
3D Model Deformation using Finite Elements

Michael Cairns

August 20, 2012

Abstract

In recent years major effects houses have started to use the finite element
method to better model soft bodies. As more computing power has become
available this technique has become more feasible in the timeframe of a pro-
duction. The objectives of this project were to investigate how finite elements
are used to model and simulate deformation in visual effects. Specifically,
linear elasticity was covered and the beginnings of plastic deformation.

A program was created in C++ which allows a user to load a surface mesh
and by setting material properties and applying forces, create a simulation.
The results show how physically correct animation can be produced using the
finite element method although it is mentioned that knowing exact material
properties helps.

Although no new solutions have been proposed in this work it was more to
show how the method can be implemented. It was hoped that this project
could progress beyond elastic deformation to crack generation and object
splitting but the amount of work required was underestimated. It is some-
thing that should definitely be investigated in the future though.

Acknowledgements

I would like to thank Jon Macey and Mathieu Sanchez for their help and
inspiration throughout the year.

Contents

1 Introduction 2

2 Previous Work 5

3 Technical Background 7
3.1 Physics . 7
3.2 The Finite Element method 9

4 Implementation in C++ 14
4.1 Software Design . 14
4.2 Visualisation . 19

5 Results and Analysis 22

6 Conclusions 26

A Sample Models 27

B Diagrams 32

1

1

Introduction

Creating realistic images is something that many visual effects companies
strive for. To be able to convince an audience that what they are seeing is
real when it is not could be described as magical. For almost half a century
film makers have been using computers to create images of places or people
that do not really exist in order to make their films more immersive. The
phrase “smoke and mirrors” has been used to describe the work done both
in camera (special effects) and on computer systems (visual effects). Hilf
(1997) describes the use of computer generated imagery as “pixel manipu-
lation, transposed motion capture, and digital mattes” which is somewhat
correct but modern CGI incorporates modelling 3D objects, simulating light
reflections and much more. (Erleben et al. 2005)

There are several areas of visual effects that require attention if realistic
images are desired. One is rendering, making an object look like it would look
in the real world. Another is animation, the movement of an object must be
natural and follow the laws of physics otherwise a human will very easily see
that something’s wrong. The idea of simulating natural phenomena is called
physically based animation. Common examples include rigid bodies, soft
bodies, fluids and joint systems. Soft body simulation involves modelling the
deformation of objects under forces. This project is focused on deformation
of objects, specifically using the finite element method.

Several methods exist for simulating deformation. Free-form deformations
involves surrounding the object with a grid or lattice that the user controls
by moving control points. Each grid square has influence over the part of
the model within it. Generally an interpolation is used so influence decreases
further from a control point, this allows a smoother movement. Most meth-
ods utilise B-Spline theory to create curves that the object deforms over.
The mass-spring model is a common model for cloth simulation although it
can be used for 3D meshes as well. This method involves connecting springs
between neighbouring nodes and using Hooke’s law with an integrator to
calculate the nodal movement. Dampers are also added to counteract the
spring force. These two methods are not the most physically accurate. FFD

2

does not take into account the material properties and is more suitable for
modelling a particular shape. The mass-spring model can model certain
material types by tweaking the spring and damping parameters and by cre-
ating unique networks of springs. However it does not use extended material
properties such as Poisson’s ratio or the temperature.

The FEM is a structural engineering technique that was developed in the
middle of the 20th century to solve problems involving complex structures.
The basic concept is to take a continuous model and split it up into discrete
domains to simplify the equations that act over the whole body. The system
is solved by combining the result of simpler equations applied to the sepa-
rate domains. Although discovered as an engineering technique the method
has been used as a general numerical method for solving partial differential
equations.

This project looked at the use of the finite element method to simulate
deformation of an object in 3D. Specifically an implementation of a program
in C++ that allows an artist to load in a model, apply forces and render out
animation frames for use in a visual effects sequence. A real-time or close to
real-time display of the model means the artist can see the effect and adjust
values accordingly. The Qt framework was used for GUI development as well
as OpenGL integration. The NGL library provided a wrapper to OpenGL
calls and for some data types. A git repository was setup with an online
remote for piece of mind and to make it easier to track the progress of the
project through commit messages.

In this project we will assume that the material being modelled is elastic
and behaves linearly. We also assume that the material is isotropic.

In chapter 2 we will highlight previous work in this field, focusing on
computer graphics and visual effects.

In chapter 3 we will explain the theory of elasticity and plasticity along with
how finite elements are used in this area. Formula used in the implementation
are also presented and described.

In chapter 4 the software design and programming work will be presented
with justification for using certain methods.

3

In chapter 5 sample models and the output images will be shown along
with material properties used and data from the generated mesh.

In chapter 6 we formulate conclusions from the work carried out and put
it into perspective with recent research and media.

4

2

Previous Work

Terzopoulos et al (1987) published some of the earliest research on using
finite element techniques in computer graphics. They present an elastic de-
formation system that can be applied to 2D and 3D meshes. Although they
use a finite differencing method it has many similarities to FEM and their
contribution to simulating deformation is significant.

O’Brien and Hodgins (1999) introduce work on animating fracturing in
objects, based on elasticity theory. Using finite element based deformations
they calculate internal forces at all the nodes and if a defined threshold is
crossed then the node is split into two nodes and a fracture plane is calculated.
This determines the direction of the crack. In their method they use local
re-meshing to keep good element proportions when they are split.

Müller and Gross (2004) present an interactive finite element implementa-
tion that shows elasticity, plasticity and fracturing effects in real-time. They
avoid the artefacts of linear elasticity by introducing a warped stiffness ma-
trix which takes into account the rigid body rotation of each element. They
also implement a fracturing system by using calculating the tensile stress of
each element and generating a crack if it is higher than chosen threshold.

Another paper based on O’Brien’s work describes the use of previous work
in a real-time game environment (Parker and O’Brien 2009). They present
the development of a product now released by Pixelux and first licensed for
the video game The Force Unleashed. They describe how they implemented
previous work but optimised it for games consoles and managed to keep
within polygon count and frame rate limitations. Furthermore they experi-
mented with parallelising certain parts of the algorithm to reduce computa-
tion time.

Bargteil et al (2007) present research on large plastic deformations. This
type of deformation is usually unobtainable with a linear elastic system of
equations. Their model can be used to simulate soft solids such as dough
or clay. They achieve their results by updating the basis functions of the

5

elements and re-meshing the model to keep a high-quality mesh. This avoids
the numerical instability that was previously a problem. The results of their
work is amazing; a large variety of material types can be simulated and even
major topological changes such as the merging of two objects are possible
through the use of dynamic re-meshing.

A method of generating convex elements is presented in (Wicke et al.
2007). Their work is a progression from linear tetrahedra by utilising twelve
nodes per element allowing a more flexible basis function. This allows the
shape of the model to be changed without expensive re-meshing used in
other methods. They show results of accurately slicing a model, instead of
always having to generate new tetrahedra they can add new nodes to existing
elements if the mesh accepts it.

6

3

Technical Background

3.1 Physics

Elasticity describes a material that can undergo deformation and then return
to its original shape. A common example is a spring which can be stretched
longitudinally but it will return to its original shape when let go. Two mea-
surements that are commonly used are stress and strain. Stress is measured
as force per unit area; strain is measured as the proportion of the extended
length to the original length, thus it is unit-less. The theory of elasticity
originally came from Louis-Marie-Henri Navier, Simon-Denis Poisson and
George Green (Gould 1994).

Figure 3.1: Stress-Strain curve.

7

Linear elasticity is a simplification of the elastic model that assumes a lin-
ear relationship between stress and strain and that only small deformations
will occur. A stress-strain curve is a common way of displaying various ma-
terial properties related to elasticity and plasticity (see figure 3.1). Hooke’s
law states that the stress is proportional to the strain below the point of
proportional limit, where the graph is a straight line. The constant of pro-
portionality, k, is called the Modulus of Elasticity or Young’s Modulus.

σ = Eε (3.1)

The law also defines a relationship between force and displacement:

F = −ku (3.2)

In linear elasticity the structure of a material can be categorised as: isotropic,
meaning the properties are the same in all directions; orthotropic, where the
properties are different in three perpendicular axis; and anisotropic, where
the material properties are different in all directions. An example of an
isotropic material is glass, examples of orthotropic materials are wood or
carbon fibre. The anisotropic form of Hooke’s law requires three values for
the Young’s Modulus and Poisson’s ratio. Six stresses are used, three normal
stresses and three shear, each in x, y and z. Six corresponding strains are also
used (MacDonald 2011). The constant of proportionality can be represented
as a matrix,

D =

D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66

 (3.3)

The values of the matrix are calculated using the Young’s Modulus and
Poisson’s Ratio values. For an isotropic material the matrix is simplified and
sparse with only three unique values. For an anisotropic material all the
values are different although the matrix is symmetrical so only twenty one
unique values are required.

Going back to the stress-strain curve, once the stress reaches the elastic
limit it will start to behave non-linearly and the deformations will become
permanent. This is known as plasticity. The behaviour of plastic deformation
varies greatly between materials. The properties ductility and malleability

8

are aspects of plasticity and indicate how much a material can be stretched
or compressed to change the shape. Examples of materials that exhibit obvi-
ous plastic deformation are clay, dough and aluminium. Another important
material property is Poisson’s ratio which is the ratio of contraction to ex-
tension. The effect of a material getting thinner as it is stretched or wider
as it is squashed is called the Poisson effect. For an isotropic, linear elastic
material it cannot be less than -1.0 or greater than 0.5.

Fracturing is the result of the stress on a material reaching the yield
strength. At this point cracks will start to form as the material breaks
into pieces. The physics of fracture forming is a whole different topic and
is related to chemical composition and the location of any impurities and
defects. O’Brien and Hodgins’ (1999) method calculates the internal forces
at each node and if they are working to pull the node apart then two nodes
are generated in its place and a fracture plane is computed. Any tetrahedra
surrounding the node are split along the fracture plane and their shape func-
tions are recalculated. This will be easier to understand after the explanation
of the Finite Element Method(FEM).

3.2 The Finite Element method

From a mathematical point of view the Finite Element Method(FEM) is a
way of best approximating the solution to a problem, specifically those in-
volving partial differential equations as well as integral equations (Henwood
and Bonet 1996). It comes under the branch of mathematics called calculus
of variations, the aim of which is to find x for the function f(x) at stationary
points, normally maxima or minima in practice. The Euler-Langrange dif-
ferential equations were important discoveries in this field. A more detailed
description of calculus of variations can be found in (Erleben et al. 2005).
When discretising a domain a set of functions are defined which can be called
piecewise linear basis functions. A full mathematical explanation is beyond
the scope of this work but can be found in many textbooks .

As mentioned earlier the concept of elasticity is that the object tries to
return to its original shape; the deformation is not permanent. This is a case
of energy minimisation; during deformation, potential energy is built up in
the object and an equilibrium is only reached when the object returns to its
natural shape. Internal elastic forces are caused by the potential energy and

9

produce movement back to equilibrium.

Felastic =
δE(r)

δr
, (3.4)

where E is the energy and r is a point in the object.

The following equation is from (Erleben et al. 2005) where a full derivation
is available.

µ
∂2r

∂t2
+ γ

∂r

∂t
+
δE(r)

δr
= f(r, t), (3.5)

where µ is the mass density, γ is the damping density, r is the position of
a node, f is the applied external forces and E is the potential energy due to
elastic deformation. The equation describes how the motion of nodes and the
material properties influence the external forces. This equation is actually
a form of Newton’s second law. Notice that the first part is mass times
acceleration, the second part is the viscous force and the third, elastic force.
these forces can be summed together to attain something like F = ma.

The practical application of the FEM in engineering is called Finite Ele-
ment Analysis(FEA). The first part of FEA involves discretising the domain
into a finite number of elements. In the case of visual effects and animation
most models are stored as 2-dimensional surface meshes so generating a 3D
mesh is not too difficult. Delaunay triangulation is commonly used for this
process but other methods exist for different element types and input ge-
ometries. Further information can be found by reading (Zhang et al. 2010)
which describes a new method for generating meshes of different element
types across various materials.

In this project linear tetrahedra will be used, that is, a polyhedron with
four vertices and six edges. It’s also known as a triangular pyramid. Higher
order tetrahedra can be used such as quadratic which have ten vertices, the
extra vertices are for controlling the curvature of the edges allowing more
complex shapes to be modelled. The downside is the shape functions are
more complicated making computations involving them more expensive.

In a 3D tetrahedral mesh, nodes are shared between elements so each node
has four local indices but each node also has a global index for the whole
mesh. Barycentric coordinates can be used to define any point within a

10

tetrahedron: w0 w1 w2 w3; they should sum 1 and wn equals 1 at node n and
zero at all others. The volume of a tetrahedron is defined by:

V =
1

6

∣∣∣∣∣∣
x1 − x0 x2 − x0 x3 − x0
y1 − y0 y2 − y0 y3 − y0
z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣ (3.6)

Strain can be measured using the deformation of a node from its original
position to the new position. In 3D we use the linear Cauchy strain matrix

ε =

ε00 ε01 ε02
ε10 ε11 ε12
ε20 ε21 ε22,

 (3.7)

where

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.8)

Because the matrix is symmetric some values can be removed and in fact by
factoring out the displacement, u, it can become

∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
∂

∂x3
0 ∂

∂x1

0 ∂
∂x3

∂
∂x2

u1u2
u3

 (3.9)

Stress is a force per unit area, as mentioned previously there are six stresses
in 3D. A 3x3 symmetric matrix is used to store the values but again this can
be condensed to six values. Stress is related to strain through the elasticity
matrix (from page 8); here we show the isotropic variation which is sparse
and has three unique values:

D =
Y

(1 + v)(1− 2v)

1− v v v 0 0 0
v 1− v v 0 0 0
v v 1− v 0 0 0
0 0 0 1−2v

2
0 0

0 0 0 0 1−2v
2

0
0 0 0 0 0 1−2v

2

 , (3.10)

where Y is the Young’s Modulus and v is the Poisson’s ratio. For efficiency
the three values can be stored simply as D0, D1 and D2.

11

As mentioned before the system will resolve to equilibrium by balancing
the forces at each node. In the system there are stress forces (internal), nodal
forces and load forces (external); to solve the system at equilibrium we use a
stiffness matrix. The end result is we want to solve for u in Ku = f , where
K is the stiffness matrix, u is a vector of displacements and f is a vector of
external forces. In FEA a stiffness matrix is computed for each element and
then they’re summed together to form a global stiffness matrix. The element
stiffness matrix is 12x12 and is constructed like so (the derivation is left out):

Ke
nm = V e

D0bnbm +D2(cncm + dndm) D1bncm +D2cnbm D1bndm +D2dnbm
D1cnbm +D2bncm D0cncm +D2(bnbm + dndm) D1cndm +D2dncm
D1dnbm +D2bndm D1dncm +D2cndm D0dndm +D2(bnbm + cncm)

(3.11)

The stiffness matrix contains values relating to the coordinates of each
node in a tetrahedron. The global stiffness matrix contains values for all the
nodes in the model thus the individual element matrices will overlap where
there are shared nodes to produce the global matrix. Calculation of the global
stiffness matrix is achieved simply by iterating through each element matrix,
converting the node indices to global and adding the values to the global
matrix at the applicable position. One of the issues with the Cauchy strain
tensor is rotations can cause artefacts in the deformation. Rather than use a
higher order strain tensor, which would lead to more complex computations,
we separate the element rotation from the deformation. To do this we use
the method introduced in (Müller et al. 2002); rigid body rotation of the
element is calculated separately and then multiplied by the stiffness matrix
to produce the warped stiffness matrix. We now introduce the mass matrix
which is used for calculating intertia and damping. A lumped mass matrix
gives the benefit of simple storage as the matrix is diagonal so the masses can
be stored with each node. Assuming a constant density across the material
the mass per element is ρV e and for each node we just divide by 4. Note that
shared nodes will have mass contributions from all surrounding elements.

Finally we look at plastic deformation. This means the position of the
nodes is permanently changed by the external forces. By using a threshold
value we can add to the plastic strains for each element if the total strain
reaches a certain amount. We can also limit the plastic strain to a maximum
value. A plasticity matrix is used to relate the plastic strains to plastic forces:
P e
n = V eBT

nD, where B and D are the same matrices used to contruct the
stiffness matrix, K. Plastic forces are calculated by multiplying the plastic
strains by the plasticity matrix and the rotational matrix.

12

In computer animation the deformation is modelled dynamically; to render
per frame a time-step, dt, is used. The equation to solve is:

Mẍ+ Cẋ+K(x− xu) = fext (3.12)

The matrix C can easily be calculated by multiplying M by a factor of 0.2
as the contribution from the stiffness matrix is normally set to zero. The
equation above can be re-arranged into a linear system like so:

Av(t+ 1) = b, (3.13)

where

A = (M + ∆tC + ∆t2K), (3.14a)

b = Mv(t)−∆t(Kx(t) + fu − fext) (3.14b)

and v is the velocity vector which is used to calculate the new positions
by an integration method (Euler or RK4 typically). To solve the linear
system in equation 3.13 the conjugate gradient method is used. This is an
iterative method that works by approximating the direction to the solution
at each step, getting closer each time. The exact solution is found after n
iterations where n is the order of the system but generally the approximate
value converges quickly after less iterations (Saad 2003).

13

4

Implementation in C++

4.1 Software Design

Given the description and objectives of the project the class types below were
initially considered:

• Model3D

• Element

• Node

• MainWindow : QMainWindow

• GLWindow : QGLWidget

The Model3D class is named this way because C++ does not allow type
names to start with a digit. It encompasses everything about a 3D model
including material properties, it also includes the Element and Node classes
by aggregation. The Element class contains element specific data such as the
stiffness matrix, volume, shape matrix and a list of indices to nodes that make
up the element. The Node class holds data such as position, mass, and the
forces. In order to accommodate the large matrices required a matrix class
was created that acts as a wrapper to boost::multi_array from the Boost
library. The class includes operator definitions to allow eligible equations to
be written in code. Figure 4.1 shows how the different classes are associated.

The NGL library was used to parse Wavefront obj files, a basic parser for
surf files was also written. Similar to obj files, surf files only hold a list of
vertices and the faces defined with indices to the vertices. To generate the
volume mesh a program called NetGen1 was used. NetGen provides surface
and volume meshing of various inputs as well as visualisation although in
this case the separate programming interface was used which allows directly

1http://www.hpfem.jku.at/netgen/

14

Figure 4.1: Basic object relationship.

adding vertices and faces to the mesh. Although released as a C++ library
its design is very C-like with no object-oriented aspects. The library was
not deeply integrated into the project; once the volume mesh was generated
there was no need for it. The IML++ library2 was used for carrying out the
conjugate gradient method. This library has templated methods that require
certain operators and methods to be implemented on the input data types.
The previously mentioned matrix class was developed to work with this.
Also, a wrapper to the STL vector container was created to implement similar
requirements. Below is the prototype for the conjugate gradient method in
IML++:

template < class Matrix, class Vector, class Real >

int CG(const Matrix &A, Vector &x, const Vector &b,

int &max_iter, Real &tol)

The method was edited to remove the preconditioning code as it was not
required for this project. It was also wrapped in a namespace so calls in the
project could be easily identified.

Here we’ll describe how the different matrices were calculated and stored.
For each element stiffness and plasticity matrices were calculated and stored
before the simulation was run as they only needed to be calculated once.
Functionality was separated between the Element and Model3D classes de-
pending on whether element-specific or global attributes were affected. Var-
ious methods were implemented to calculate and set initial values such as
nodal masses and plastic strains.

2http://math.nist.gov/iml++/

15

The element and global stiffness matrices were constructed using a nested
for loop. Each column and row correspond to a single node; in the case of the
element matrix the dimensions are (3x4)x(3x4) because x, y and z are stored
separately. This means the global matrix has dimensions 3nx3n where n is the
number of nodes. The global matrix is assembled from the element matrices
by summing values where nodes overlap. It’s a simple process of looping over
each node in each element and adding the value from the element matrix to
the global matrix (by first obtaining the relevant global index of the node).
Some efficiency can be gained because of the global matrix’s symmetry, only
half the values have to be calculated.

Basic plastic deformation was implemented although it was based on a
linear elastic model so would not be entirely stable for large deformations.
The following process was used to include effects of creep: Here we can see

Algorithm 4.1 Calculating plastic strains and forces

for all elements do
e = B(Re−1x− xu)
eelastic = e− eplastic
if |eelastic|2 > yield then

eplastic+ = dt ∗ creep ∗ eelastic
end if
if |eplastic|2 > max then

eplastic∗ = max/|eplastic|2
end if

end for
fplastic = RPeplastic

that only plastic strains are stored, elastic strains are calculated at each
frame as the difference between total and plastic strains. Also, plastic forces
use the stiffness warping method by multiplying by the orientation matrix.

Nodal (or offset) forces were also calculated and stored in each node.
Whereas the elastic forces are equal to the stiffness matrix multiplied by
the current node positions, the offset forces are derived from the undeformed
positions of the nodes. They are the opposite reaction required to return the
system to equilibrium thus they are subtracted from the elastic forces when
constructing the linear system.

16

To calculate the orientation matrix of an element, a matrix of the current
deformed position was created (similar structure to the shape matrix). This
was multiplied by the inverse of the undeformed shape matrix and then di-
vided by 6xvol. Gram-Schmidt orthonormalisation was then used to extract
the 3x3 matrix from the previous result.

uk = vk −
k−1∑
j=1

projuj(vk), (4.1a)

ek =
uk
‖uk‖

(4.1b)

, where ek is the normalised result, and vk is the k’th column of the input
matrix. The function proju(v) is defined as:

proju(v) =
〈v, u〉
〈u, u〉

u (4.2)

Qt Creator was used to design a GUI. It was made to give the user the
ability to load a surface mesh, generate a volume mesh, apply any material
properties and forces, and then run a simulation with some form of visuali-
sation. It gives an option to save the simulated data to an output file that
can be used for a high quality render. Initially a few widgets were added
but as the feature set grew it became important to provide an intuitive and
organised layout. A QToolBox widget was used as it allows maximum use of
space while still being simple to use; it works like an accordian layout with
ony one box of widgets available at a time.

An important part of the interface was to allow the user to interactively
set forces at nodes on the model although producing real-time conrol akin
to a modelling application was not the aim. Implementing a vertex selection
procedure with the mouse was achieved by overloading the virtual method
mousePressEvent from QWidget and then inverse projecting the mouse lo-
cation. Given the position of the cursor on the screen, it can be converted to
normalised screen space and then inverse projected back into world space by
multiplying by the inverse of MVP (Model View Projection). Because the
model position is used to rotate and translate the scene it was used along with
the view and projection matrices in the calculation. This selection method
does not discriminate by depth as an infinite ray is generated so an intersec-
tion with multiple points can occur. To make it easier to select vertices an
imaginary sphere was drawn around each one and a sphere-ray intersection
test was carried out. Although a space-partitioning scheme could have been

17

used to make the selection more efficient for large numbers of vertices it was
not a necessary feature as selection would not occur at the same time as
running the simulation.

Figure 4.2: Inverse projection.

Per time-step the following calculations and updates had to be made:

• Calculate element orientation

• Calculate element strains

• Assemble global warped stiffnes matrix

• Calculate nodal force offsets

• Calculate plastic forces

• Assemble matrix A and vector B, solve Av(t+1) = b using CG method

• Use itegration method to calculate new point positions

• If required, write out data to file

18

This set of operations was put into a class called Solver that was instantiated
from MainWindow when the run simulation button was clicked. To ensure
the GUI did not become unresponsive the method in the Solver class was run
on a separate thread using Boost to create and destroy it. The Qt signals and
slots system was used to notify MainWindow when frames were completed so
the user could be informed and data could be written to file. Both Wavefront
obj and RenderMan rib file writers were written. Although NGL provides an
rib writer it was felt that more control was needed over the contents of the
file. Writing the obj writer was a trivial task so it will not be explained here.
One thing to note, though, was that the list of vertices held in Model3D
included those inside the model which are redundant in a surface mesh. We
should also point out that a frame rate control was included so the user could
create time-based effects similar to a high-frame rate camera.

An important aspect of creating a tool for artists is to allow dynamic
control of variables. A simple keyframing system was implemented which
allowed start and end forces to be entered, and a start and time for when the
forces should be applied. Linear interpolation was implemented like so:

y = y0 + (
y1 − y0
x1 − x0

)(x− x0), (4.3)

where y0, y, y1 are the starting, current and ending forces respectively; x0, x,
x1 are the starting, current and ending times respectively. Although this is
an unsophisticated approach, anything more advanced would be reinventing
what many modern 3D applications can already achieve.

4.2 Visualisation

A large variety of data can be generated in this project which means a lot
of different information can be shown to the user. Shaders were written in
GLSL to provide different views of the object. Initially a basic colour shader
was created to visualise the tetrahedra. Later a geometry shader was created
to allow for on-the-fly resizing of the elements using a control in the GUI.
This required the tetrahedron centres to be passed with the vertices. The
scaling was achieved by simple displacement of each point along the line from
its origin to the centre point.

gl_Position = gl_in[0].gl_Position

- scale * (gl_in[0].gl_Position - centre[0]);

gl_PrimitiveID = gl_PrimitiveIDIn/4;

19

The second line is for random colouring of the tetrahedra to better identify
them. A 1D texture was created on the CPU with 128 random colours and
sent to the GPU. Using the gl_PrimitiveID value, a colour could be chosen
from the texture in the fragment shader. Another shader was also created to
show just the surface mesh as this is what the final renders would look like.
Basic colour shaders were also used for the grid and vertices.

To display the nodal forces and element strains at each time-step the mag-
nitude of the total force at each node was stored, then the maximum was
found so a scaling factor could be calculated. For each node the force was
inverted and scaled to the range 0 to 2/3. This value was then used as the
hue for the generated colour thus producing a range of colours from blue (no
forces) through green to red (maximum forces). We should point out that the
visualisation is relative so a red area would show the maximum force across
the whole model but it might not necessarily by an absolute high value.
The colours were stored in the node and sent to the GPU in the updateVAO

method. The same set of steps was used to calculate the colours for element
strains and the colour was stored in each element.

Basic 3D camera tracking and panning was implemented by altering values
in the model matrix. It was based on code from the NGL demos. Because
the program only allowed one model to be loaded more advanced controls
were not required. When exporting rib files the model view matrix was used
to translate the whole scene, this way the user could compose a shot in the
program before rendering.

Algorithm 4.2 Procedure for calculating vertex normals

for all i in nodes do
vec3 normal
int adjFaces
for all j in surfaceIndices do

if surfaceIndices[j] == i then
normal += faceNormals[j/3]
adjFaces++

end if
end for
normal /= adjFaces
normalise(normal)

end for

20

VertexArrayObjects from NGL were used to manage the OpenGL buffers
and attribute data. These were stored in the Model3D class. Two were used
for the volume mesh and surface mesh and another for the points. The
updateVAO method sets up data for drawing by passing the vertex posi-
tions and any required attributes to OpenGL. For the surface mesh, vertices
were sent with normals using indices to construct the triangles more effi-
ciently. The normals are actually first calculated for each face and then
averaged at each vertex. A slightly obscure method was chosen to avoid hav-
ing to store a face data type. Algorithm 4.2 outlines the process. Note that
surfaceIndices is 3 times the size of faceNormals because each face is a
triangle.

21

5

Results and Analysis

A variety of primitive models were loaded into the program. Unfortunately
the NetGen library was strict with how polygons are described so not ev-
ery model could be meshed. What follows is an explanation of the material
properties and images of the resulting deformation. Table 5.1 above shows

Model Cylinder Icosahedron Prism

1 12 10

0.45 0.33 0.4

Density 600 750 100

Element Count 141 660 8

115ms 2321ms 2ms

Young's Modulus

Poisson's Ratio

Avg. Frame Time

Figure 5.1: Properties for sample models.

properties of three models that were used to test the program. The simu-
lations were run on a quad-core CPU clocked at 2.8GHz. From the data it
can be seen that computation time per frame increases with the number of
elements/nodes; this was to be expected.

Figure 5.3 shows a cylinder being squashed by a force from above. The
ottom nodes were fixed. As the force was applied the model started to distort
as the tetrahedra shifted and resized. Figure 5.2 shows a similar deformation
but of a sphere. Again forces were applied to the top nodes, downwards, and
the bottom nodes were fixed. This created a very strange-looking effect as
the sides of the sphere dipped lower than the fixed area, like a soft plastic ball
would. Figure 5.3 shows a very simple prism consisting of only 8 elements.
As such the calculations were well within the time required for real-time
visualisation. The prism was pulled upwards but because of the low number
of elements one node went much higher than the others.

These tests highlight that it is important to know the properties of the
material that is to be simulated otherwise unnatural or non-existent materials

22

Figure 5.2: The icosahedron with forces applied from above.

could be simulated. For an artist, looking up material properties is not
something they want to be doing so creating a simpler set of controls to
changes attributes such as softness or strength would allow easier use.

Included also with this paper are two rendered simulations of an icosahe-
dron and a cylinder. They were created by writing out an obj file per frame
and then loading the sequence into Autodesk Maya 2011. Each video shows
the same deformation at different recorded frame rates to better show the
effect.

23

Figure 5.3: The cylinder being squashed from forces above.

24

Figure 5.4: The prism being stretched upwards.

25

6

Conclusions

Improvements could be made to the interface so artists are more comfortable
using it (the keyframing system being a good example) but there’s a point
where it’s better to make a plugin for an existing application such as Au-
todesk Maya or SideFX Houdini. That way the powerful controls offered by
the software can be utilised to create a more interesting program. However,
both Maya and Houdini already have plugins available that achieve better
results so it would only be worthwhile as an academic exercise.

Porting the program to a plugin would allow better incorporation into the
3D pipeline allowing more efficient use in a real production. Also, integration
with a RBD system with dynamically created external forces would create
a very usable system for creating deformation effects. Only linear elastic
deformation was simulated in this project. Although it was an objective to
progress to non-linear plasticity, too much time was spent on implementing
the basic system. Plastic forces were included but large deformations led
to stability problems that affected the realisticness. Crack generation and
fracturing would also be a good next step for this project so results similar
to those in previous research could be achieved.

A future path that has not been mentioned is a GPU implementation using
CUDA or OpenCL. The advantages of parallelising this system would make
a very fast and probably real-time program. By separating the global matrix
up and solving in parallel, massive performance gains could be achieved that
would greatly increase productivity in a live production environment.

26

Appendix A

Sample Models

Figure A.1: Surface mesh of the cylinder model.

27

Figure A.2: Surface mesh of the icosahedron model.

Figure A.3: Surface mesh of the prism model.

28

Figure A.4: Surface mesh of the torus model with the volume shader.

Figure A.5: Surface mesh of the torus model with the volume shader, scaled
to 0.25.

29

Figure A.6: Surface mesh of the bar model with nodal forces shown on the
surface shader.

Figure A.7: Surface mesh of the cube model with nodal forces shown on the
volume shader.

30

Figure A.8: Surface mesh of the cube model with nodal forces shown on the
volume shader.

Figure A.9: Surface mesh of the cube model with element strains shown on
the volume shader.

31

Appendix B

Diagrams

Figure B.1: Typical user workflow.

32

Elem
ent

- m
_m

od : M
odel3D

*
- m

_nds : N
ode*

- m
_vol : fl

oat
- m

_volD
iv4 : fl

oat
- m

_centre : undef
- m

_plasticStrains : std::vector< fl
oat >

- m
_shapeM

at : undef
- m

_orientation : undef
- m

_orientationT : undef
- m

_stiff
nessM

at : M
yM

atrix
- m

_plasticityM
at : M

yM
atrix

- m
_strainsN

orm
 : fl

oat
- m

_strainC
olour : undef

+ Elem
ent(_parent : M

odel3D
*, _nodes : N

ode**)
+ ~ Elem

ent()
+ getV

ol() : fl
oat

+ getV
olD

iv4() : fl
oat

+ getC
entre() : const ngl::V

ec3&
+ getStiff

nessM
at() : const M

yM
atrix&

+ getN
odes() : N

ode**
+ getO

rientation() : const ngl::M
at3x3&

+ getO
rientationT() : const ngl::M

at3x3&
+ getP

lasticityM
at() : const M

yM
atrix&

+ getP
lasticStrains() : std::vector< fl

oat >&
+ getStrainsN

orm
() : fl

oat
+ getStrainC

olour() : const ngl::V
ec3

+ stiff
nessM

at(_i : int, _j : int) : fl
oat&

+ plasticityM
at(_i : int, _j : int) : fl

oat
+ barycentric(_w

0 : const fl
oat, _w

1 : const fl
oat, _w

2 : const fl
oat, _w

3 : const fl
oat) : undef

+ setStrainC
olour(_r : fl

oat, _g : fl
oat, _b : fl

oat)
+ calculateV

olum
e()

+ calculateC
entre()

+ calculateO
rientation()

+ calculateStrains(_dt : fl
oat)

+ assem
bleStiff

nessM
atrix(_d0 : fl

oat, _d1 : fl
oat, _d2 : fl

oat)
+ assem

bleP
lasticityM

atrix(_d0 : fl
oat, _d1 : fl

oat, _d2 : fl
oat)

+ dN
ndx(_n : const int, _x : const int) : fl

oat

N
ode

+ m
_pos : undef

+ m
_posU

 : undef
+ m

_forceO
ff

set : undef
+ m

_forceP
lastic : undef

+ m
_colour : undef

+ m
_forceC

olour : undef
+ m

_m
ass : fl

oat
+ m

_fi
xed : bool

+ m
_gIdx : unsigned int

+ N
ode(_pos : undef, _idx : unsigned int)

+ ~ N
ode()

M
yV

ector
- m

_data : std::vector< fl
oat >

+ M
yV

ector()
+ M

yV
ector(n : unsigned int)

+ ~ M
yV

ector()
+ operator =(_v : const M

yV
ector&

) : M
yV

ector&
+ operator =(_s : const fl

oat&
) : M

yV
ector&

+ operator +(_v : const M
yV

ector&
) : M

yV
ector

+ operator -(_v : const M
yV

ector&
) : M

yV
ector

+ operator *(_v : const M
yV

ector&
) : fl

oat
+ operator *(_s : const fl

oat&
) : M

yV
ector

+ operator +=(_v : const M
yV

ector&
) : M

yV
ector&

+ operator -=(_v : const M
yV

ector&
) : M

yV
ector&

+ operator ()(i : unsigned int) : fl
oat

+ dot(_v : M
yV

ector&
) : fl

oat
+ norm

() : fl
oat

+ size() : unsigned int
+ getD

ata() : std::vector< fl
oat >&

+ operator <<(_os : std::ostream
&

, _v : const M
yV

ector&
) : std::ostream

&

M
yM

atrix
- m

_sizeX
 : unsigned int

- m
_sizeY

 : unsigned int
- m

_data : undef
+ M

yM
atrix(_sizeY

 : unsigned int, _sizeX
 : unsigned int)

+ M
yM

atrix(_m
 : const M

yM
atrix&

)
+ ~ M

yM
atrix()

+ operator ()(_i : int, _j : int) : fl
oat

+ operator *(_v : const std::vector< fl
oat >&

) : std::vector< fl
oat >

+ operator *(_v : const std::vector< ngl :: V
ec3 >&

) : std::vector< ngl :: V
ec3 >

+ operator *(_v : const M
yV

ector&
) : M

yV
ector

+ sizeX
() : unsigned int

+ sizeY
() : unsigned int

+ subM
at3(_i : const int, _j : const int) : undef

+ subM
at6(_i : const int, _j : const int) : M

yM
atrix

+ zeroA
ll()

+ operator <<(_os : std::ostream
&

, _m
 : const M

yM
atrix&

) : std::ostream
&

G
LW

indow
- : undef
- m

_m
odel : M

odel3D
*

- m
_cam

 : ngl::C
am

era*
- m

_light : ngl::Light*
- m

_light2 : ngl::Light*
- m

_rotate : bool
- m

_translate : bool
- m

_spinX
Face : int

- m
_spinY

Face : int
- m

_origX
 : int

- m
_origY

 : int
- m

_origX
P

os : int
- m

_origY
P

os : int
- m

_m
odelP

os : undef
- m

_colourTexture : undef
- m

_m
eshD

raw
M

ode : bool
- m

_selectM
ode : bool

- m
_draw

P
oints : bool

- m
_selectedP

oints : std::set< unsigned int >
- m

_forceO
rFixedM

ode : bool
- m

_dataV
is : int

- ~ G
LW

indow
()

- setM
eshD

isplay(_m
ode : bool)

- setM
odel(_m

od : M
odel3D

*)
- setSelectM

ode(_on : bool)
- setShow

P
oints(_show

 : bool)
- setForcedO

rFixed(_m
ode : bool)

- setD
ataV

is(_option : int)
- getSelectedP

oints() : std::set< unsigned int >&
#

 initializeG
L()

#
 resizeG

L(_w
 : const int, _h : const int)

#
 paintG

L()
#

 m
ouseM

oveEvent(_event : Q
M

ouseEvent*)
#

 m
ouseP

ressEvent(_event : Q
M

ouseEvent*)
#

 m
ouseR

eleaseEvent(_event : Q
M

ouseEvent*)
#

 w
heelEvent(_event : Q

W
heelEvent*)

- setupShaders()
- loadShader(_nam

e : const std::string&
, _geo : const bool&

)
- createTexture()
- unP

roject(_x : const fl
oat, _y : const fl

oat, _z : const fl
oat, o_rayP

oint : ngl::V
ec3&

)
- intersect(_c : const ngl::V

ec3&
, _o : const ngl::V

ec3&
, _d : const ngl::V

ec3&
) : bool

- vertexSelection(_o : const ngl::V
ec3&

, _d : const ngl::V
ec3&

)

M
ainW

indow
- m

_m
odel : M

odel3D
*

- m
_gl : G

LW
indow

*

-m
_gl

1

1

-m
_m

odel

0..1

0..1

-m
_m

od

0..1
-m

_nds

-m
_velocities

-m
_stiff

nessM
at

-m
_stiff

nessM
at

0..1

-m
_m

odel

0..1

-m
_m

odel

0..1

M
odel3D

- m
_num

N
ds : unsigned int

- m
_num

P
olys : unsigned int

- m
_nodes : std::vector< N

ode >
- m

_elem
ents : std::vector< Elem

ent >
- m

_youngsM
odulus : fl

oat
- m

_poissonsR
atio : fl

oat
- m

_density : fl
oat

- m
_m

assD
am

ping : fl
oat

- m
_pY

ield : fl
oat

- m
_pC

reep : fl
oat

- m
_pM

ax : fl
oat

- m
_D

0 : fl
oat

- m
_D

1 : fl
oat

- m
_D

2 : fl
oat

- m
_stiff

nessM
at : M

yM
atrix

- m
_velocities : M

yV
ector

- m
_totalForces : std::vector< fl

oat >
- m

_externalForces : std::vector< fl
oat >

- m
_externalForces0 : std::vector< fl

oat >
- m

_externalForces1 : std::vector< fl
oat >

- m
_m

eshV
ao : ngl::V

ertexA
rrayO

bject*
- m

_surfaceM
eshV

ao : ngl::V
ertexA

rrayO
bject*

- m
_pointsV

ao : ngl::V
ertexA

rrayO
bject*

- m
_norm

als : std::vector< ngl :: V
ec3 >

- m
_faceN

orm
als : std::vector< ngl :: V

ec3 >
- m

_tetIndices : std::vector< unsigned int >
- m

_surfIndices : std::vector< G
Lushort >

- m
_m

eshD
raw

M
ode : bool

+ M
odel3D

(_num
N

ds : int, _num
P

olys : int, _y : fl
oat, _v : fl

oat, _den : fl
oat, _pY

ield : fl
oat, _pC

reep : fl
oat, _pM

ax : fl
oat)

+ ~ M
odel3D

()
+ setFixedN

ode(_idx : unsigned int)
+ setM

eshD
isplay(_m

ode : bool)
+ setYoungs(_y : fl

oat)
+ setP

oissons(_v : fl
oat)

+ setD
ensity(_p : fl

oat)
+ setP

Y
ield(_pY

 : fl
oat)

+ setP
C

reep(_pC
 : fl

oat)
+ setP

M
ax(_pM

 : fl
oat)

+ addN
ode(_pos : undef)

+ addElem
ent(_nodes : const int*)

+ addN
odeIndex(_idx : int)

+ addSurfaceTriangle(_nodes : const int*)
+ getP

Y
ield() : fl

oat
+ getP

C
reep() : fl

oat
+ getP

M
ax() : fl

oat
+ getExtForces0() : std::vector< fl

oat >&
+ getExtForces1() : std::vector< fl

oat >&
+ getExtForces() : std::vector< fl

oat >&
+ getN

odes() : std::vector< N
ode >&

+ getN
um

N
odes() : unsigned int

+ getN
orm

als() : const std::vector< ngl :: V
ec3 >&

+ getSurfIndices() : const std::vector< G
Lushort >&

+ increm
entForces(_durationInv : fl

oat, _alpha : int)
+ updateElasticityC

onstants(_updateM
at : bool)

+ setupElem
ents()

+ setupM
asses()

+ updateElem
ents(_dt : fl

oat)
+ assem

bleW
arpedStiff

nessM
at()

+ calculateN
odalForces()

+ calculateP
lasticForces()

+ solveD
ynam

ics(_dt : fl
oat)

+ createD
ataC

olours()
+ calculateV

ertN
orm

als()
+ updateVA

O
()

+ draw
()

+ draw
Surface()

+ draw
P

oints()
+ reset()
+ operator <<(_os : std::ostream

&
, _m

 : const M
odel3D

&
) : std::ostream

&

Solver
- m

_run : bool
- m

_dt : fl
oat

- m
_m

odel : M
odel3D

*
- m

_fram
e : undef

- m
_start : unsigned int

- m
_end : unsigned int

- m
_duration : fl

oat
- m

_updateTim
er : undef

- m
_tim

er : int
- ~ Solver()
- start()
- stop()
#

 tim
erEvent(_event : Q

Tim
erEvent*)

#
 fram

eC
om

plete(_fram
e : const unsigned int)

#
 fi

nished()
- update()

D
iagram

: class diagram
 P

age 1

Figure B.2: Class diagram of final code.

33

Bibliography

Bargteil, A. W., Wojtan, C., Hodgins, J. K. and Turk, G., 2007. A finite ele-
ment method for animating large viscoplastic flow. In: ACM SIGGRAPH
papers, 2007. San Diego, CA. New York, NY: ACM.

Erleben, K., Sporring, J., Henriksen, K. and Dohlmann, H., 2005. Physics-
Based Animation. Hingham, MA, USA: Charles River Media.

Gould, P. L., 1994. Introduction to Linear Elasticity. New York, NY:
Springer-Verlag 2nd ed.

Henwood, D. and Bonet, J., 1996. Finite Elements A Gentle Introduction.
London: Macmillan Press.

Hilf, B., 1997. Don’t believe your eyes: It is real or is it animation. Animation
World Magazine, 2(5), 17–19.

MacDonald, B. J., 2011. Practical Stress Analyis with Finite Elements.
Dublin, Ireland: Glasnevin 2nd ed.

Müller, M. and Gross, M., 2004. Interactive virtual materials. In: Proceedings
of Graphics Interface, May 2004. London, Ontario, Canada. Waterloo,
Ontario, Canada: Canadian Human-Computer Communications Society
School of Computer Science, 239–246.

Müller, M., Julie, D., McMillan, L., Jagno, R. and Cutler, B., 2002. Stable
real-time deformations. In: Proceedings of ACM SIGGRAPH, July 2002.
San Antonio, TX. New York, NY: ACM, 49–54.

O’Brien, J. F. and Hodgins, J. K., 1999. Graphical modeling and animation
of brittle fracture. In: Proceedings of ACM SIGGRAPH, Aug 1999. New
York, NY: ACM Press/Addison-Wesley Publishing Co., 137–146.

Parker, E. G. and O’Brien, J. F., 2009. Real-time deformation and fracture
in a game environment. In: Proceedings of ACM SIGGRAPH, 2009. New
Orleans, LA. New York, NY: ACM, 165–175.

Saad, Y., 2003. Iterative Methods for Sparse Linear Systems. Philadelphia,
PA: Society for Industrial and Applied Mathematics 2nd ed.

34

Terzopoulos, D., Platt, J., Barr, A. and Fleischer, K., 1987. Elastically de-
formable models. In: Proceedings of the 14th annual conference on Com-
puter graphics and interactive techniques, 1987. New York, NY: ACM,
205–214.

Wicke, M., Botsch, M. and Gross, M., 2007. A finite element method on
convex polyhedra. Computer Graphics Forum, 26(3), 355–364.

Zhang, Y., Hughes, T. J. R. and Bajaj, C. L., 2010. An automatic 3d mesh
generation method for domains with multiple materials. Computational
Geometry and Analysis, 199(5-8), 405–415.

35

