
1

Virtual Camera

Raaj Gupte

NCCA, Bournemouth 2011-2012

2

1. Introduction

Movies have always employed various tricks to make the impossible seem believable within the

movies. Giant Monsters and Flying Spaceships have invaded on the movie screen many times with

the help of these tricks. Before the use of computers, these tricks, known as Special Effects, were

achieved using models and miniatures. Various Camera tricks used to be employed to incorporate

these models with live action. Since these effects were shot in camera, the results could be seen

immediately on film.

As technology progressed, various computer graphics techniques started being employed to achieve

the same tricks on screen, adding more realism and believability to the Effects. With the advent of

Non-Linear Editing and Chroma-Keying tools on the computer, shooting on a Green Screen/Blue

Screen became one of the key techniques for implementing visual effects. In today’s Film,

Television and Games productions, shooting on a green screen is very common. Even in

productions where spectacular effects are not required, scenes are often shot on green screen to

replace the background with any desired location, eliminating the need to construct physical sets,

thus minimizing the cost of production.

Most of the Compositing, Chroma-Keying, Green Screen removal however is done in Post-

Production. The Virtual Elements such as scenes or effects are added later using Composting

Software. This process is time consuming; giving results only after post-production work is done by

a Visual Effects Company. The Director may or may not be entirely satisfied with the finished

product creatively and may ask for tweaks and changes in the shot, resulting in extra Visual Effects

work.

This problem can be substantially resolved by using a Virtual Moviemaking Workflow. Virtual

Moviemaking is defined as a process of combining Live Action Elements with Virtual Elements in

Real Time. This process can be applied in many different ways such as combining Live Actors with

Virtual Sets or placing CG Characters within Live Action sets.

This paper will focus on solving the problem stated above. The aim is to replace the Green Screen

Background with Virtual Elements and combining them with Live Actors in Real Time. The Virtual

Elements may or may not be High End Models or Textures. Using this process, Filmmakers can get

a better idea of the final shot as they shoot the scene, minimizing reworks in Post-Production.

3

The developed application does not limit itself to having a combination of real actors and virtual

environments only. It is flexible enough to accommodate other virtual workflows with a few tweaks

in the system. Virtual Characters, Particle Systems or other simulations can be easily added to the

system.

4

2. Previous Work

There is no fixed definition for the term Virtual Moviemaking or Virtual Production. As stated

earlier, one of the definitions can be given as merging of various Computer Graphics technologies

to create a workflow which combine Real and Virtual Elements in Real Time. These Virtual

Workflows were used in various ways in Academy Award for Best Visual Effects winning movies

such as Avatar and Hugo.

In Avatar (2009), Motion Capture was used to translate the performance of real actors into

Computer Generated characters. For the movie, a Virtual Camera was developed which could

display the Motion Captured CG characters in action while shooting with the real actors on set.

Director of Avatar, James Cameron said of the Virtual Camera "The way we developed the

performance capture workflow on Avatar, is we have our virtual camera, which allows me to, in real

time, hold a camera -- it's really a monitor -- in my hands and point it at the actors and see them as

their CG chartacters." (Billington 2008). Another tool that was developed for the movie was known

as Simulcam. It simulated the whole CG environment on screen as they were shooting live action.

With the Simulcam used with the Virtual Camera, the production team was able to view the CG

elements and Live Action elements within the same frame in real time. James Cameron described

the Simulcam as "We're taking our virtual production toolset and superimposing it on physical

production. We turned the set on the soundstage into a capture volume and turned the physical

camera into a capture virtual camera, so we were able to integrate CG characters and environments

into our live action." (Billington 2008).

A similar Virtual Camera system was used for Hugo (2011). Various tracking devices were placed

on the movable parts of the camera to capture its physical movements. These movements were

translated into real time CG elements in place of the Green Screen (Robertson 2012). This allowed

director Martin Scorsese to frame the shots with real actors placed on virtual set in real time.

Autodesk's MotionBuilder was used for real time playback of the Live Action elements combined

with CG Elements for both the movies.

One of the backbones of the Virtual Camera is the use of Green Screen Chroma Keying. Although

Green Screen Chroma Keying is done extensively for visual effects, most of it is done in post-

production. There is very little literature or applications regarding Real Time Chroma Keying.

5

3. Design

Figure 1. Diagram showing Architecture of the Virtual Camera

As seen in the Design diagram, there is a Camera which acts as the Input for the whole system. The

Camera streams in live images and feeds into two Modules: Colour Detection and Removal and

Camera Tracking.

Colour Detection consists of processing each input image and detecting a particular colour to be

identified as background. In our case, the colour is Green. Once this colour is detected, further

image processing is carried out and the background is removed or made transparent.

The output of the Camera is also fed to the Camera Tracking module. This module utilises tracking

markers to detect the movements of the camera in physical space and converts it co-ordinates in the

virtual space.

These movements are fed to a Graphics API which applies these transformations to the Virtual 3D

elements. The virtual elements are also drawn by the Graphics API.

The Graphics API further takes in as an input the processed images from the camera and combines

it with the 3D elements drawn by it.

These combined images are displayed in real time on a display by the Graphics API. The last three

modules can be combined to form a Graphics Pipeline.

The camera images and the Virtual 3D elements both move in relation with the camera movements,

giving an illusion that the Virtual objects are actually a part of the live action being shot.

Graphics Pipeline

Input Camera

Colour

Detection and

Removal

Camera

Tracking

Graphics API
Blend Live

Action Elements

with 3D Graphics

Real Time

Output

6

3.1 Requirements

The Virtual Camera has been developed on a Linux machine and has some Software and Hardware

dependencies to be fully functional.

3.1.1 Software

 C++ is used as the main coding language with Qt SDK for developing the project. Since a

combination of image capturing and processing with a graphics API for drawing CG elements is

required, OpenCV is used in tandem with OpenGL.

3.1.1.1 OpenCV

OpenCV is an Open Source Library built for implementation of Computer Vision modules (Bradski

& Kaehlerr 2008). It is built using C and C++ and runs on a host of Operating Systems. OpenCV is

particularly suited for Real Time Applications as it utilises fast and effective algorithms for the

same. OpenCV was chosen as the main Library for Computer Vision and Image Processing as it

satisfies the requirements of being a fast, free open source utility. OpenCV 2.0 is the version used

for this project.

3.1.1.2 OpenGL

OpenGL is a graphics API which is used for drawing 3D graphics in Computer Applications. In our

project, OpenGL is used for drawing the 3D Virtual Elements. These can be Background

environments or CG characters. OpenGL gives us the functionality to integrate OpenCV images

into the Graphics pipeline as texture maps. Using OpenGL functions, one can further process the

image streams from the input camera and combine the live action elements with 3D graphics

elements.

3.1.2 Hardware

The Virtual Camera is designed to be a standalone piece of software. For its proper functioning, the

Virtual Camera is however dependent on a number of Hardware components.

3.1.2.1 Digital Camera

Since the Virtual Camera takes input video streams, the most essential piece of Hardware required

for its functioning is a Physical Camera which can capture video. There are no limitations on the

type of the Camera that can be used except for the fact that the Camera should be able to capture

images digitally and that it can be interfaced with a Computer. In order to develop a robust piece of

software and make the quality of the output independent of the quality of the input camera used, a

7

simple low end Web Camera was used for development of this Project. If the software is to be used

for production quality applications, it would be better to use a high quality Digital Camera. The

Virtual Camera may function without the use of other components listed below, but without a

Physical Camera, the application would not start at all. Hence a Digital Camera is the main

Hardware requirement for this project.

3.1.2.2 Green Screen

Chroma Key Compositing is a predominant technique used in the VFX Industry to replace

backgrounds in Live Action Productions. Either a Green Screen or Blue Screen Background is used

for Chroma Keying. While both the colours have its own advantages and disadvantages for Chroma

Keying, this project utilses a Green Background. The reason for doing so is that most Digital

Cameras provide an undistorted Green Channel than the Red and Blue Channels (Weigert 2010).

Hence it is easier to get better results using the Green Channel. Also, most VFX productions today

primarily use a Green Screen for Compositing. A Green Screen Background is hence required to

place the Virtual Set in its place. However, the software can be customised to use a Blue Screen or

any other desired colour background.

3.1.2.3 Tracking Markers

The Virtual Camera is designed to closely follow the movements of the Physical Camera. In order

to do so, a Tracking Marker is required to determine the External Parameters of the Physical

Camera with respect to the World Space Co-ordinates. Using a Marker, the Position and Rotation of

the Camera can be easily determined. The Marker should be a simple object which is easy to detect

(Bradski & Kaehlerr 2008). A Chessboard has a regular Black and White pattern which is easily

identifiable be Computer Vision Algorithms. OpenCV has a number of functions to detect a

Chessboard pattern and calibrate the Intrinsic and Extrinsic Parameters of the Camera using the

Chessboard pattern. Hence, a Chessboard Pattern is used as Tracking Marker for determining the

Parameters of the Physical Camera. It is also very easy to create and use a simple Chessboard

Pattern printed on plain paper.

8

Figure 2: Sample Chessboard Pattern used for tracking. (Kuntz 2009)

9

4. Implementation

The aim of this project was to design and create a Virtual Camera, which takes in images from a

live camera feed with Live Actors placed on a Green Screen Background and process the images to

replace the Background with Virtual Elements in Real Time. The Virtual Camera would also closely

follow the Physical Camera. The Physical movements of the Camera are tracked and would be

emulated by the Virtual Camera on screen. Whenever the Camera Tracks, Pans or Zooms, similar

movements are carried on screen and the Virtual Set along with the Live Actors would move in

accordance with the camera movements. The user can film a Green Screen shoot using normal

Physical Camera movements and the software would translate them on screen in real time.

As seen in the Previous Work section, such type of Virtual Production Workflows use state of the art

equipments and are very costly. The goal of this Project was to create a Virtual Camera using

minimum equipment to create a low cost solution. If using simple, low cost equipments in both

Hardware and Software, the project is able to deliver a satisfactory output then one can build on the

software using better quality equipment to make it production ready.

As seen in the Design diagram earlier, the Virtual Camera can be divided into three distinct

modules:

• Colour Detection and Chroma Keying

• Camera Tracking

• Computer Graphics Pipeline

Each module is loosely coupled with other modules. Every module is a separate entity and can

function individually on its own. Chroma Keying can work perfectly well with a static camera

without the tracking module. Similarly, with just the Camera Tracking and the Graphics API, the

Camera can be used as a joystick to move the CG Environment. All the modules will be discussed

in detail further.

4.1 Colour Detection and Chroma Keying

Background detection is one of the forefront problems of Computer Vision. Background detection is

the process of identifying and distinguishing elements which are static and which are moving from

an image. In any application, it is harder to detect a non uniform background than a stable uniform

single colour background. However, detection of a single colour background has its own set of

10

problems, which will be elaborated later.

For our project, Background Detection is required to identify which elements from the Live Action

scene should be present within the Composited Virtual Environment and which elements should be

removed. Usually, the elements to be removed will be a Green Screen Background. This can be

achieved by Chroma Keying the Green colour and retaining other colours.

The process for doing this is to scan through every pixel and check for its colour value. If the colour

value of the pixel is green, replace it else retain the colour value. In order to check the colour value,

one needs to investigate into the RGB colour model that is used in Computers and Digital Cameras.

The images produced by Digital Cameras are handled by OpenCV as RGB colour model and hence

it is useful for the project. One minor difference that needs to be noticed is in the way OpenCV

handles this colour model is that it uses BGR in place of RGB and hence first it is needed to convert

the BGR image into RGB to handle it properly (Bradski & Kaehlerr 2008).

4.1.1 RGB Model

RGB is an additive colour model that is primarily used in Computer Graphics. It uses the Red,

Green and Blue colours as primary colours for additive mixing. Other colours can be derived by

adding two or all three of the primary colours.

Figure 3. The circle shows the additive spectrum of the RGB colour model. The Percentage of

colours added determines the colour that is produced.

11

In Computer Displays, colour is depicted by the colour value of a pixel. Every pixel contains three

channels of data representing the Red, Green and Blue Channel from the RGB model. The

percentage of each colour present in the channel determines the colour value of the channel.

The numerical representation of each channel can be done in many ways:

• From 0 to 1 with floating point numbers in between.

• From 0 to 255

• In terms of Percentage from 0% to 100%

Each channel of a pixel is defined as an 8 bit integer with values representing 0 to 255. 0 indicates

least and 255 indicates the highest saturation of the colour. The channels are packed of as an array

of 8 bit integers as [R,G,B]. Thus the brightest saturated Green can be represented as [0,255,0]. In

order to detect any of the primary colours, it may be intuitive to detect high values in that particular

channel. Bergh and Lalioti (1999) give a Principal Algorithm to get Blue Colour pixels as those

pixels that have values of Blue that are higher than both Red and Green. This algorithm can be

modified to get the Green Colour.

G>R

G>B

However, since an additive colour scheme is used there could be a situation where

G = x, R = x -1 and B = x - 1

This combination would give a shade of Gray. However since it has a high value of Green which is

greater than Red and Blue, it will be still detected as Green. High values of Green are present in

other colours as well, such as Yellow and Cyan. In order to counter this, Bergh and Lalioti (1999)

propose to add a distance constraint.

d=2*G-R-B

Hence, a minimum threshold value for Green colour and a maximum threshold value for Red and

Blue colours each is added. For each pixel, these threshold values are used to check if value of the

Green channel is not lower than the minimum threshold and that of Red and Blue channels do not

exceed the maximum threshold.

G > gMin

R < rMax

B < bMax

12

Where gMin, rMax and bMax are the threshold values for Green, Red and Blue respectively.

These values can be set and changed by the user as required depending on the scene. This feature is

useful for detecting and keying out different shades of Green. Also, if the Live Action elements

contain a colour having high Red or Blue and a high Green value, rMax or bMax can be set to a

higher value so as to avoid the colour being falsely detected as Green and being keyed out.

Having used the above algorithm to detect a wide range of Green colour, proper detection of the

Green Screen is dependent on a number of external parameters like Lighting Conditions or the type

of the Green Screen material used.

4.1.2 Lighting Conditions

Lighting Conditions is one of the most important parameters to be taken into consideration for a

professional film or video shoot, with or without a Green Screen. The way a subject is lit affects the

perceived colour of the subject. Luminance is given by the weighted sum of the three channels Red,

Green and Blue (Poynton 2003). Luminance denoted by Y is given as:

Y=0.2126R+0.7152G+0.0722B

Thus, if an object that is not Green in colour is lit too much, the value of the Green channel would

also be high, incorrectly detecting the object as Green. Consequently, if a Green coloured object is

dimly lit, the Green channel value may be too low and hence it may not be detected as Green.

Hence it is necessary to properly lit the scene, where object colours are detected as their natural

colours and not be influenced by too much bright or dim light falling on them.

4.1.3 Green Screen Material

The object/material used as a Green Screen should not be highly reflective and should preferably be

uniformly plain without any creases or folds (Foster 2010). This avoids creating hotspots or non-

detection of the creased area of the Green Screen.

For testing purposes, in this project an A4 size glossy paper printed with Green Colour having RGB

value of [0,255,0] has been used. The paper reflects light and can be easily bent or folded. This is

done in order to test worst case scenarios.

13

4.2 Computer Graphics API

OpenGL is used in this project as the main Graphics API. The use of OpenGL in this project is

twofold:

• Image Processing

• Drawing of 3D Virtual Objects

4.2.1 Image Processing

Although OpenCV is used for Image Processing in this project, OpenGL is used in tandem with

OpenCV to enhance the Image Processing Capabilities of the software. OpenGL provides excellent

functionality with regards to Texture Mapping and Alpha Bending.

4.2.1.1 Texture Mapping

In order to use OpenCV in tandem with OpenGL, the OpenCV input image from the camera is used

as an OpenGL Texture. The input image can be pasted on an OpenGL quad surface as a 2D Texture

Map. This texture will get updated as and when the input image gets updated as per the frame rate.

The following commands for texture mapping are used:

glBindTexture

This is command indicates the texture id that will be applied to the surface.

glTexImage2D

This is the command that actually maps the texture which can be an image file to the object. In this

case, one has to map an OpenCV image, which is stored as a Matrix data. This is the main step

required for interfacing the input images from the webcam with OpenGL. Once this is done, the

textured plane can be drawn into the OpenGL framebuffer.

4.2.1.2 Alpha Blending

OpenGL provides very good functionality for Alpha Blending. Since it is required to combine Live

Action images from the camera with Virtual Sets, Alpha Blending is very useful in this project. The

principle idea is to have Alpha value set to transparent for those pixels which contain Green and are

to be replaced. Thus with the Green Screen pixels completely transparent, one can easily see the

virtual set placed directly behind the transparent pixels.

For Alpha Blending, the following OpenGL functions are used:

glEnable (GL_BLEND)

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

Documentation from www.opengl.org states that the first function enables Alpha Blending, thus

blending the values in the colour buffer with the fragment colour values

14

Using glBlendFunc the RGBA pixel value is calculated as:

Rd = min(kR, Rs sR + Rd dR) Gd = min(kG, Gs sG + Gd dG) Bd = min (kB, Bs sB + Bd dB) Ad =

min (kA, As sA + Ad dA)

With GL_SRC_ALPHA as the sfactor and GL_ONE_MINUS_SRC_ALPHA as dfactor, the above

equation is reduced to

Rd = Rs Gd = Gs Bd = Bs Ad = As

This makes the pixel values fully transparent, rendering the colour values from the framebuffer on

to the screen. Hence the virtual set is first drawn into the frame buffer and then draw the live camera

image plane with Alpha value = 0 for pixels which need to appear transparent.

4.2.2 Drawing 3D Graphics

OpenGL is primarily used as a Graphics API for drawing 3D Graphics. 3D models stored in the obj

file format are used as virtual objects within the project. Using OpenGL commands, the obj file is

loaded into the scene. One can load in a texture image file and apply it to the object using texture

mapping as discussed above.

4.3 Camera Tracking

The main difference between the Virtual Camera and a Real Time Chroma Key Application such as

one used for Weather Maps is the use of Camera Tracking. The Virtual Camera is designed to have

an immersive environment within the Virtual Set. As the Camera moves around in Physical Space

Co-ordinates, the Virtual set should move in accordance with the motion of the Physical Camera.

For doing this, one needs to map the Camera position and orientation within World Space co-

ordinates to the OpenGL World co-ordinates. This can be done by using tracking markers and

finding the intrinsic and extrinsic parameters of the camera.

15

4.3.1 Camera Model

The Camera model in OpenCV is based on a simple pinhole camera. Given the focal length f, the

image of an object x on an imaging plane is given by (Bradski and Kaehler 2008):

x= f X/Z

Figure 4: Figure shows the co-ordinate system for Camera Caliberation (Owens 1997)

A view is obtained by projecting 3D points on an image plane multiplied by a Perspective

Transformation.

(X,Y,Z) are the world space co-ordinates of a 3D point. (u,v) give the pixel co-ordinates of the

projection point. A is the camera matrix having the focal lengths (fx,fy) and intrinsic parameters

(cx,cy). R and t give the Rotational Matrix and Translational Vectors.

16

The focal length remaining same, the intrinsic parameters of the camera do not change and can be

calculated once. For our project, these are calculated and stored as intrinsics.xml file. These can be

later used for getting the extrinsic parameters rotation R and translation t which can be computed as:

The cvFindExtrinsicCameraParams2() function is used to get the external parameters of the camera.

Thus using a few 3D points, knowing their projections and the camera intrinsic parameters, one can

get the Rotational and Translational data of the camera for that frame. One can get the 3D points

and their projections using Tracking Markers such as a chessboard pattern.

4.3.2 Tracking Markers

OpenCV has some robust functions to find image patterns. A chessboard is a very simple image

pattern yet very useful for detection (Bradski and Kaehler 2008). A chessboard pattern has a number

of corners which can be detected using matrix of second order derivatives of the image intensities

(Harris 1988).

Shi and Tomasi (1994) calculate the score for corner detection using eigenvalues as:

R can be detected as a corner if it is greater than the eigenvalues (Sinha 2010)

17

Figure 5: Figure shows detection of corners. Green is the region of pixels as corners (Sinha 2010)

OpenCV uses the Shi Tomasi Algorithm for corner detection. The findChessboardCorners()

function is used for detecting a chessboard pattern. Once a chessboard pattern is found, the

drawChessboardCorners() function is used to mark these internal chessboard corners.

Once the corners are detected, one can find the Extrinsic parameters of the camera for each frame,

thus making Camera Tracking possible.

These parameters are then converted into OpenGL co-ordinates and the virtual objects can be

moved in accordance to the camera movements.

Figure 6: Figure shows the chessboard corner detection by the program.

18

5. Results

The Virtual Camera was designed to provide a tool which could blend in both live action and CG

elements in real time. The project was developed by merging technologies like Computer Vision

and Real Time Graphics processing together. Since this was an image processing based project and

the output was to be seen on the screen as a composite scene, visual accuracy was of importance.

This was based on two parameters: How efficiently does the software detect the Green colour and

clears it out and how well the Camera is tracked.

5.1 Chroma Key Efficiency

As stated earlier, a sheet of A4 paper on which green colour was printed was used to simulate a

Green Screen. Since A4 is a relatively small size, the paper could not act as a full-fledged green

screen for Background Replacement. Due to this small size, the full background could not be

replaced. However, green colour was convincingly detected within the area of the small sheet of

paper.

Figure 7. Image shows the removal of green screen with a 3D object.

When passing an object (hand) between the camera and the green screen, green pixels around the

edge of the hand were detected. However, two different objects,the hand and the green screen were

clearly detected and differentiated. Also the virtual object could be clearly seen between two

fingers, thus making the test successful.

19

Figure 8. Green pixels around edges of the hand and virtual object seen between fingers can be

seen.

Whenever the camera was moved suddenly, keeping the green screen paper in view, the detection of

green colour was lost. This resulted because of non-uniform reflectivity of the paper and sudden

jerky movements of the webcam. However, with adjustment in the threshold values of R, G and B,

this was rectified.

Given the quality of the web camera and the green screen paper being used, the results for Green

Screen Detection were fairly satisfactory. With a better quality Digital Camera and a regular

standard Green Screen, these errors can be rectified.

5.2 Camera Tracking Efficiency

The efficiency of the Camera Tracking Algorithm can be determined by how closely the Virtual

Object moves with respect to the camera movements. Mapping the camera co-ordinates of OpenCV

with those of OpenGL was tricky. The translational parameters were scaled down whereas the

rotational parameters were scaled up to match the translations and rotations in OpenGL.

The Virtual Object translated and rotated properly with respect to camera movements. However,

due to jerky movements of the handheld web camera, momentarily loss in the detection of the

chessboard tracking markers. This resulted in jerky movements of the virtual object, with the object

jumping long distances within a second.

When the camera was steadily moved, the object moved with varying degrees of accuracy.

20

Figure 9. Rotation of the Virtual Object with respect to tracking marker and camera movement.

5.3 Combined Results.

 Due to the sizes of the green screen paper and that of the chessboard tracking markers, it was

difficult to move the virtual object with respect to the camera while keeping the green screen within

the frame. However, when the marker and the green screen were perfectly within the frame, the

object moved and rotated according to the camera movements.

Thus using a simple web camera and a printed green screen the application was tested and found to

give satisfactory results with the resources available.

Figure10. Image shows tracking marker placed on a green screen

21

6. Future Works

In order to make the Virtual Camera production ready, a number of features need to be

implemented. The biggest challenge is to have a stable camera tracking system. The current

implementation uses a very simple web camera for input and a chessboard pattern for tracking.

There are numerous problems using this approach.

The image quality of a webcam is a bare minimum and while due to its light weight, has very little

stability while moving the camera around. This gives rise to jitter and shaking and has problems in

detecting both the Green Screen elements as well as the tracking markers. While moving the camera

around, due to the shake effect of a hand-held camera, the program loses the tracking corners and

regains them, resulting in random changes in position and orientation of the Virtual Elements. The

program needs to be checked with a camera with a better image quality and stability to check if the

tracking errors can be minimised by this.

A tracking system with more than one tracking markers should be implemented. Currently it is not

possible to use more than one marker as the program loses its tracking if more than a single

chessboard pattern is detected in the scene. In order to move the virtual world, the tracking marker

must be detected at all times within the frame. Using a single tracking marker limits the range of the

camera movement.

An ideal implementation would be to have tracking markers all over the room giving 360 degree

coverage of the position and orientation of the camera in the world space. This would give one

freedom to move the camera in any direction or position and the virtual world would move

according to the movements of the camera without any loss in tracking.

Another implementation could be using a Gyroscope and Accelerator attached to the camera to feed

the physical position and orientation of the camera into the program without having to use tracking

markers. This would free the camera from the constraints of shooting in a studio with tracking

markers and scenes can be shot outdoors with just Green Screens placed in positions wherever

Virtual replacement is required.

In order to get depth information about the scene leading to better camera tracking, using a pair of

stereoscopic cameras were tried. This led to bandwidth issues on USB ports, giving fatal errors.

Hence only a single camera was used. The usage of stereoscopic cameras can be further explored to

22

turn the application into a 3D visualisation tool. This would make the application useful for 3D

previsualisation and shooting live scenes in 3D.

The plugin can be developed to hook the output of the Virtual Camera to Autodesk's MotionBuilder.

MotionBuilder is used in Virtual Production workflows for real time capture and display of motion

controlled digital characters.

The Application can be easily converted into a Virtual Reality, Augmented Reality or Mixed Reality

Application by changing some functionality of its internal modules. Thus the application can be

used in various industries such as medical imaging, flight simulation and defence which make use

of Virtual Technologies.

The software can be ported onto Ipad, Iphones or Android phones. Using the internal sensors of

these devices, tracking can be easily implemented on these devices.

23

Refrences

Avatar, 2009. Film. Directed by James Cameron. USA: Twentieth Century Fox Film Corporation.

Autodesk Whitepaper, 2009, The New Art of Virtual Moviemaking

Available from:

http://area.autodesk.com/userdata/static/3dec09/the_new_art_of_virtual_moviemaking.pdf

[Accessed 01 May 2012].

Billington, A., 2008, A Brief Look at the Technological Advancements in James Cameron's Avatar.

Available from: http://www.firstshowing.net/2008/a-brief-look-at-the-technological-advancements-

in-james-camerons-avatar/ [Accessed 29 Jul 2012]

Bradski, G., & Kaehlerr, A., 2008, Learning OpenCV: Computer Vision with the OpenCV Library.

1st ed. Sebastopol: O’Reilly Media.

Foster, J., 2011, Choosing the Right Green Screen Materials. Available from:

http://provideocoalition.com/index.php/lightscameraaction/story/choosing_the_right_green_screen_

materials/[Accessed 26 Jul 2012]

Harris, C., & Stephens, M., 1988, A Combined Corner and Edge Detector. Available from:

http://www.bmva.org/bmvc/1988/avc-88-023.pdf [Accessed 26 Jul 2012]

Hugo, 2011. Film. Directed by James Martin Scorsese. USA: Paramount Pictures

OpenCV, 2009, Camera Calibration and 3D Reconstruction. Available from:

http://provideocoalition.com/index.php/lightscameraaction/story/choosing_the_right_green_screen_

materials/[Accessed 26 Jul 2012]

OpenGL 3.3 Reference Pages. Available from: http://www.opengl.org/sdk/docs/man3/ [Accessed 26

Jul 2012]

OpenGL 3.3 Reference Pages. Available from:

http://www.opengl.org/sdk/docs/man3/xhtml/glEnable.xml [Accessed 26 Jul 2012]

Owens, R., 1997, Camera Calibration. Available from:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT9/node2.html

[Accessed 26 Jul 2012]

Robertson, B., 2012, Magic Man. Available from:

http://www.cgw.com/Publications/CGW/2011/Volume-34-Issue-9-Dec-Jan-2012-/Magic-Man.aspx

[Accessed 03 Aug 2012]

Sinha, U., 2010, The Shi-Tomasi Corner Detector. Available from:

http://www.aishack.in/2010/05/the-shi-tomasi-corner-detector/ [Accessed 03 Aug 2012]

Shi, J., & Tomasi, C., 1994, Good Features To Track. Available from:

http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf [Accessed 26 Jul 2012]

Weigert, A., 2012, Bluescreen vs Greenscreen - How to choose. Available from:

ttp://www.awn.com/blogs/tracking-marc/bluescreen-vs-greenscreen-how-choose[Accessed 24 Jul

24

2012]

