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The Delaunay tetrahedralization is one of the most popular and common method used for solving 

problems related to meshes. It is either used for generating a mesh or for breaking it up, as Voronoi 

diagrams, dual of the DT is a commonly used process for that. The main task of this project is to 

implement a robust Delaunay Tetrahedralization structure, with a set of points generated from 

sampling a given 3D Mesh.  

Points within the volume of the mesh can be obtained by several methods. We present two such 

methods and discuss the result obtained. These points serve as vertices for the tetrahedrons that are a 

part of the combinatorial structure DT. 

3D Delaunay Tetrahedralization(DT) is not as optimal as 2D Delaunay triangulations. Implementing 

them gives rise to several degeneracies, which are quite difficult to handle. In this project, we have 

implemented a simple  Incremental Insertion Algorithm based on the paper presented by 

Ledoux(2007), inorder to construct the DT structure. Correctness of the structure is given utmost 

importance rather than its speed. 
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Meshes composed of triangles or tetrahedra are used in various applications like terrain databases, 

Geographical Information Systems, but most demandingly, in Mesh Generation and obtaining partial 

differential solution using Finite Element Method. There have been several algorithms that explains 

how to generate the triangles or tetrahedra given a set of points. Although they are used for various 

applications, the central focus of this thesis is computing Tetrahedrons within a 3D Mesh and 

thereafter obtain its dual, the Voronoi diagram, using Delaunay Tetrahedralization for the purpose of 

Fracturing a 3D Mesh. 

Fracturing of objects(Destruction) is becoming a key aspect in any major visual effects pipeline. A 

typical destruction pipeline’s basic step involves preparing the 3d object for fracture.  Although, there 

are several ways to prepare the 3D object, the most common and widely used is shattering using 

Voronoi diagrams(VD). The VD can be computed directly given a set of  points using several 

algorithms. Pipelines that already exist are either based on Rigid Body Simulations or on a new 

solution, Finite Element Analysis(FEA) . The majority of the algorithms used in these pipelines do not 

compute the VD directly as additional computations on intermediate voronoi vertices are performed 

which greatly reduces the speed of the algorithm. Instead the Voronoi Diagram needed is extracted 

from its dual, the Delaunay triangulation directly without the need for additional computations and 

hence has the advantage of speeding up algorithms. 

The process of breaking a 3d Mesh into triangles is called Triangulation. This can be achieved by a 

method called Delaunay Triangulation(DT). DT for a set of points can be obtained by checking the 

empty circle criterion for any triangle in DT(P).  The triangle is said to be Delaunay only if the 

circumcircle of every triangle is empty, i.e has no other points or vertices. This can be extended to 

three and higher dimension, when circumsphere is considered. In three dimensions the primitives are 

no longer triangles, but tetrahedra, hence the process is termed Tetrahedralization. A circumsphere 

check is considered here to check if the Tetrahedron is Delaunay. 

This thesis focuses specifically on the creation of Tetrahedrons using Delaunay Tetrahedralization and 

thus extracting its dual Voronoi Diagram.  



2 
 

In Chapter 2, we present several work done related to Delaunay Tetrahedralization. We further extend 

the discussion to its applications. 

In Chapter 3, we present the main idea behind generation of points inside the Mesh using two 

different methods Ray Casting and SDF.  

In Chapter 4, the construction of  Delaunay Tetrahedrons and the various algorithms used for 

generating it are discussed. The main algorithm used in this project is explained in the succeeding 

sub-chapters. The degeneracies that will occur for the algorithm chosen are also discussed. 

In Chapter 5, the implementation details of the algorithm are explained. The problems occured while 

implementing them and the limitations of the algorithm are presented. 

In Chapter 6, we evaluate the work done. The drawbacks and advantages of the algorithm 

implemented are portrayed. Furthermore, its use in recent scenario and future work are briefly 

discussed. 
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Delaunay triangulation is one of the most popular and most often used methods in problems mainly 

related to computational geometry. It was discovered in 1934 by the French mathematician Boris 

Nikolaevich Delone or Delaunay.  Many of the Delaunay properties were intensively studied only in 

2D for many years. It was extensively researched in the engineering community since the mid – 

1980s. For instance, Frey in 1987 presented a solution for eliminating badly shaped triangles from 

their triangulation by inserting a new vertex at their circumcenters . Similarly Weatherill (1992) gives 

an alternate solution by inserting vertices at their centroids. These ideas were very helpful when 

problems related to Mesh generation started evolving in the early 1990s. 

Delaunay Triangulations have been constructed in two and three dimensions using several interesting 

algorithms : sweep- plane, divide-and-conquer and incremental insertion. All these algorithms yields 

an optimal solution in two dimensions. In 1985,  Guibas and Stolfi (1985) proposed a Divide and 

Conquer algorithm which achieves the optimal bound of O(n log n).  Later,  Steve Fortune (1987) 

proposed a Sweepline algorithm for Voronoi diagrams which also achieves this bound.  However, 

when it comes to three-dimensions, things get a bit more complicated. Cignoni et.al(1998) manages to 

compute DeWall algorithm for constructing the  DT in any dimensions, based on the divide-and-

conquer algorithm (Fortune 1987). But, Shewchuck(1997)  suggests using plan-sweep paradigm for 

the construction of constrained DT as it is sub-optimal when compared to the former. Unfortunately, 

these algorithms requires significant programming complexity. Hence, incremental insertion is 

preferred over the two as it is quite simple to implement and less-error prone. 

Incremental insertion can be implemented using two algorithms : Bowyer-Watson Algorithm (1981) 

and flip-based Algorithm.  Flip based algorithm is chosen over Bowyer-Watson as the latter is more 

error-prone because of the creation of holes, which occur when deleting a conflicting Tetrahedra that 

does not satisfy the Delaunay criterion. Lawson (1977) developed the first flip-based algorithm in two 

dimensions. While using the same concept of Lawson for higher dimensions, Joe (1989)proves that 

the algorithm fails when the union of the two tetrahedra is concave. However, Joe (1991) solves this 

problem and proves that flip based algorithm works for higher dimensions as well. 

In recent years, several Mesh Generators namely Tetgen and Netgen have emerged. Tetgen is a 

quality tetrahedral Mesh Generator developed by HangSi (2004). It is designed in C++ and is used for 
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constructing Delaunay tetrahedralization, voronoi diagram and convex hull for three-dimensional 

point sets. Tetgen initially was implemented using a randomized incremental flip-based algorithm of 

Edelsbrunner and Shah(1996). The algorithm is fast and memory efficient.  The latest version of 

Tetgen as updated on 2009, uses a new implementation of the Bowyer-Watson Algorithm for 

Delaunay Tetrahedralization. Hang Si, proves that it is faster than incremental flip based algorithm. 

Similarly, Netgen is an automatic mesh generation tool in two and three dimension developed by 

Joachim Schoberl(1994). It uses Constructive Solid Geometry(CSG) as its domain input format for 

generating tetrahedral meshes in 3D. 

Computation Geometry Algorithms Library(CGAL) is an open source library offers data structures 

and algorithms for creating Triangulations in 2D and 3D. CGAL also uses incremental insertion 

algorithm, but uses Bowyer-Watson instead of flipping. For locating a point in the structure, it 

employs Delaunay hierarchy (Devillers 2002). 
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A Delaunay tetrahedralization, takes as input a set of points to construct the DT structure. These 

points are obtained by sampling a given 3D Mesh. 

There are several algorithms to obtain points on the surface of a mesh. The easiest being, generating 

random points along the triangles of a polygonal mesh using Barycentric co-ordinates. But, for certain 

applications like Fracturing, points are needed in positions along the volume of the source mesh. 

Inorder  to place samples, not just on the surface but also in the volume enclosed by a mesh, we 

present two methods. 

 

Ray intersection is a very straightforward way of obtaining points inside the volume of a mesh. To 

begin with, the bounding box of the given mesh is calculated.  And then, several random points are 

generated on the surface of this bounding box. The method we used is the same as obtaining sample 

points on a triangle using Barycentric co-ordinates as depicted in Figure 3.11(Jose 2011). The 

bounding box is triangulated and random points are then obtained on the triangles of the bounding 

box. 

 
Figure 3.11  Random points on a triangle 

We start with two variables u and v with random values between 0 and 1 such that        . The 

resulting point is obtained by the weighted sum of the triangle vertices, such as, 

                       =                   where, 
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After generating random points on the bounding box, we shoot rays iteratively joining two random 

points on opposite faces of the bounding box. Each ray will intersect the geometry in a number of 

segments indicated by red dashed lines in Figure 3.12. Every segment is defined by an entry and an 

exit point. The pros of this approach is that it fits the mesh perfectly and precisely obtain the 

intersection points of the ray on the mesh . The cons of using this approach is that, it may be a bit 

slow and the distribution is far from ideal for few samples-although it tends to converge decently 

when the number of requested samples increases. This can be managed by increasing the density of 

rays instead of the number of samples generated per segment of the ray.  The number of samples on a 

segment depends on a ‘linear density factor’.  It is calculated as length of segment * density, where 

density depends on the number of samples requested and the volume of the bounding box (Jose 2011). 

 

Figure 3.12  Ray intersection  

A distance field function provides the shortest distance to an object from an arbitrary point in space. 

The sign of the function determines if the point is inside or outside the object. This technique can be 

used  to generate random points within the mesh. As done in the previous method, random points are 

generated within the bounding box using a simple random function. 

Distance field function computes the shortest distance of every point to the mesh, by comparing the 

distance from the point to each triangle. The sign of the function is computed  by a scanning method. 

A grid is scanned starting from a corner that is definitely outside the object and if a cell is crossed by 

the surface, the sign is changed. However, this solution works best only for a discrete function. For a 

continuous function, the sign can be computed using the sign of the dot product between the surface 

normal at the closest point and the vector from P to the closest point. 

The downside in using SDF is that, computing the signed distance field on larger meshes can become 

time consuming. Computing the distance to every single polygon of the mesh is largely inefficient and 

does not take advantage of the spatial coherence. Optimization can be done by using spatial 

partitioning, hierarchy trees and square distances. 
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There are several paradigms in computational geometry for computing the DT in two and three 

dimensions. However, constructing a DT in three dimensions is quite complicated. In this thesis we 

have used Incremental insertion algorithm, as this has the complexity O(    which is worst case-

optimal. With this algorithm, every point is inserted into the DT one at a time. The tetrahedra 

containing  the newly added point is partitioned and new tetrahedrons are created thus updating the 

DT structure. 

By inserting each point one at a time, we observe that only the Delaunay tetrahedra local to the point 

is altered and not the entire structure. Whereas in the other two paradigm, divide-and-conquer and 

sweep plane, the entire structure is built in a single operation. Inserting a new vertex would result in 

computing the whole structure again. Hence, incremental insertion is mandatory when a dynamic 

spatial model is built . The insertion of a single point can be achieved with two incremental insertion 

algorithms 

1) the Bowyer-Watson algorithm and 

2)  flip-based algorithm. 

The idea behind Bowyer-Watson(1981) is very simple. Tetrahedrons that does not satisfy the 

Delaunay criterion when a point is inserted, are deleted. However, this method is prone to errors as it 

forms a ‘gap’ or ‘hole’ when the tetrahedrons are deleted and affects the overall topological structure 

as well. Hence, flip based algorithm is preferred over the former. The rest of this chapter we discuss 

the Incremental Flip-based algorithm. 

 

Let S be the point set. We first start with a single boundary tetrahedron, constructed in such a way that 

it encompasses the whole set of points, S. The initial tetrahedron constructed should be several times 

larger than the range of S as depicted in Figure 4.11 which illustrates a two-dimensional example. 

This serves as the initial structure for the construction of DT(S), then the points are inserted one by 

one and the structure is updated. This approach always ensures that the point to be inserted is always 

within an existing tetrahedron, which avoids unnecessary operations of dealing with points outside the 
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boundary. The main downside is that, additional tetrahedrons than needed are constructed. The 

tetrahedron that has atleast one boundary point as vertex has to be eliminated in the end. 

 

Figure 4.11  Set of points (s) bounded by the triangle   ,    and     

 

The incremental insertion algorithm makes its important decisions based on the result of two main 

geometric tests : (Ledoux ) 

 Orient determines if a point P is above, below or on a plane defined by three points A, B and 

C. 

  InSphere determines if a point P is inside or outside or on a sphere determined by four points 

A,B,C and D. 

These two can be obtained as shown by the computation of the determinant of a matrix. These two 

predicates can also be implemented by translating all the points by P, and then computing the 

determinant as applying an identical translation will not affect the result. Thus it can be reduced to 

3x3 and 4x4 matrices. 

                 =    
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Using floating point arithmetic for these matrices, offers only an approximation number, hence the 

consequence of using it should be well understood. The combinatorial structure like DT, whose 

construction is based only on these two predicates, a slightly different value could affect the whole 

structure. Hence, the use of exact arithmetic is essential. The value of the determinant is not of utmost 

importance but rather the sign of the determinant is. Also, we should be able to detect if it the value of 

the determinant is exactly zero. For instance, five cospherical points by Insphere can be considered 

not cospherical because the result of the determinant is not exactly 0 (Ledoux 2007). 

 Schewchuck(1997) presents a simple solution for the robustness problem. This is very important for 

the correctness of the DT as it is tightly linked with the special cases we will have to deal with.  The 

major obstacle in using exact arithmetic is that it reduces the speed of computation badly. Hence, 

Schewchuck(1997) in his paper has used exact arithmetic only for determining the sign thus working 

as a filter that will activate the function only when needed. He states that “These predicates cost a 

little more than ordinary non-robust predicates, but never sacrifice correctness for speed”. 

 

Given a    structure of   Tetrahedrons constructed with the points in S, we need to determine which 

Tetrahedron the point to be inserted is in. The task of locating a point and navigating through the 

triangulations has been central problem to a number of computational geometry applications. There 

are several algorithms for point location in triangulations. Many of them are optimal, but they are 

quite complex to implement and use extra storage during pre-processing for creating additional data 

structure. Hence, practitioners prefer sub-optimal algorithms that avoids such problems are are quite 

easy to implement. 
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Green and Sibson (1977) presented an algorithm referred to as “Walking” that does not require any 

additional storage and pre-processing. This algorithm was considered to provide fast practical  

solution for constructing a dynamic structure, based on experimental results by Devillers et al.(2002) 

and Mucke et al (1999). Later Guibas and Stolfi (1985) provided the pseudo-code for the algorithm 

presented by Green and Sibson (1977). In three and higher dimensions the algorithm is a bit more 

intricate. We will explain the algorithm in detail specifically for three dimension.  

 

Given a vertex q of T(u,v,w,q) and a query point p, the initial step of the algorithm is, finding the 

tetrahedron, adjacent to T and incident to q as shown in Figure 4.31. The adjacent tetrahedron is 

chosen such that the point q and p are on either side of the plane defined by u,v and w. This is 

achieved by performing two orientation test (predicate) involving the point q and p. The adjacent 

Tetrahedron found becomes T, and the traversing continues until no such adjacent tetrahedron is 

found. When such a situation arises, it is concluded that T  has the point. Making the algorithm robust 

is not necessary as it is not affected by the degenerate cases.  

 

                                                 
 

Figure 4.31  Walking in 3D 

 

 

An alternative to Bowyer-Watson algorithm is to use bistellar  flips to alter the tetrahedrons in the 

vicinity of P, that does not satisfy the Delaunay criterion. A  bistellar flip is a local topological 

operation that modifies the configuration of adjacent triangles in a triangulation,  tetrahedron in case 

of 3D. Although by using this algorithm, the computation speed is reduced due to flippability tests 

and more tetrahedron than needed are created, it is advantageous, as its simple to implement and less 

error-prone since the adjacency relationships in a DT is encapsulated in the flip operations.  
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The flip based algorithm was first constructed by Lawson (1977) only for two-dimensional 

triangulations. He states that, flipping edges of an arbitrary triangulations of a set of points S, can 

transform this triangulation into any other triangulation of S, including the Delaunay triangulation. 

This algorithm runs with       complexity, since there exists      triangles that must be tested 

against each other. This can be improved to         , by using incremental insertion algorithm 

based on edge flipping. The process of inserting a single point P, by this method is illustrated in 

Figure 4.41. To begin with, the triangle containing the query point is determined. This triangle is split 

into three new triangles, incident to P. Then, each new triangle is tested against its opposite 

neighbour, according to the Delaunay criterion. If the triangle does not satisfy that criteria, the edge 

shared by the triangle with its neighbour, is flipped, and these two new triangles are further tested 

later. This process ends only when every triangle, that has P as one of its vertices satisfies the 

Delaunay criterion. 

 

Figure 4.41 Two dimensional step-by-step implementation of flip based algorithm 

The flip based algorithm usually extends to higher dimensions as well. But, Lawson’s algorithm 

(1977) fails for higher dimensions. Joe (1989) proves that it is not possible for a non-locally Delaunay 

facet to flip when the union of two tetrahedral that shares that common facet is concave. Later, 

Joe(1991) invented a solution to this problem, where he claims that atleast one sequence of flips 

elsewhere will always be possible when constructing the DT, even when non-Delaunay facets 

impossible to flip occur. His research formed the basis for the construction of the Delaunay 

tetrahedralization.  
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Figure 4.42  Bistellar flips in 3D 

Consider a set               of points in   , and its initial boundary tetrahedron, which becomes 

the convex hull of S, denoted conv(S). Two possible configurations exist as depicted in Figure 

4.42(Ledoux 2007). 

 The five points of S lie on the boundary of conv(S); see Figure 4.42(a). According to 

Lawson(1986) there are exactly two ways to tetrahedralize such a polyhedron:either with two 

or three tetrahedra. In the first case, the two tetrahedral share a triangulated face bcd, and in 

the latter case, the two tetrahedral all have a common edge ae. 

 One point e of S does not lie on the boundary of conv(S), thus conv(S) forms a tetrahedron; 

see Figure 4.42(b). The only way to tetrahedralize S is with four tetrahedral all incident to e. 

Depending on these two configurations, Ledoux states that four types of flips are possible. 

 Flip23 occurs when S is considered to be in the first configuration. As the name suggests, this 

operation transforms a tetrahedralization of two tetrahedra into another one with three 

tetrahedra. From Figure 4.42(a) if the triangular face bcd does not satisfy the Delaunay 

criterion locally, then a flip23 will occur, creating three new tetrahedra. 

 Flip32 is the inverse of Flip23.  

 Flip 14 happens when a point is inserted into the tetrahedralization. The point becomes a 

vertex when Flip14 occurs splitting the tetrahedron that contains the point into four new 

tetrahedra, all incident to that point. 

 Flip41 is the inverse of Flip14 that deletes a vertex and transforms four tetrahedra into one. 

Bistellar flips do not always apply to adjacent tetrahedral[20] (Joe, 1989). Unlike in two dimensions, 

these flips are performed only if certain geometric conditions are satisfied. For instance ,a flip23 is 

possible on two tetrahedra that are adjacent to each other, only if the union of the two tetrahedra abcd 

and bcde is a convex polyhedron, implying that the line ae passes through the common triangular face 

bcd. If not, then a flip32 might be possible, only if it has a third tetrahedron adjacent to both abcd and 

bcde. 
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Unlike in two dimensions, the flips are implemented based on certain geometric conditions depending 

on T and     Different cases arise when we view the tetrahedron    from the point p. In three 

dimensions, three types of tetrahedra are possible, when viewed from a fixed point. 

Case 1 : Only one facet of    is visible. This is possible when the edge joining the two apexes of T 

and Ta passes through the interior of their common facet. Therefore, the union of the two tetrahedra is 

a convex polyhedron. When such a case occurs, flip23 is performed.(Figure 4.43) 

Case 2 : When two faces of Ta are visible. The edge joining the two apexes of T and Ta does not pass 

through the common facet, implies that the union of the two tetrahedron are concave. In such a case, if 

a third tetrahedron pabd occurs as shown in Figure 4.43 , then a flip32 is possible. If the third 

tetrahedron doesn’t exist, then no flip is performed. 

When three facets are visible, no flip is performed and the next tetrahedron in the stack is processed. 

The algorithm to implement the Incremental flip based method handling all the cases is described in 

Section 5.2 

 

Figure 4.43 Different cases that occur while flipping 

While constructing the DT in three dimensions, several degeneracies tend to occur. For instance when 

the edge connecting the two apexes of T and    gives unexpected results. The degeneracies that occur 

and the solution to handle it are presented in case3 and case4 as follows : 

Case 3 : if the line segment intersects an edge directly instead of the face, then the vertices p,a,d and b 

are coplanar thus resulting in a flat tetrahedron. A flip44 is possible only if the two tetrahedra contains 

two more tetrahedra adjacent to them such that, all the four tetrahedral are in config44 as shown in 

Figure 4.43 

Case 4 : As shown in Figure 4.43, the point might be inserted directly onto an edge of a tetrahedron, 

which has resulted in this situation. To solve this issue, it is enough if a flip23 is performed on T and 

Ta. This will definitely created another flat tetrahedron, but it was proven that the flat tetrahedron 

created would be deleted in another flip.  

Other degeneracies occur depending on the location of the point to be inserted in the existing 

tetrahedralized structure. Some of the degenerate cases that occur when the point is inserted, 

 directly on the circumsphere of another tetrahedron in T. 
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- No flip is performed. 

 exactly on the vertex of another Tetrahedron in T. 

- the distance of the point p to each vertex of the tetrahedron T returned by WALK 

is tested against a tolerance value. If the distance is found smaller than the 

tolerance, p is not inserted at all. 

 directly on a face of a Tetrahedron in T. 

- No special treatment is required as the flat tetrahedron that results after flip14 

will be deleted when tested against its neighbour in another flip. 

The running time for implementing incremental insertion algorithm for a set S of n points is       in 

worst case. It was later proved that this can be reduced to            if the n points were distributed 

uniformly (Edelsbrunner and Shah 1996). Also notice that, every flip deletes only one-non Delaunay 

tetrahedron and replaces few new ones. For instance, flip14, removes only one tetrahedron and 

replaces four new tetrahedra. Also, flip23, removes one conflicting tetrahedron that does not satisfy 

the Delaunay criterion and replaces it by three new tetrahedral incident to point p. Similarly flip32, 

removes a conflicting tetrahedron and replaces it by two new ones, incident to p. Also notice that, 

once a conflicting tetrahedron is removed after a flip, it is not re-introduced into the 

Tetrahedralization T. Hence, it can be concluded that if there are n tetrahedra conflicting with point p, 

then exactly n flips are needed to construct the DT. 

It is quite easy to construct the Voronoi diagram from the DT structure as its the dual of the latter. 

Each element of the DT corresponds exactly to one and only one other element of the Voronoi 

structure defined as follows :  

Vertex : The Voronoi vertex is quite easily obtained from the DT, as it is the center of the sphere 

circumscribed to its dual Tetrahedron. Thus the Delaunay vertex, p becomes a Voronoi cell as shown 

in Figure 4.51(a). 

Face : a Delaunay edge is dual to a Voronoi face(Figure 4.51(b)). It is obtained by all the vertices 

dual to the tetrahedra incident to a Delaunay edge. In simple words, obtain all voronoi vertices of the 

tetrahedra around the Delaunay edge. 

Edge : a Voronoi edge is formed by two voronoi vertices if and only if their dual tetrahedra are 

adjacent to each other (Figure 4.51(c)). 
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Figure 4.51 Duality between VD and DT elements in 3D 

Polyhedron : A Delaunay vertex p becomes a Voronoi cell as shown in Figure 4.51(d). It is 

constructed by all the Voronoi vertices dual to the tetrahedral, incident to the Delaunay vertex p. 

For the VD, degeneracies tend to occur depending on the distribution of points. Since, the 

construction of the VD is dependant on DT, much care is taken to ensure the correctness of  DT. 
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The Delaunay tetrahedralization have been developed in C++ using the NGL library. The initial part 

of the project, obtaining volume samples was implemented based on the idea given by Jose(2011) in 

his blog. The sample points are obtained using two methods Ray Intersections and SDF. Points 

generated using Signed distance field relies on the SDF library developed by Sanchez (2009).  

The UI for generating points is designed in such a way, points can be generated either on the surface 

of the mesh or within the mesh depending on user request. Surface point generation and Ray 

intersection method both use the principle of Barycentric-cordinates to generate random points within 

a triangle.  A class called MeshSampler is implemented to handle the two methods used for generation 

of points. Figure 5.1 illustrates the implementation of this technique and is tested with different 

meshes. The red points indicates the required point set generated. The green dots are the surface 

points on the Bounding box from which rays are generated as shown in Figure 5.1. The ray 

intersection with the mesh is determined, and the segment within the mesh interpolated to obtain the 

points within the mesh. 

 

Figure 5.1 Mesh Sampling using Ray intersections 

Similarly, samples are obtained using SDF library. This is depicted in Figure 5.2.  

 

Figure 5.2 Mesh sampling using SDF 

Though visually the difference is not evident, while implementing both the algorithms, it was quite 

obvious, the computational speed of Ray marching was very slow when compared to SDF. Though it 

has the advantage of  not constructing additional vertices outside the mesh, unlike SDF, it didn’t work 



17 
 

very well when the density of points was increased.  Another downside in using ray intersection is 

that, with a complicated concave mesh and for a density of 1000 as shown in Figure 5.3, the ray 

intersection algorithm produces erroneous results and generates some points outside the mesh 

boundary(see Figure 5.3(a)) On the other hand,  SDF works perfectly well for any kind of Mesh.(see 

Figure 5.3(b)). 

 

Figure 5.3  (a) Points sampled using Ray intersections (b) Points sampled using SDF 

 

Having constructed the point set S, the DT can be constructed by implementing Incremental insertion 

algorithm. The algorithm implemented in this thesis is based on the paper presented by Ledoux. 

Ledoux has presented a clear and complete explanation on how Voronoi diagrams and its dual 

Delaunay tetrahedrons can be computed. Degenerate cases that occur while constructing the DT and 

the solution on how to handle it is also presented by him. The algorithm implemented is explained in 

Section 5.1. The data structure used to store DT is quite important, and a simple tetrahedron-based 

data structure is used in the implementation of the algorithm. This structure is advantageous as it is 

quite fast and space efficient. The class Tetrahedron uses this data structure, containing four of its 

vertices and a pointer to its four adjacent tetrahedra.  

 

To begin with, the first point p is inserted into the boundary tetrahedron that acts as the conv(S). This 

point splits the boundary tetrahedron into four new tetrahedra with flip14. These four tetrahedra 

created are inserted into a stack. This stack contains all the tetrahedra yet to be checked against the 

Delaunay criterion. As the algorithm progresses all the new tetrahedra created after a flip are inserted 

into this stack. The algorithm stops when the stack becomes empty, meaning that all the tetrahedra 

incident to point P are Delaunay.  The algorithm is as follows (Ledoux 2007). 

Input    : A DT(S) T in    and a new point p to be inserted. 

Output : A tetrahedralization,          where all tetrahedral incident to p are Delaunay. 

    T  = WALK(tetrahedra containing P). 
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    do flip14, splitting T into four new tetrahedra incident to p. 

    Push the four new tetrahedra on a stack (TS) 

    while TS non-empty do 

  T  = {p,a,b,c}  pop from stack 

     = {a,b,c,d}  get the tetrahedron adjacent of T having abc facet 

  if (d is inside circumsphere of T) then 

   FLIP(    ) 

   endif 

  end while 

 

   

As presented by Ledoux(2007). 

Input : Two adjacent tetrahedra T and   . 

if case1 then 

 flip23(T,  ) 

 push tetrahedra pabd,pbcd and pacd on stack 

else if case2 AND third tetrahedron pdab exists then 

 flip32(T,  ,pdab) 

 push pacd and pbcd on stack 

else if  case3 AND T and    are in config44 with    and    then 

 flip44(T,   ,   ,   ) 

 push on stack the four tetrahedral created 

else if case4 then 

 flip23(T,  ) 

 push tetrahedra pabd, pbcd and pacd on stack 

end if 

 

Having implemented the above algorithm, didn’t yield the correct structure. Several tetrahedrons were 

overlapping each other. Also, certain points were not included in the final DT structure 

constructed(see Figure 5.31). It was quite frustrating during the development of this process, as the 

source of the problem was not known for a long time. Tweaking the code to fix a particular problem 

resulted in another problem somewhere else. The program constantly kept crashing if the number of 

points were increased. The problem was later identified as the use of floating point arithmetic, which  
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Figure 5.31 Error due to floating-point arithmetic 

yields only an approximation to real numbers. The immediate fix thought was the use of a tolerance 

value, but it didn’t yield satisfactory results for a complicated structure like DT. As the incremental 

insertion algorithm makes the important decision of which flips to apply, depending on the two 

geometric predicates, Orient and InSphere discussed in Section 4.2., it is important that these two 

predicates yield the exact results.  

Schewchuck (1997) presented a solution for this issue. It is concluded that exact arithmetic is very 

important while constructing the DT or the whole structure would be affected. The downside to this is 

that the implementation speed is greatly affected. However, Schewchuck (1997) presents an adaptive 

technique, where the exact arithmetic was used only to determine the sign of the determinant and not 

its value, thus saving on the computational speed.  

A step by step implementation of the algorithm, where the points are inserted into the tetrahedron one 

at a time is as shown in Figure 5.41. The image numbered 6 in the Figure is the final DT structure 

obtained after deleting the tetrahedrons containing the initial big tetrahedron. 

 

Figure 5.41 Step by step implementation of the insertion algorithm 
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It is noted that the spatial distribution of points affects the construction of the DT. When points 

generated using Ray intersection are used, the algorithm tends to crash some times,especially when 

the density of points is higher. However, when points obtained using SDF are used, the DT is 

constructed perfectly. Figure 5.42 shows the DT obtained using SDF for a cube mesh          

 

 

Figure 5.42 DT of a cube and its wireframe , with density of points = 100 

 

As the density of points increases, the processing speed gets affected. But, since our focus was to 

obtain an accurate terahedralization structure, this was quite acceptable. However, when a user 

interface was provided, it is designed in such a way that the density of points is obtained as input from 

the user. This implies that each time the density is changed by the user, the whole computation 

process is done during run time, and this might sometimes crash the application. Hence, to solve this, 

the UI has an option of clearing the previously generated tetrahedra. This might reduce the overload 

during run time, and helps avoid crashes, thought not guaranteed. 

DT is successfully computed and tested against various other meshes as shown in Figure 5.43. Since, 

DT is a convex structure, it doesn’t work well for a concave structure(see Figure 5.43(a)). 

 

Figure 5.43 (a) DT for a concave structure (b) DT of a sphere with density = 500 (c) DT of a 

cone with density = 1000 

This is allowed depending on the usage of the DT structure. If it is used for fracturing a mesh, this 

case is acceptable as its dual the voronoi diagrams are needed and not the DT structure in specific 

(Jose 2011). However, it may not be acceptable in case of mesh generation. Constrained DT is a 

possible solution to deal with non-convex shapes.  
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Voronoi diagrams are constructed by joining all the circumcenters of its dual tetrahedra. Edges are 

formed between two vertices of a Voronoi diagram if and only if the dual of the two vertices are 

adjacent to each other. Voronoi cells were not generated due to few issues which occurred while 

programming. Hence, a voronoi skeleton as shown in Figure 5.44 is obtained. The blue points are the 

voronoi vertices. 

 

Figure 5.44 Voronoi diagram obtained from its dual DT 
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The main task of this thesis is to have a robust implementation of Delaunay Tetrahedralization that 

takes as input a set of points obtained by sampling a 3D mesh.  The techniques used for Sampling is 

analysed and concluded that SDF provides quick and efficient distribution of points within the volume 

of a given mesh when compared to Ray intersections.  

Furthermore, we implemented Incremental Insertion algorithm as explained by Ledoux (2007) using 

Flip based algorithm. We presented  that, exact arithmetic for evaluating the predicates are mandatory 

inorder to get a robust, reliable and error-free DT structure. The implementation speed is greatly 

affected because of it, however it is well handled by adaptive-arithmetic technique proposed by 

Schewchuck(1997). 

For the construction of DT the input mesh has to be convex as the Delaunay cannot recognize interior 

boundaries and concave faces. It can be solved by using virtual nodes or for non-convex meshes, an 

extension to DT known as Constrained DT can be used. However, this project only deals with convex 

meshes. Also, in volume sampling, using ray intersection for points with higher density does not yield 

satisfactory result as the computations are too heavy and hence the program tend to crash. Hence, for 

a large dataset of points, the algorithm is not optimised and cannot handle it. Also, DT of datasets that 

has many degenerate cases could not be constructed as well.  

The project was initially started with the idea of Fracturing a 3D Mesh. To do this the mesh has to be 

fragmented using Voronoi diagrams. Hence, to obtain Voronoi diagrams, Delaunay tetrahedralization 

was the best way to achieve it, being its dual. This paved way to the idea of this project of computing 

DT. Having achieved it now, the use of Delaunay tetrahedralization in any application can be looked 

into. DT’s are highly being researched in the area of automatic Mesh Generation. 
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