normalize(xi+1 - xi)
xi+1 = xi+1 - mi/(mi + mi+1) * (||xi+1 - xi|| - di) * normalize(xi+1 - xi)

A possible optimization to relief the above calculations is to avoid computing the
square root. To accomplish that the length of the corresponding segment is
approximated with first order accurate Taylor expansion of sqrt function in the
neighbourhood of (di)2. The reasoning behind it is that if the constraints are
almost satisfied, the current length will not differ much from the rest one. This
proved to be very useful as it removed some of underlying stiffness and made the
simulation more stable.

li = 1 - 2 * (di)2 / ((di)2 + dot(xi+1 - xi, xi+1 - xi))

In addition, clamped particles are thought to have infinite mass and thus their
positions are never modified.

As mentioned before, collisions are handled as constraints. We approximate the
colliding geometry with a number of ellipsoids. In this way a relatively accurate
response can be generated at a very low computational cost. An arbitrary
ellipsoid can be expressed as a 4x4 transformation matrix mapping the unit
sphere to the ellipsoid itself. The actual collision is performed by projecting the
offending points on closest point on its surface. In theory, this does not guarantee
that all points will have valid positions after the projection step. Because of the
multiple pbd iterations performed, however, penetrations go unnoticeable.

PBD produces good results even for small number of iterations (3 to 5), when the
length of the segments is not too big. However, when testing with relatively long
hair strands and small amount of elements per strand the stretch becomes

disturbingly apparent. To overcome this either the number of points or the
number of iterations needs to be adjusted.

Hair to hair interactions

To achieve realistic results it is necessary to take into consideration interactions
between individual fibers of the hair. Computing the hair-hair interactions on a
particle level can be very time consuming considering the large amount of
particles that are simulated. Searching for particles’ neighbours is the bottleneck
of such approach. To accelerate the computations a rough approximation of
hair-hair interactions can be calculated on a grid. In their paper [Petrovic et al.
05] propose to construct a regular voxel grid which is rebuilt at the beginning of
every simulation step. The grid should encompass the whole space where the
hair can potentially move. Each voxel represents a volumetric sample of the hair
volume and stores the average density and velocity of all the particles that
happen to be within its range for the current frame. Using this information two
forces are calculated for each particle - stiction force modelling the stiction
between colliding strands and repulsion force modelling self collisions. When a
particle is inserted into the grid, density with value one and its velocity are
distributed amongst the eight neighbouring voxels using trilinear interpolation
scheme. After all particles are considered each voxel holds a weighted average
of the particles’ velocities.

As already mentioned self stiction and self repulsion are accounted for as
external forces. Hair stiction is computed by applying linear relaxation of the
particle’s current velocity vi and an average velocity calculated based on the
data held inside the grid vi_grid. So a lookup for must be performed which in turn
involves trilinear interpolation to calculate the velocity at the queried position.
Obviously the voxel size determines how many particles contribute to the
average velocity.

vi = (1 − sstiction) * vi + sstiction * vi_grid / d(xi)

Here sstiction controls the strength of the stiction force and d(xi) denotes
interpolated the density at the particle’s position.

To simulate hair repulsion, the pressure gradient g at the particle’s position is
approximated again from the grid data. The gradient is a vector pointing away
from denser regions and is treated as a force. srepulsion parameter controls the

strength of this force and acts as a constant multiplier.The pressure gradient is
computed by performing six trilinear interpolations utilizing finite difference
method.

Here d(x,y,z) is the interpolated the density for the queried position (x,y,z).

Hair geometry and visualization

The visualisation of the system has both a basic representation via openGL and
exported output.The basic openGL preview is capable to display the simulated
data at real time, though the simulation itself can achieve interactive rates only
for small number of hairs (approximately 200), even with parallelization at hand.
For preview only simulated strands are rendered.

Internally the simulated rod is represented as a sparse sequence of points. To
obtain a smoother approximation of the centerline Catmull-Rom spline is used
where particles’ positions are treated as control points The reason behind this
choice is that the resultant curve has couple of desired properties - it passes
through all of the control points and closely approximates the available data and
the tangent information is implied by the control points themselves. Strands are
visualized as smooth tubes utilizing interpolation and the available material
frame data. The generation of the necessary geometry is realized on the GPU,
through the use of tessellation shader.

In addition, the simulation can be exported as a series of .obj files and post-
processed and rendered using external 3D software package. For example
interpolation of follower strands is handled inside SideFX Houdini. All the results
shown in the accompanying videos were shaded and rendered also using
Houdini.

6 Results and conclusion

The model has been tested with several different scenarios. For all of them a
separate configuration file is provided and for most of them a demo animation is
compiled. The scenes are setup so the model is validated against its capability to

handle different hair styles - straight, wavy, curly. As well as hair of different
length was used to verify the model’s independence on hair length. The obtained
simulation results clearly show that elastic rods represent a valid solution to
capturing the complex dynamics of curly hair. Rendered results demonstrate
that visually pleasing animation can be achieved with even moderate amount of
simulated data. Controlled and accurate experiments, however, have not been
performed due to the short time span left for testing. Screenshots from the
animations can be seen below.

Computational costs to obtain those results, however, were high. All tests were
performed on an Intel Xeon E5-1650 @3.20GHz CPU running on all 12 cores with
31Gb RAM, NVIDIA Quadro K2000 2Gb GRAM machine. As mentioned previously,
interactivity is hampered even for moderate number of strands (approximately
200) with relatively small number of particles up to 25. Thus the solution proves
to be inappropriate when performance requirements are strict. Major
bottleneck are energy minimization and handling self contacts. Moreover as
[Kmoch et al. 09] note, simulating correct hair behaviour requires stiffnesses 2–3
orders of magnitude larger than scenarios considered by [Bergou et al. 08]. This
poses restrictions on the simulation time step which for all tests performed here
was set to 10ms. In addition to limitations imposed by higher stiffness it has been
observed that increasing the number of elements also impacts stability. Thus
possible production application at this point is arguable.

References

[Bergou et al. 08] Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and
Grinspun, E., 2008. Discrete Elastic Rods. ACM Transactions on Graphics, 27 (3), 63.

[Bergou et al. 10] Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun,
E. 2010. Discrete viscous threads. ACM Transactions on Graphics , Proc. ACM
SIGGRAPH , 2010.

[Kmoch et al. 09] Kmoh, P., Bonanni, U., and Thalmann, N., 2009, Hair simulation
model for real-time environments. In ACM SCA, 2009.

[Spillmann and Teschner 07] Spillmann, J., and Teschner, M., 2007, CoRdE:
Cosserat rod
elements for the dynamic simulation of one-dimensional elastic objects. In ACM
SCA, 2007.

[Stam et al. 14] Stam, J., Umetani, N., Schmidt, R., 2014. Position- based elastic
rods. In Eurographics/ ACM SIGGRAPH SCA, 2014.

[Reis et al. 14] Reis, P., Audoly, B., Lazarus, A., Miller, J., 2014. Shapes of a
Suspended Curly Hair. In PHYSICAL REVIEW LETTERS, 2014.

[Audoly and Pomeau 10] Audoly, B., and Pomeau, Y. 2010. Elasticity and
Geometry: from hair curls to the nonlinear response of shells. Oxford University
Press.

[Goldenthal et al. 07] Goldenthal, R., Harmon, D., Fattal , R., Bercovier, M., and
Grinspun, E. 2007. Efficient simulation of inextensible cloth. In ACM TOG, 49.

[Baraff and Witkin 98] Baraff, D., and Witkin, A., “Large steps in cloth
simulation,” Proc. of
ACM SIGGRAPH, pp. 43–54, 1998.

[Petrovic et al. 12] Iben, H., Meyer, M., Petrovic, L., Soares, O., Anderson, J., and
Witkin, A., 2012 Artistic Simulation of curly hair. Pixar Animation Studios.
SIGGRAPH, 2012.

[Bertails et al. 05] Bertails, F., Audoly, B., Querleux, B., Leroy, F., Lévêque, J. L.,
and Cani, M.P., 2005. Predicting Natural Hair Shapes by Solving the Statics of
Flexible Rods . Eurographics Short Papers.

[Bertails et al. 06] Bertails, F., Audoly, B., Cani, M. P., Querleux, B., Leroy, F., &
Lévêque, J. L., 2006. Super helices for predicting the dynamics of natural hair.
ACM Transactions on Graphics, 25 (3), 11801187).

[Bertails and Casati 13] Bertails, F., and Casati, R., Super space clothoids. ACM
TOG 32, 4 (2013).

[Pai 02] Pai, D. K., 2002. Strands: Interactive simulation of thin solids using
cosserat models. In
Computer Graphics Forum, 21(3), 347352.

[Rosenblum et al. 91] Rosenblum, R. E., Carlson, W. E., & Tripp, E., 1991.
Simulating the structure and dynamics of human hair: modelling, rendering and
animation. The Journal of Visualization and Computer Animation, 2(4), 141148.

[Selle et al. 08] Selle, A., Lentine, M., & Fedkiw, R., 2008. A mass spring model for
hair simulation. ACM Transactions on Graphics, 27(3), 64.

[Ward et al 07] Ward, K., Bertails, F., Kim, T. Y., Marschner, S. R., Cani, M. P., &
Lin, M. C., 2007. A survey on hair modeling: Styling, simulation, and
rendering.Visualization and Computer Graphics, IEEE Transactions on, 13 (2),
213234.

[Mueller et al. 06] Mueller, M., Heidelberger, B. , Hennix, M., and Ratcliff, J. ,
2006. Position based dynamics. Workshop on Virtual Reality Interactions and
Physical Simulation, 2006.

[Mueller et al. 12] Mueller, M., T. Y. Kim, and N. Chentanez 2012. Fast simulation
of inextensible hair and fur.Workshop on Virtual Reality Interactions and
Physical Simulation, 2012.

[Mueller et al. 08] Mueller, M. , Stam, J., Doug, J., Thurey, N., 2008. Real Time
Physics. SIGGRAPH Course, 2008.

[Petrovic et al. 05] Petrovic, L. ,Henne, M. , and Anderson, J., 2005. Volumetric
methods for simulation and rendering of hair. Technical report, Pixar, 2005.

[Henne 12] Henne, A., 2012. Simulation of hair and fur. University of Freiburg,
2012.

[Bridson et al. 02] Bridson, R. , Fedkiw, R., Anderson, J. , 2002. Robust Treatment
of Collisions, Contact and Friction for Cloth Animation. Proceedings, SIGGRAPH,
2002.

[Hadap et al. 07] Hadap, S., Cani, M. P., Bertails F., Lin, M., Ward. K., Marschner, S.
R., Kim, T. Y. and Alesic, Z., 2007. Strands and Hair: Modeling, Animation, and
Rendering. ACM SIGGRAPH 2007 Courses.

[Hadap et al. 01] Hadap, S., and Magnenat-Thalmann, N. , 2001. Modeling
dynamic hair as a continuum. Eurographics, 2001.

[Volino et al. 04] Volino, P., Thalmann, N., 2004. Animating complex hairstyles in
real-time. In VRST ’04 2004, ACM Press.

[Choe 05] Choe, B. , Choi, M., and Ko, H. S. , “Simulating complex hair with robust
collision handling,” in SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation. New York, NY,
USA: ACM Press, 2005, pp. 153–160.

[Parent 12] Parent, R., 2012. Computer animation: algorithms and
techniques. London : Morgan Kaufmann 2012

