
BOURNEMOUTH UNIVERSITY

Surface Reconstruction from Point Clouds

Master Thesis

Navpreet Kaur Pawar

M.Sc. Computer Animation and Visual Effects

Supervisor: - Jon Macey

15-AUG-2013

Page 1 of 32

ABSTRACT

Recent advancement in the three-dimensional acquisition techniques provides huge input of

unorganized three dimensional point data sets. With an increase in the application areas making use of

point clouds, there is a growing demand to reconstruct a continuous surface representation that

provides an authentic representation of the unorganized point sets and render the surface for

visualization.

The main goal of the project is the study of various reconstruction algorithms and the creation of a 3d

model of an object from a point cloud. The project was started with the use of Point Cloud Library to

create 3d polygonal meshes and understanding its usage and experimenting with the various algorithms

used in PCL (Point cloud Library) for reconstructing meshes from the point clouds. PCL makes use of

many algorithms like Marching Cubes, Grid Projection, Greedy Projection, etc. After experimenting with

the PCL’s Grid Projection algorithm, the project focused on creating the mesh using Marching Cubes

algorithm. The data for Marching Cube has been created from the Point Cloud using Principal

Component Analysis and Hermite Radial Basis Function.

Page 2 of 32

ACKNOWLEDGEMENTS

I would like to thank my project supervisor Jon Macey for all his support to the project and his NGL

library. Also I would like to thank Mathieu Sanchez for his advices on various technical subjects and his

inputs led to the completion of my project.

I would also like to thank my second supervisor Hammadi Nait-Charif for explaining the concept of

Surface reconstruction during the early stages of my project.

Page 3 of 32

CONTENTS

1- Introduction

2- Problem Statement

3- Thesis Structure

4- Important Terms

5- Tools and Technologies used

6- Background Research

a. Various Algorithms and classifications

b. Basic Steps of Reconstruction from Point Cloud

7- Greedy Projection Algorithm

8- Marching Cubes Algorithm

9- Kdtree – Nearest Neighbor Approximation

10- Surface Normals Estimation using Principal Component Analysis

11- Hermite Radial Basis Function

12- Project Structure and Flow

a. STAGE-1: Initial research and experiments with PCL and OpenCV.

b. STAGE-2: Understanding the Greedy Projection Algorithm Implementation and

experimentation

c. STAGE-3: Final Project Structure and Flow

13- Results and Comparisons

14- Problems Faced

15- Conclusion

16- References

Page 4 of 32

CHAPTER 1: INTRODUCTION

Surface Reconstruction is a challenging problem in the field of computer graphics with a wide range of

application areas like medical imagery, virtual reality, video games, movies, e-commerce and other

graphic applications. The unorganized point clouds derived from varied inputs like laser scanner data,

photogrammetric image measurements, motion sensors etc. pose a tough problem of reconstruction ,

not completely solved and challenging in case of incomplete, noisy and sparse data.

The reconstruction of satisfactory models which can fulfill the high modeling and visualization demands

of such application areas is a nontrivial problem which has not been completely solved because of

incomplete, noisy and spare input data at hand. The raw input points are often unorganized, lacking

inherent structure or orientation information.

Surface reconstruction from raw geometric data has received increasing attention due to the ever

broadening range of geometric sensors (for example Microsoft Kinect), laser data scanners and vision

algorithms that provide little to no reliable attributes. The unavoidable presence of noise and outliers

makes the challenge even greater and any progress in this direction can also directly benefit

reconstruction from point data set input or the point clouds with attributes.

The goal is to create the model of an object which best fit the reality. Polygonal meshes are the

commonly accepted graphic representation, with the widest support from existing software and

hardware.

The wide range of applications from which the data may emerge (e.g. manufacturing, reverse

engineering, cultural heritage, architecture) implies that the data can have quite different properties

that must be considered in the solution of the surface interpolation problem.

The goal is always to find a way to create a computer model of an object which best fit the reality.

Polygons are usually the ideal way to accurately represent the results of measurements, providing an

optimal surface description. While the generation of digital terrain models has a long tradition and has

found efficient solutions, the correct modeling of closed surfaces or free-form objects is of recent

nature, a not completely solved problem and still an important issue investigated in many research

activities. Many methods have been developed [Mencl, 2001] to create a regular and continuous

(triangular) mesh representation from a point cloud.

Page 5 of 32

CHAPTER 2: PROBLEM STATEMENT

The goal of surface reconstruction is to determine a surface S from a given set of points P, sampled from

a surface in R3 such that the points of set P lie on S. The surface S approximates the set of points P.

From a mathematical point of view, a surface in the Euclidean three-dimensional space R 3 is defined as a

two-dimensional manifold that is compact, connected and contains information about face orientation.

In other words, we might say that a surface is a “continuous” subset of points in R 3 which is locally two-

dimensional.

A surface may have a border, when the boundary is not empty, or it may be closed, when the boundary

is empty. The problem of surface reconstruction can therefore be formalized as follows:

Given a set of points S ={ Pi=(xi ,yi ,zi) / (xi ,yi ,zi) ∈ M ⊂ R3 , i=1…k, M surface in R3}

Find a surface M’ which interpolates or approximates M, using the data set S.

Page 6 of 32

CHAPTER 3: THESIS STRUCTURE

The thesis outlines the introduction and background of Surface Reconstruction in Chapter 6. The chapter

explains the various classifications of algorithms available for the reconstruction and gives an outline of

the popular methods used for the problem it poses.

Further Chapter 7 and 8 detail the algorithms used in the research of the project. Marching Cubes

Algorithm used in the project is discussed in Chapter 8 while the algorithm that was initially researched

and experimented with is discussed in Chapter 7. The implementation of Greedy Projection could not be

completed due to lack of time, complexity of the algorithm and missing details in the paper (Rusu ,

2009).

Chapter 9, 10, 11 discuss the various methods used to process the point cloud data for reconstruction.

Chapter 9 and 10 detail the nearest neighbor search using Kd-tree and Principal Component Analysis

(PCA) to help in the calculation of Surface Normals.

Chapter 11 details the Hermite Radial Basis Function (HRBF) which provides the corresponding value for

the point cloud position in the marching cube’s unit cube.

Chapter 12 details the Project Structure and Flow and the evolution of Project Pipeline.

Chapter 13 discusses the Results and comparisons

Chapter 14 details the problems faced in the project and what solutions were devised keeping in mind

the time period of the project.

The last chapter 15 concludes the project with the lessons learnt and future work.

Page 7 of 32

CHAPTER 4: IMPORTANT TERMS

Modeling: the (mathematical) construction and computer implementation of an object, by defining

points in a 3 dimensional array. This array is based on the X, Y and Z axis of geometric space. Then,

different sets of these points are mathematically ’joined’ by say, lines, to create polygons and the

polygons joined to create objects. The simplest result is usually displayed as a wireframe model.

Rendering: is referred to the usually realistic drawing of 3D objects using computer technologies. In

order to render an object, certain properties like transparency, colour, diffuse or specular reflection and

refraction must be assigned to it and to the surrounding environment.

Mesh: it is a collection of triangular (or quadrilateral) contiguous, non-overlapping faces joined together

along their edges. A mesh therefore contains vertices, edges and faces and its easiest representation is a

single face. Sometimes it is also called TIN, Triangulated Irregular Network

Surface: a compact, connected, orientable 2D or 3D manifold, possibly with boundary. A surface without

boundary is a closed surface. A surface can be geometrically represented in implicit form (locus of the

solution of the function F(x,y,z)=0) or parametric form (a collection of parametric patches properly

joined together). Surfaces, which cannot be described in an analytic form, are called free-form surfaces.

IsoSurface: An isosurface can be defined as follows. Given a scalar field F (P) , with F a scalar function
on R 3 , the surface that satisfies F (P) = α , where α is a constant, is called the isosurface defined by α .
The value α is called the isovalue. In practice, isosurface extraction usually involves generation of an
approximate, piecewise isosurface (usually composed of a collection of triangles) on a sampled scalar
field

Incremental Surface-Oriented Construction (Mencl, 1998): the idea of surface-oriented construction is
to build-up the interpolating or approximating surface directly on surface-oriented properties of the
given data points. For example, surface construction may start with an initial surface edge at some
location of the given point set, connecting two of its points which are expected neighbors on the
surface. The edge is successively extended to a larger surface by iteratively attaching further triangles at
boundary edges of the emerging surface.

Page 8 of 32

CHAPTER 5: TOOLS AND TECHNOLOGIES USED

Open GL: OpenGraphics Library is cross-language, multi-platform application programming interface

(API) for rendering 2D and 3D computer graphics. The 3D graphics programmer interface was initially

design by Silicon Graphics Inc. (SGI) and now developed by several companies, to improve the

performances of graphical hardware supporting the Open GL standard.

QtCreator: Qt Creator is a cross-platform C++ integrated development environment which is part of the

SDK for the Qt GUI Application development framework. It includes a visual debugger and an integrated

GUI layout and forms designer. The editor's features include syntax highlighting and autocompletion,

but not tabs. Qt Creator uses the C++ compiler from the GNU Compiler Collection on Linux and FreeBSD.

Eigen: Eigen is a high-level C++ library of template headers that implements linear algebra and related

matrix operations. Since it is a header library, there is no need for any installation.

NGL: graphics library by Jon Macey (NCCA).It comprises of a number of C++ classes useful for graphics

programming.

For research and understanding:

PCL: The Point Cloud Library (PCL) is a standalone, large scale, open project for 2D/3D image and point

cloud processing. It implements a set of algorithms designed to help work with 3-D data, in particular

point clouds.

OpenCV: Open Source Computer Vision Library is a cross-platform library of programming functions

mainly aimed at real-time computer vision, developed by Intel, and now supported by Willow Garage

and Itseez. It focuses mainly on real-time image processing.

Page 9 of 32

CHAPTER 6: BACKGROUND

The research literature on surface reconstruction is vast and there exist many different algorithms and

approaches for the problem.

The main steps involved in any algorithm are as stated below:

There are various reconstruction algorithms and it is a difficult task to discuss all of them. The following

table shows one classification of reconstruction methods. We will be discussing only a few of each

category.

Pre-processing: erroneous data are eliminated or points are
sampled to reduce the computation time

determination of the global topology of the object's surface

generation of the polygonal surface: triangular (or tetrahedral)

meshes are created satisfying certain quality requirements, e.g.

limit on the meshes element size , no intersection of breaklines, etc.

post-processing: when the model is created, editing operations are

commonly applied to refine and perfect the polygonal surface

Reconstruction Methods

Region growing methods

Algebraic methods

Computational geometry methods

Page 10 of 32

Region Growing Methods: propagate information and thus reconstruct surfaces in a progressive style.

Hoppe(1992) provides an estimate of the surface normal for the point by fitting a plane to the

neighborhood around each data point.

Bernardini’s (1999) Ball-Pivoting algorithm grows a mesh from an initial seed triangle that is

correctly oriented. A ball of specified radius is pivoted across edges of each triangle bounding

the growing mesh. If the pivoted ball hits vertices that are not yet part of the mesh, a new

triangle is instantiated and added to the growing mesh. Non-manifold constructions are avoided

in the above process.

Computational geometry methods: depend on mechanisms, such as Delaunay triangulation and

Voronoi diagram. Such methods interpolate the original points and basically they are sensitive to the

presence of noise. Two most successful examples of this classification are Alpha Shapes and the Crust

algorithm

In Alpha shapes, the shape is carved out by removing simplexes of the Delaunay triangulation of

the point set. A simplex is removed if its circumscribing sphere is larger than the alpha ball.

In the Crust algorithm, Delaunay triangulation is performed on the original set of points along

with Voronoi vertices that approximate the medial axis of the shape. The resulting triangulation

distinguishes triangles that are part of the object surface from those that are on the interior

because interior triangles have a Voronoi vertex as one of their vertices.

Algebraic methods: try to fit a function to the data points. They avoid creating noisy surfaces by fitting a

smooth function, and by not requiring that the function pass through all data points. Most of the signed

distance based and implicit function based methods fall under this category.

Dinh (2002)proposes a reconstruction approach based on a summation of non-polynomial basis

functions whose domain is a scalar value obtained from the distance between sample points.

Fang and Gossard (1995) reconstruct piecewise continuous parametric curves. Fang and Gossard

show examples using Hermite basis.

Page 11 of 32

CHAPTER 7: GREEDY PROJECTION ALGORITHM

As explained by Rusu(2009) in his paper, the Greedy Projection algorithm works by maintaining a list of

points from which the mesh can be grown (“fringe” points) and extending it until all possible points are

connected. Triangulation is performed locally, by projecting the local neighborhood of a point along the

point’s normal and connecting unconnected points.

The algorithm is based on incremental surface growing principle (Mercl,1998), following a greedy type

approach. The algorithm starts by creating a starting triangle and keeps on adding new triangles until all

the points in the cloud have been considered or there no more valid triangles which can be connected to

the resultant mesh.

Algorithm Flow:

1. Nearest neighbor search: For each point ‘p’ in the point cloud, a k-neighborhood is selected. This

neighborhood is created by searching the reference point’s nearest k-neighbors within a sphere

of radius r. The radius is defined as µ.d, where d is the distance of the point p from its closest

neighbor and µ is the user-specified constant to take into account the point cloud density.

(Discussed in Chapter: 9) To find the nearest neighbors for the given point in the point cloud,

Kdtree nearest neighbor search has been used.

The points in the cloud are assigned various states depending on their interaction with the

algorithm: free, fringe, boundary, and completed.

a. Initially, all the points in the cloud are in the free state and free points are defined as

those points which have no incident triangles.

b. When all the incident triangles of a point have been determined, the point is referred to

as of completed state.

c. When a point has been chosen as a reference point but has some missing triangles due

to the maximum allowable angle parameter, it is referred to as a boundary point.

d. Fringe points are the points that have not yet been chosen as a reference point

2. Neighborhood projection using tangent planes: the neighborhood is projected on a plane that is

approximately tangential to the surface formed by the neighborhood and ordered around p.

3. Pruning: The points are pruned by visibility and distance criterion, and connected to p and to

consecutive points by edges, forming triangles that have a maximum angle criterion and an

optional minimum angle criterion. The points in the point cloud are pruned depending on many

criterions.

a. Pruning by distance criterion: a distance criterion is applied to prune down the search

for candidate adjacent points in the spatial proximity of current reference point using

kd-tree.

b. Further points which lie outside the sphere of influence centered at reference point are

rejected. The chosen points are referred to as the candidate points.

c. Choice of projection plane: the candidate set of points obtained after applying the

distance criterion are projected on the the approximate tangent plane.

Page 12 of 32

d. Angle ordering: a new local coordinate system is defined with the reference point as

the origin and the plane projection of the previous step serves as the xy-plane. All the

points in the candidate set are projected this plane. Ordering around the ref. point is

based on the angle (ϴ) between the x-axis of the local coordinate system and the vector

from origin to the projected candidate point.

e. Visibility: the points which potentially form a self-intersecting mesh are discarded. The

algorithm defines two edge types for checking this condition:

i. Boundary Edge: an edge with only one triangle incident on it. These edges

connect fringe and/or boundary points.

ii. Internal Edge: connect the completed points with any other points.

The plane is projected using the reference point, candidate set of points and the

boundary edges. In case, the line of sight from the reference point to a candidate vertex

is obstructed by an edge, the point is occluded.

The input to this algorithm is a point cloud with estimated surface normals and the curvature data

calculated using Principal Component Analysis discussed in Chapter 10.

Page 13 of 32

CHAPTER 8: MARCHING CUBES ALGORITHM

The Marching Cube (MC) algorithm is the most used for the isosurface reconstruction. This algorithm

has been designed by William E. Lorensen and Harvey E. Cline in 1987 to generate a 3D model.

The standard MC algorithm, as originally described by Lorensen and Cline (1987), takes as its input

a regular scalar volumetric data set. Such a data set has a scalar value residing at each lattice point of a

rectilinear lattice in 3D space. The algorithm creates subdivides the region of space into 3D array cubes,

also known as voxels.

The basic cube is called a voxel and is formed by 8 vertices and 12 edges.

The MC processes the volumetric data set by considering the “cubes” that make up the volume. Each

lattice point is a corner vertex of a cube. The cubes are defined by the volume's lattice. The algorithm

instructs to 'march' through each of the cubes while testing the corner points and replacing the cube

with an appropriate set of polygons. The sum total of all polygons generated will be a surface that

approximates the one the data set describes.

Page 14 of 32

Each vertex and each edge of the cube is indexed for lookup in the tables. By determining which edges

of the voxel are intersected by the isosurface, we can create triangular patches that divide the cube into

different regions that are within the isosurface and the regions that are outside. By connecting the

patches from all voxel on the isosurface boundary, we get a surface representation.

Left figure shows the indexing order followed in the algorithms implementation in the project and right

figure shows a case when vertex 3 is either below or above the isosurface value and the isosurface facet

cuts through the edges 2, 3 and 11. The exact position of the vertices of the triangular facet depends on

the relationship of the isosurface value to the values at the vertices 3-2, 3-0, 3-7 respectively.

In case, one vertex is above the isosurface and an adjacent vertex is below the isosurface, then the

position at which the isosurface cuts the edge is linearly interpolated. The ratio of the length between

the two vertices will be the same as the ratio of the isosurface value to the values at the vertices of the

grid cell.

The intersection points can be calculated by linear interpolation. If P1 and P2 are the vertices of a cut

edge and V1 and V2 are the scalar values of each vertex, the intersection point P is given by the

following equation:

Since each of the eight vertices of a cube can be either marked or unmarked, there are 256 (2 8)

p otential combinations of the corner status. These combinations are simplified by taking into account

cell combinations that duplicate under the following conditions:

 Rotation by any degree over any of the 3 primary axis

 Mirroring the shape across any of the 3 primary axis

 Inverting the state of all corners and flipping the normals of the relating polygons.[Sharman]

These conditions reduce the original 256 combinations of cell state to 15 combinations as shown below:

http://mipav.cit.nih.gov/pubwiki/index.php/File:MarchingCubes12.jpg

Page 15 of 32

For each case, an index is created based on the state of the vertex. Using the vertex numbering in Figure
4, the eight bit index contains one bit for each vertex. This index serves as a pointer into an edge table
that gives all edge intersections for a given cube configuration.

In the final step of the algorithm, the normal for the faces are calculated for correct rendering of the
surface.

The steps involved in the implementation of the algorithm can be summarized as follows:
STEP 1: define a cube and number its vertices according to the Paul Bourke convention.
STEP 2: determination of the index and use the index as a pointer in the Lookup table, which defines the
set of intersections of the interested surface by the cube edges
STEP 3: Calculate the intersection points on the cube edges by linear interpolation.

 Blue sphere denote the vertices that have been tested as ‘Inside’ the shape

Green arrows denote the surface normal of respective generated triangles.

Using the vertex numbering in Figure 4, the eight
bit index contains one bit for each vertex. This
index serves as a pointer into an edge table that
gives all edge intersections for a given cube
configuration.

Looking up the edgeTable returns a 12 bit

number, each bit corresponding to an edge

Page 16 of 32

CHAPTER 9: NEAREST NEIGHBOR SEARCH PROBLEM

Nearest Neighbor Search Problem Definition: Given a set S of points in a n-dimensional space, construct

a data structure which given any query point Q finds the point in S with the smallest distance to Q.

The Kd-trees
Kd tree or a k-dimensional tree is a space-partitioning data structure for organizing points in a k-

dimensional space. The k-d tree is a generalization of binary search trees in which every node is a k-

dimensional point. Every non-leaf node generates a splitting hyperplane that divides the space into two

two parts, known as half-spaces.

Each node in the tree is defined by a plane through one of the dimensions that partitions the set of

points into left/right (or up/down) sets, each with half the points of the parent node. These children are

again partitioned into equal halves, using planes through a different dimension. Partitioning stops after

log n levels, with each point in its own leaf cell. The partitioning loops through the different dimensions

for the different levels of the tree, using the median point for the partition. kd-trees are known to work

well in low dimensions but seem to fail as the number of dimensions increase beyond three.

The easiest approach to find the nearest neighbor

to the point Q will be to compute the distance

from Q to each point in P. This linear scan

approach is tolerable for small data sets but for

large data sets of point clouds, it is very

expensive. So we are using Kd-Trees by Jon

Bentley, 1975 to solve this problem.

The key point of the problem formulation is that

dataset S is considered fixed. The query point may

vary from request to request, but S remains

unchanged. Kdtree preprocesses the dataset and

build the tree data structure which accelerates

processing.

Page 17 of 32

A kd--tree is similar to a decision tree except that we split using the median value along the dimension

having the highest variance. Every internal node stores one data point, and the leaves are empty.

kd-trees allow to efficiently perform searches with problem statements like "find k-nearest neighbors of

Q" or "find all points at distance lower than R from Q" .

Algorithm: (Bentley, 1980, Chapter - 3.3 Nearest Neighbors)

1) locate the location where the point would be located if it were added to the tree :

Starting with the root node, the algorithm moves down the tree recursively, taking decisions to

follow left or right node depending on whether the point is less than or greater than the current

node in the split dimension.

2) Once the algorithm reaches a leaf node, it saves that node point as the "current best". As the tree is

traversed the distance between the point and the current node should be recorded.

3) The algorithm goes back up the tree evaluating each branch of the tree that could have points

within the current minimum distance i.e. it unwinds the recursion of the tree, performing the

following steps at each node:

a) If the current node is closer than the current best, then it becomes the current best.

b) Check the other side of the hyperplane for points that could be closer to the search point than

the current best. To check this, intersect the splitting hyperplane with a hypersphere around the

search point that has a radius equal to the current nearest distance.

i) If the hypersphere crosses the plane, there could be nearer points on the other side of the

plane. The process is repeated in this branch.

ii) If the hypersphere doesn't intersect the splitting plane, then the algorithm continues

walking up the tree, and the entire branch on the other side of that node is eliminated.

4) Search completes when the algorithm reaches the root node.

Page 18 of 32

CHAPTER 10: Principal Component Analysis for Normal Estimation

Principal component analysis (PCA) involves a mathematical procedure that transforms a number of

(possibly) correlated variables into a (smaller) number of uncorrelated variables called principal

components. The first principal component accounts for as much of the variability in the data as

possible, and each succeeding component accounts for as much of the remaining variability as possible

(Smith, 2002).

In computational terms the principal components are found by calculating the eigenvectors and

eigenvalues of the data covariance matrix. This process is equivalent to finding the axis system in which

the co-variance matrix is diagonal. The eigenvector with the largest eigenvalue is the direction of

greatest variation, the one with the second largest eigenvalue is the (orthogonal) direction with the next

highest variation and so on.

Let A be a n x n matrix. The eigenvalues of A are defined as the roots of:

determinant(A -λI) =|j(A -λI)| = 0

where I is the nxn identity matrix.

This equation is called the characteristic equation (or characteristic polynomial) and has n roots.

Let λ be an eigenvalue of A. Then there exists a vector x such that:

Ax = λx

The vector x is called an eigenvector of A associated with the eigenvalue λ.

To find a numerical solution for x we need to set one of its elements to an arbitrary value, say 1, which

gives us a set of simultaneous equations to solve for the other other elements. If there is no solution we

repeat the process with another element. Ordinarily we normalise the final values so that x has length

one, that is

x. xT = 1

In our case, we are dealing with 3d data which gives us (n x 3) matric of x. which gives us a 3 x 3

covariance matrix as `An x 3 X A3 x n gives us a matrix of size (3 x 3) A3 x 3 .

So, a 3 x 3 matrix A with eigenvectors x1, x2, x3, and eigenvalues λ1, λ2, λ3 so:

A x1 = λ1 x1 A x2 = λ2 x2 A x3 = λ3 x3

Each eigen value corresponds to an eigen vector. For this project the maximum eigen value is being used

to find its corresponding eigen vector. This is a column vector which stores the (x,y,z) coordinates of the

normal position.

Page 19 of 32

Method for Normal Estimation

In the computer graphics, the surface normals are used for generating the correct shadows based on the

lightning. In the surface reconstruction, the normals define the direction of the polygon faces. The

normal estimation of the geometric surface is usually a trivial task, but the points in the point cloud do

not have any surface, they only represent one. For this reason, the task is nontrivial.

There are basically two different approaches for the normal estimation.

1 - Reconstruct the surface, which the points represent, and calculate the normals from that.

2 - Approximate the normal data directly from the point cloud.

The input point cloud in the project takes only the position values of the point cloud, and we are using

the second method stated above to calculate the surface normal from the point cloud.

For each point p in cloud P:

 1. Get the nearest neighbors of point P using the nearest neighbor search using kd-tree discussed
in chapter 9.

i. Compute the mean vertex for the neighborhood and subtract the mean from all the points.
ii. Using the mean vertex of the neighborhood, calculate the centroid for the neighborhood.

iii. The centroid is used for calculating the covariance matrix.
iv.Calculate the Eigen Vector and the Eigen Values of the Covariance Matrix.

 2. A local coordinate system is created by taking a cross product of the eigen vector normal with its
unit orthogonal.

LocalV = eigenNormal.unitOrthogonal();
LocalU = eigenNormal.cross(localV);

 The normalized localU gives us the surface normal.

 3. Check if n is consistently oriented towards the viewpoint and flip otherwise

Page 20 of 32

CHAPTER 11: HERMITE RADIAL BASIS FUNCTION

The marching cube algorithm works on implicit surfaces. To use the algorithm, one needs to provide a

function that can provide the point of interest in the marching cube’s voxelized space.

The Hermite radial basis function (HRBF) implicits method computes an implicit function which

interpolates scattered multivariate Hermite data (unstructured points and their corresponding normals).

Differently from previous radial basis functions (RBF) approaches, HRBF implicits do not depend on

offset points to ensure existence and uniqueness of its interpolant (Macedo, c.a. 2007).

This function should be able to perform the computation of implicit surfaces that approximate or

interpolate scattered point cloud data.

As described by Vaillant (2007) in his tutorial the surface is represented by a scalar field f:R³→R. The

function interpolates the given set of N points along with their normal (pi, ni) to reconstruct the surface.

The project makes use of the code provided by Vaillant (2007) along with the tutorial.

Function f returns values ranging from [−∞; +∞] and has increasing values from the inside to the

outside.

The GRBF calculates the normal also but we are not going to use the normal from this function, but will

be using the normal of the surfaces generated in marching cube. The gradient return a vector which

contains in each component the partial derivatives of f:

∇f=(∂f(x,y,z)/∂x,∂f(x,y,z)/∂y,∂f(x,y,z)/∂z)

f(p) = 0 on the surface
f(p)<0 (red) for curves inside the surface

f(p)>0 (blue) for curves outside the surface

Page 21 of 32

The function f: - f(x) =∑i

N αiϕ(∥x−pi∥)+βi.∇[ϕ(∥x−pi∥)]

=∑i

N αiϕ(∥x−pi∥)+ ai (x)T βi

Now, with have x∈ R3 the evaluated position and pi the samples/points to be interpolated. The function

ϕ: R→ R is a called a radial basis function defined as ϕ(x)=x3 for our project.

 To compute the value of f we will have to find the N values of αi ∈ R and βi ∈ R3, to get value we need for

sampling our point cloud in the marching cube for reconstruction.

Page 22 of 32

CHAPTER 12: PROJECT STRUCTURE AND FLOW

STAGE 1:- Initial research and experiments with PCL and OpenCV.

Results obtained using OpenCV:

Stereo Images to Depth Map

= Disparity Map
 (or Depth Map)

Using OpenCV:
Converting the
images to (8bit) gray
scale images & using
Stereo Block
Matching Algorithm

Depth Map to Point Cloud

Depth Map to Point Cloud

Point Cloud to Polygon Mesh

Using OpenCV:
Each pixel has a grayscale value.
Assigned the grayscale value to the depth for generating the point cloud.

Page 23 of 32

Results obtained using PCL:

The project was started with the installation and usage of libraries – PCL and OpenCV and the
results were discussed during the mid-term project. The project pipeline was changed after the
advice of tutors to concentrate on one part of surface reconstruction than to keep a broad
pipeline and completing it with the use of libraries.

So the project was restructured to concentrate on the generation of polygonal mesh from input
point cloud data. After experimenting with PCL’s Greedy projection algorithm and looking at
promising results, the implementation of the Greedy projection was studied.

Export Polygon mesh as an OBJ

Point Cloud to Polygon Mesh

Using PCL:
(Point Cloud Library)
Used a sample Point
Cloud from the test
samples of PCL, to test
the Greedy Projection
algorithm in PCL.

The algorithm generates
a VTK File.

Converted the VTK file to
a Wavefront OBJ file
format (universally
accepted file format) for
importing in Maya.

Page 24 of 32

STAGE 2:- Understanding the Greedy Projection Algorithm Implementation

and creating the program on similar lines as PCL’s implementation for better

understanding of the algorithm.

The algorithm is based on the technical paper by Rusu R.B.(2009) which has been implemented in PCL. It
is a lengthy code of 2000+ lines running in multiple while loops and taking care of numerous conditions.

I was able to complete initial process of algorithm to simplify the point cloud and calculating the local
projections of the tangent planes to estimate surface normal. Using the projection of local coordinate
system, the angle between neighbors with respect to the reference points was calculated. The first
triangle for all the k-neighborhoods was created using this projection data.

Page 25 of 32

The tests were created by creating the code on similar lines of the algorithm’s implementation in
PCL.Figure below shows the unified and simplified input point cloud.

The 2000+ line code running in multiple while loops was difficult to understand and the accompanied
paper for the implementation did not list all the conditions for further adding triangles using
incremental approach. Due to running short on time for the project, I had to discard the paper and look
for an alternate approach as discussed in the next step of Project Flow.

Page 26 of 32

STAGE 3:- Final Outputs and the flow of project is discussed as follows:

STEP 1: Process the input Point cloud containing only the (x, y, z) position coordinates in 3D space. The
input is a text file containing the (x, y, z) position values.

STEP 2: Estimate the surface normals using the Principal Component Analysis discussed in Chapter 10.
The resulting surface normal can be seen in the output below:

STEP 3: The point cloud position and the calculated surface normal data is fed into the Hermite Radial
Basis Function to calculate the sample value for the point cloud, to be used as input to the Marching
Cube Algorithm in STEP 4.

STEP 4: Generation of surface mesh using Marching Cubes algorithm as discussed in Chapter 8, using the
evaluation of HRBF at each cube of the marching cube’s voxel grid. The surface is generated for all the
positions (returned by the HRBF evaluation) in the unit cube of the marching cube algorithm.

The code is based on the tutorial by Paul Bourke (1994). The project uses the tables and the basic
structure of the tutorial code but is changed to take care of the point cloud input. The main loop for the
marching cube that defines the voxel grid runs from the maximum and minimum extents of the Point
Cloud Bounding Box.

Page 27 of 32

Page 28 of 32

Page 29 of 32

RESULTS AND COMPARISIONS:
 The results obtained using the PCL library were

 PCL GREEDY PROJECTION
IMPLEMENTATION
EXPERIMENT

PCA+HRBF+MC

Surface
Generated

Regular surface
generated which retains
the mesh boundary

Could generate only first
triangle per neighborhood

Regular mesh generated but
with some artifacts and the
geometry gets extended
because of HRBF’s property
of creating enclosed surfaces.

Speed Extremely fast because
of greedy approach

Fast Very slow because of
marching cubes trying to
access the HRBF evaluated
output at each cube vertex of
the grid.

Algorithm’s
complexity

The implementation is
extremely difficult with
so many conditions for
pruning.

Due to the non-trivial
algorithm and incomplete
nature of the paper (Rusu,
2009) the implementation
was not fully completed.

The process flow could be
understood in a procedural
way and hence the
implementation could be
listed in procedural steps.

Process
Adaptability

The implementation is
enclosed in while loops
which are difficult to
break in steps and
hence difficult to
combine with other
methods.

 On completion of the
process, I could infer that the
usage of HRBF was making
the process slow. The process
can be adapted to include
some other method like
RBF(Radial Basis Function) or
signed Distance Functions
could be used and
experimented with.

Data set
Size handled

The robustness of the
project allows the
algorithm to process
large point clouds.

Steps to unify and simplify
the point cloud were
implemented which helped
in reducing a mesh of 30k
points to 4k points.

HRBF implementation is using
Eigen library for matrix
calculations which makes it
difficult to use large data
sets.

Page 30 of 32

Problems faced:
 A lot of time was devoted to the installation of libraries and learning the local installation on lab

machines using cmake. Initial results were obtained using libraries.

 The project demanded huge time for research and narrowing down on a single algorithm for

implementation from the vast resource pool in the area of reconstruction.

 Alteration of project pipeline changed the focus of the project from creating high level detail

models to creating simple meshes to understand the core of the problem.

 For the final implementation, very little time was left and hence could not improve upon it. The

Final implementation runs slow due to HRBF.

Future Work and Conclusion:
 Use Signed Distance or Radial Basis Function instead of HRBF for non-closed meshes

 Use the HRBF on enclosed meshes by slicing the mesh into parts to take care of surface normal.

 Reduce the run time for program.

Page 31 of 32

REFERENCES:

1. Marton, Z.C., Rusu, R.B., Beetz, M. 2009.On Fast Surface Reconstruction Methods for Large and
Noisy Datasets. Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Kobe, Japan.

2. Fabio, R. FROM POINT CLOUD TO SURFACE: THE MODELING AND VISUALIZATION PROBLEM.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, Vol. XXXIV-5/W10, Zurich, Switzerland.

3. Lorensen, W. , Cline., H. 1987. MARCHING CUBES: A HIGH RESOLUTION 3D SURFACE
CONSTRUCTION ALGORITHM. Computer Graphics (Proceedings of SIGGRAPH '87), Vol. 21, No. 4,
pp. 163-169.

4. Bourke, P. 1994. Polygonising a scalar field. University of Western Australia. Available from :
http://paulbourke.net/geometry/polygonise/

5. Sharman, J. The Marching Cubes Algorithm. Available from:
http://www.exaflop.org/docs/marchcubes/

6. Nguyen, T. Nearest Neighbor Search. Oregon State University. Available from:

http://andrewd.ces.clemson.edu/courses/cpsc805/references/nearest_search.pdf

7. Christopher S. 2011. k-D Tree Nearest Neighbor Search. University of Akron, US. Available from:

http://www.christopherstoll.org/2011/09/k-d-tree-nearest-neighbor-search.html

8. Bentley, J. Multidimensional Divide-and-Conquer. Carnegie-Mellon University. . Available from :

http://www.cs.uiuc.edu/class/fa05/cs473ug/hw/p214-bentley.pdf

9. R. Mencl and H. Muller. Interpolation and approximation of surfaces from three-dimensional

scattered data points. In: State of the Art Reports, Eurographics ’98, 1998, pp. 51–67.

10. H. Hoppe, T. Derose, T. Duchamp, J. McDonald, and W. Stuetzle.1992. Surface reconstruction

from unorganized point clouds. In ACM Siggraph pp 71–78.

11. M. Gopi and S. Krishnan. 2002. A Fast and Efficient Projection-Based Approach for Surface

Reconstruction.In: SIGGRAPH ’02: Proceedings of the 15th Brazilian Symposium on Computer

Graphics and Image Processing, 2002, pp. 179–186.

12. Lecture 15: Principal Component Analysis. In: DOC493: Intelligent Data Analysis and Probabilistic

Inference Lecture 15. Imperial College London. Available from:

http://www.doc.ic.ac.uk/~dfg/ProbabilisticInference/IDAPILecture15.pdf

13. Smith, L. 2002. A tutorial on Principal Components Analysis. Available from :

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

14. Vaillant, R. 2007. Recipe for Implicit surface reconstruction with HRBF. Available from :

http://www.irit.fr/~Rodolphe.Vaillant/?e=12 .

15. Macedo, I. Gois, J.P., Velho, L. Hermite Interpolation of Implicit Surfaces with Radial Basis

Functions. Vision and Graphics Laboratory, Instituto Nacional de Matematica Pura e Aplicada

(IMPA), Rio de Janeiro, RJ, Brazil. Available from:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.1019.

16. F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taublin. 1999. The ballpivoting

algorithm for surface reconstruction. IEEE Trans. on Visualization and Computer Graphics,

5(4):349–359.

http://paulbourke.net/geometry/polygonise/
http://www.exaflop.org/docs/marchcubes/
http://andrewd.ces.clemson.edu/courses/cpsc805/references/nearest_search.pdf
http://www.christopherstoll.org/2011/09/k-d-tree-nearest-neighbor-search.html
http://www.cs.uiuc.edu/class/fa05/cs473ug/hw/p214-bentley.pdf
http://www.doc.ic.ac.uk/~dfg/ProbabilisticInference/IDAPILecture15.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://www.irit.fr/~Rodolphe.Vaillant/?e=12
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.1019

Page 32 of 32

17. H. Edelsbrunner and E. Muche. 1994.T hree-dimensional alpha shapes. ACM Trans. on Grphics

18. N. Amenta, M. Bern, and M. Kamvysselis. 1998. A new voronoi-based surface reconstruction

algorithm. SIGGRAPH, pages 415–421,

19. H. Dinh, G. Turk, and G. Slabaugh. 2002.Reconstructing surfaces by volumetric regularization

using radial basis functions. IEEE Trans. on Pattern Analysis and Machine Intelligence.

20. L. Fang and D. Gossard. 1995. Multidimensional curve fitting to unorganized data points by

nonlinear minimization. Computer-Aided Design, 21(1):48–58.

