HUMAN DETECTION AND EXTRACTION
USING KINECT DEPTH IMAGES

MASTER'’S THESIS

SUNDAR NARAYAN KRISHNAMURTHY
17913967 @bournemouth.ac.uk
sunnarine@gmail.com
MSc Computer Animation & Visual Effects

Contents
1 Introduction
1.1 Thesis Overview
2 Previous Work
3 Process Overview
4 Dependencies
4.1 Hardware Dependency
4.2 Software Dependencies
4.3 USB Communication
44 TheSDK
5 Pre-processing
5.1 The Kinect Data
5.2 Depth to Millimetre
5.3 The Offset
54 Nearest-Neighbour Interpolation
5.5 Median Filter
6 2D Chamfer Distance Matching
6.1 Canny Edge Detection
6.2 Resolution Pyramid Construction
6.3 Distance Transform
6.4 Diagonaled Iterative DT - A Proposal
6.5 DT Pyramid
6.6 Template Preparation
6.7 Chamfer Matching
7 Virtual 3D Model Fitting
7.1 Calculating Head Parameters
7.2 Locating Circular Edges
7.3 Virtual Hemisphere Model
7.4 Fitting the Virtual Model
8 Extracting
9 Results & Discussion
9.1 Technical Specifications
9.2 Test Environments
9.3 Close Plane Environment
9.4 Far Plane Environment
10 Future Work & Conclusion
11 Bibliography
12 Appendix

O VOOV WN =

33
33
33
35
40

48
49
52

Chapter 1

Introduction

Human detection has been a prominent area in the field of computer vision
and artificial intelligence. The importance of a perfect human detection lies in
the fact that human figures are extremely difficult to get detected and tracked.
Among many of the reasons, to site a few are large variations in human
postures, and human sizes, lighting in the environment, human clothing,
varied activities etc. During a short period of involvement in a motion capture
project, I got a chance to practically learn human pose capture with the use of
sensors tied up all over the body. It is the optical motion-capture system that
is being mentioned. The beauty of the human joint positions being tracked
perfectly in real-time made a strong impact that led to the basement of this
project. As the techniques behind human pose estimation and detection is
extremely vast, an interest in implementing a tiny drop of this enormous
ocean, led to the development of this project on human detection and
extraction.

In the meantime, the state-of-the-art technology behind Microsoft’s Kinect
Xbox for 360, had started gaining a prominent interest among the computer
vision and artificial intelligence geeks, in making use of the motion-sensing
device in varied applications. Kinect’s human motion-capture without any
sensors or markers on the human body was really a breakthrough and
welcome boon in computer vision. After going through numerous tweaks and
works on the Kinect, it was widely learnt that Kinect can perform more than
what it has been applied in nowadays - computer games. One such applied
work was the use of Kinect in detecting human in a scene and extracting the
human contour out of it. The paper presented in the Workshop on Human
Activity Understanding from 3D Data in conjunction with CVPR, by Xia,L., et.al
[2011] uses a novel idea of human detection using the depth information
provided by the Kinect. Xia,L., et.al. employ a 2-D head contour model and a 3-
D head surface model in extracting the human figures off the scene. This
project is another implementation of this paper and all the steps provided in
this project report are based on the guidance provided in the paper.

This report outlines the step-by-step procedure involved in Human detection
and extraction from the Kinect data, discussing further the results obtained
and analysing them.

CHAPTER 1. INTRODUCTION

1.1. Thesis Overview:

Chapter 2: Previous Work: An overview of the previous works that have
been done in Human detection

Chapter 3: Process Overview: An overview of the procedures involved in
the implementation. A simple description of how the project is broken into
stages

Chapter 4: Dependencies: A detailed description on the hardware and the
software used in the project coursework.

Chapter 5: Pre-processing: An elaborate explanation of the stages involved
in pre-processing the data received from the Kinect. Each stage in this phase
is explained in the sub-sections

Chapter 6: 2D-Chamfer Matching: A comprehensive account on the chamfer
matching technique and a proposal on modified distance transform algorithm
used.

Chapter 7: 3D Virtual Model Fitting: A complete coverage on the math and
the logic behind the human head detection using the 3D - head surface model

Chapter 8: Extracting: A brief description on the extraction phase of the
detected human figure

Chapter 9: Results & Discussion: A detailed analysis of the results obtained
and discussing the optimal performance

Chapter 10: Improvements, Future Work & Conclusion: A brief account on
what was done, what needs to be done.

CHAPTER 1. INTRODUCTION

Chapter 2

Previous Work

Though numerous works have been done on human detection technique,
most of them use the visible light information in the scene for the detection
process [Xia,L., et.al, 2011]. The detection algorithms are a simulation of the
performance of human eye and brain.

Introduced few years back, Histogram of Oriented Gradients [Dalal,N., and
Triggs,B., 2005] describes the technique of object detection using gradient
orientation in localized points in an image. The algorithm was primarily
described for the use of pedestrian detection in still images. Later the
algorithm was tested for human detection in still images and videos. Scale-
Invariant Feature Transforms [Lowe,D., 1999], or simply SIFT, have been
extensively used in gesture recognition, where key points of objects extracted
from a set of reference images are individually compared against each feature
of the search image. Using local Edge Orientation Histograms [Levi.K. and
Weiss,Y. 2004] as features has greatly improved the learning of frontal faces
and thereby improving the real-time systems for learning profile faces.
However, these methods employ the visible light to get the information from
the scene. According to Xia,L.[2011], the major disadvantage of using visible
light in the feature detection techniques, is that their accuracy gets
considerably decreased when the scene gets complex and cluttered.
Moreover, the precision fails when the features get occluded thereby making
the detection a difficult task.

Owing to the disadvantages in the methods described above, emphasis was
given to the usage of range images in object recognition. Sabata,B et.al [1993],
describe the usage of 3-D range images in segmenting a scene into
homogeneous surface patches using pyramidal data structures. In recent
years, application of depth information captured from stereo cameras
[Yang, HD. And Lee.S, 2007] and time-of-flight cameras [Ganapthi,V. et.al,
2010] have been used to determine the pose estimation and detection. More
recently, using the Relational Depth Similarity Features [RDSF] based on the
depth information obtained from time-of-flight camera, human detection
algorithm has been proposed [Ikemura,S., Fujiyoshi,H., 2010].

CHAPTER 2. PREVIOUS WORK

Chapter 3

Process Overview:

As stated by Xia.L et.al[2011], the entire project can be divided primarily into
four stages as follows:

Pre-processing

2D Chamfer Matching
Virtual 3D Model Fitting
Extraction

B W=

Each stage is further portioned into several sub-stages that would simplify the
understanding of the flow of the entire algorithm. Pre-processing deals with the
preparation of the data from Kinect. While the 2D chamfer matching performs
the initial human-head matching with a pre-defined template, the 3D model
fitting actually eliminates the errors in the 2D stage, thus making the detection
robust and accurate. As the name indicates, the fourth stage, extracts the entire
human contour based on the detection results. Detailed description along with
the algorithm has been given for each stage in the following chapters. Fig. 3.1
gives a clear picture of the process overview.

Though the paper [XiaL etal, 2011] deals with an additional final stage of
exploring the Tracking algorithm, it is beyond the scope of this project. Tracking
stage has been omitted due to the time constraints.

CHAPTER 3. PROCESS OVERVIEW

Depth to , Pixels
Millimetre Conversion | | ‘ Validation

PRE-PROCESSING *©

Smoothening \ Resampling
Canny Edge Pyramid
Detection . Construction

2D-CHAMFER MATCHING

DT Pyramid
Chamfer , Construction
Matching ’ '
Template
L Generation
True Radius ‘ Ideal
Calculation ' Hemisphere
/ Construction

3D-VIRTUAL MODELFITTING

Error . Real
thresholding — Hemisphere
Construction
Plane Extracting
delineation
EXTRACTION

Fig. 3.1: Flow of the process

CHAPTER 3. PROCESS OVERVIEW

Chapter 4

Dependencies

4.1. Hardware Dependency:

Fig. 4.1: The Kinect sensor for Xbox 360
[Amazon, 2011]

In order to gather depth information from the scene, Kinect sensor for Microsoft
Xbox 360 plays a major role in this project. The Kinect for Xbox 360, in Fig. 4.1, is
an innovative motion-sensing device that has a pair of 3D depth cameras and a
RGB camera. The RGB camera, like any other ordinary camera, captures the real-
time video. However, the function of the 3D depth camera is to perform a variant
of image based 3D-reconstruction[Ten, S. 2011]. According to PrimeSense, the
company behind the Kinect technology, 3D depth cameras emit infra-red lights
into the 3D space and unlike the usual time-of -flight method employed in most
of the gesture recognition systems, the deformation of the information originally
sent from the device is used for deciphering the image [Schramm, M. 2010]. The
deciphered information thus received from the device is just an array of
numbers, each number for a pixel. The details of processing this array will be
discussed in Chapter 5.

4.2. Software Dependencies:

Being a Microsoft’s hardware, it is obvious that only developers using Windows
operating system can read data from the Kinect, through the SDK and the drivers
released by Microsoft. However, an open-source version of these drivers and
libraries would be a bounty, as the cost of the project gets limited to the cost of
the hardware alone. Of course, the bounty was showered through the
OpenKinect community. This community provides free, open-source libraries
that enable the Kinect to be used not only with Windows but also with Linux and
Mac. Perfectly named as libfreenect, these libraries have been employed in this
project to make use of Kinect other than Windows.

CHAPTER 4. DEPENDENCIES

4.3. USB Communication:

The interface between the development interface and the Kinect sensor is
achieved through the usual USB communication. As the Kinect sensor comes
with a lengthy USB cable, the physical communication is straightforward.
However, the Kinect sensor gets recognised in operating systems other than

Microsoft Windows, through another set of free, open-source libraries called
libusb.

The libraries libusb and libfreenect make a fantastic pair in making Kinect
available in all platforms.

Thus the physical cost of this project was limited to 100 GBP, owing to the Kinect
for Xbox 360 sensor.

4.4. The SDK:

Nokia’s Qt creator has been chosen as the application framework with C++ and
OpenGL as the programming language and graphics API respectively. The choice
of Qt along with C++ and OpenGL was arrived because of their efficiency, wide
usage, flexibility and not the least, their availability at no cost.

CHAPTER 4. DEPENDENCIES

Chapter 5

Pre-processing

Not diving instantly into the actual human detection process, this stage deals
with the preparation of the data received from the Kinect. The data is processed
in a manner that makes it meaningful, continuous and easier for calculations
performed in further stages.

5.1. The Kinect Data

As discussed in the Chapter 4, Kinect reproduces the 3D scene captured by it
through stereo triangulation. The captured frame is represented as an array of
values with each pixel assigned a value. This array can be accessed in various
ranges and formats that depend on the libraries being used to talk to the Kinect
sensor. Libfreenect, the open-source library used in this project, provides ways
of accessing these depth frame states in 10-bit, 11-bit, 10-bit packed, 11-bit
packed formats etc. Thus, for example, if the 11-bit enumeration is chosen, as
used in this project, then it is going to be 11-bit depth information in one
unsigned integer per pixel. Further, it becomes much clearer that the size of this
array is going to be the total number of pixels in the frame. Though not all
available resolutions are available in all video modes received from Kinect, the
infrared frame mode that gives the depth information, supports a medium
resolution of 640 X 480. Evidently, the depth frame state array has 307,200
values each of 11-bit in size. This depth frame state array will be mentioned as
simply depth array in further discussions. Moreover, all the information that is
required to process the scene is contained in this sequence of integers. In a
nutshell, whatever information needed to process a frame is sufficiently
contained in this array.

Since the depth information is limited from 0 to 2047 (21! precision), as a linear
representation, if visualized, they provide only a plain meaningless black and
white image. To make them visually meaningful, the 11-bit data is chunked into
8 regions, each with a range 0 to 255[Crock,N. 2011]. Consequently, each pixel
gets a 3-Channel data of Red, Green and Blue values. In this way, the depth
information can be simulated as a collection of colour gradients.

As a result, we are provided with two different arrays of two different ranges.
While one has 307,200 elements each assigned an 11-bit unsigned integer value,

CHAPTER 5. PRE PROCESSING

the other has 921,000 elements (307,200 X 3) each assigned an 8-bit (28 = 256)
unsigned integer value. The entire human detection and extraction process relies
heavily and solely on these two ranges.

5.2. Depth to Millimetre

As discussed in the previous section, the data from the Kinect is just an array of
11-bit integers. However, an intriguing question of what do these values
represent in the real world space arises when a close examination of these
values is done. It gets interesting to know how this junk of 11-bit unsigned
integers is connected to the 3D space being captured. Many experiments have
been conducted in the recent months, to calibrate the depth frame data into real
world metres. Precisely, attempts in calibrating to the actual meaning of the
word ‘Depth’ itself have been made. After a personal communication, it was
advised that the calibration through the equation [Magnenat,S. 2011],

Depth (mm) = 123.6 X tan (depth/ 2842.5 + 1.1863)
(Egqn.5.1)

gives wrong values in larger range. HerreraD. et.al[2011] have provided
another equation for the calibration. Because of their proven accuracy,
practicality and wide usage, it was decided to apply Eqn. 5.2 to calibrate the
depth frame data to millimetres.

(Egqn. 5.2)
[Herrera,D., 2011]

Here, zq4 is the calibrated disparity value in metres and d is the original disparity
data from Kinect. The values of o and 3 are -0.00285 and 1091 respectively.
Since, these calibrated values play an important role in the third phase of 3D
Model fitting, which will be discussed in Chapter 7, the calibration gets an
important place in pre-processing.

5.3. The Offset

After visualising the depth in the form of colour gradients, it becomes clear that
some pixels do not have a valid depth value i.e. the scene information is missing
in these pixels. These pixels appear as black random black specks in the scene.
Linearly speaking, some of the elements in the depth array are not valid. If this

CHAPTER 5. PRE PROCESSING

10

array is used further, it would result in undesirable calculation issues. Thus, a
valid check is done once the depth array is received. Any pixel that does not
comply with the 11-bit range is offset to zero. This offset makes sure that all the
values in the depth though not visually significant, make them meaningful in the
least form from the perspective of linear calculations that are to be done further.

5.4. Nearest-Neighbour Interpolation

Offsetting the invalid pixels to zero does not suffice the depth array’s quality to
be sent to the next stage of the process. Though offsetting makes sure the validity
of the depth array, it does not make the array meaningful and continuous.
Xia.L[2011] states this as a kind of noise and to avoid this, it is primarily
assumed that the 3D scene from which the data is being deciphered is
continuous. Consequently, the data has to be continuous and bind logically
within the values of the nearest pixel with non-zero valid value. Thus to avoid
interference, the nearest-neighbour interpolation algorithm is applied on this
depth array. Nearest-neighbour algorithm is the simplest image-resampling
algorithm that resamples the given image to a new resolution. Let us look into
the 1-dimensional interpolation, to have a clearer further understanding in the
2-dimensional level.

Interpolation is simply a convolution of a given discrete function g(x) with some
continuous interpolation kernel w(x). [Burger,W. and Burge,M., 2008]

g (x0) = 2 w (x0-u). g (u),
Where -x<u<x
(Egqn. 5.3)
[Burger,W. and Burge,M., 2008]

The interpolation kernel w (x) for the nearest neighbour is,

1, for -0.5<x<0.5
w(x) =
0, otherwise
(Egqn. 5.4)
[Burger,W. and Burge,M., 2008]

Visually speaking, the 1-D nearest neighbour interpolation makes the discrete
signals continuous as shown in Fig. 5.1.

CHAPTER 5. PRE PROCESSING

11

- - .
1 2 T4 5 6 7T 8 9 W

Fig.5.1: 1-D Nearest Neighbour Interpolation.
Image Courtesy: Burger.W, and Burge.M, 2008

Thus, the discontinuous values of the signal g(x) have been transformed to a
continuous function g(x) making it meaningful for any given value x. Promoting
this to the 2-Dimensional spectrum, makes the noisy interfered image a
continuous one. As Burger.W., and Burge,M., [2008] effectively state,

“The pixel closest to the given continuous point (xo, yo) is found by rounding the
x and y coordinates independently to integral values”,

I (%0, yo) = I (uo, vo)
(Egqn. 5.5)

Having an objective to recover the true depth value of the missed pixels from the
Kinect, which were offset to zero, the nearest neighbour algorithm provides the
simplest and fastest way in achieving this. In this phase, the depth frame from
the Kinect data is resampled to a size double the original and then reverted to
the original size. Performing the interpolation twice on the pixel data though
produces blocking effects that can be resolved in the next stage. This fills all the
values in the depth array with continuous and meaningful values.

5.5. Median Filter

Though the Nearest-Neighbour interpolation reduces the interference and
makes data continuous, it does produce some noise. The process of image
smoothing can effectively do noise reduction. Though several algorithms have
been proposed in the digital image-processing domain for noise reduction,
median filter has a special attention as it is known for preserving the edge details
in the original image. Emphasis for maintaining the edge details is made because
of efficiency needed in the next major step of Canny Edge Detection. To better
illustrate the median filter process, it is required to introduce the basis of a
convolution kernel.

As we know, an image, which is an array of values, can be expressed in terms of a

CHAPTER 5. PRE PROCESSING

12

2-Dimensional matrix. The columns and rows of the image matrix is its
resolution. Each element in the matrix is the pixel. A convolution kernel can be
termed as another 2-Dimensional matrix, however, of lower resolution than the
image that is placed on the original image matrix. Every convolution kernel has
an element called anchor. Usually, the anchor lies in the centre of the convolution
matrix. For example, a 3 X 3 convolution kernel with its anchor in the centre
looks as in Fig. 5.2.

3[4]5
S(o]1
9126

Fig. 5.2: A 3 X 3 Kernel
with anchor at centre

When placed in an image matrix, summing up multiplied pixel values with the
respective kernel value in the convolution matrix and thereby replacing the
corresponding pixel value at the current anchor position of the kernel performs
actual convolution. Performing convolution on all the pixels thus traverses the
kernel over the entire image matrix. As the traversal proceeds from top left to
the bottom right corner of the image, the anchor point moves over each pixel,
thereby changing every pixel. This process is better explained in Fig. 5.3.

3|4][5]6/7]8 3[4][5[6][7]8]
2(9(1]0)1]3 1]2 2|19|8]6|5]|3
119l0|511]0 11001 119[7]7]4]0
41|0[1]0]|3 31 4|1(9(4]19]3
5/1]5/9/4]2 S|1[(5]9]|4)|2]
5/3|8[1/9]3 513[8[1]9]3
Original lamge Matrix 3X3 Kernel Convoluted Matrix

Fig. 5.3: A Convolution example

The highlighted region in the original image matrix is the current position of the
3X3 kernel. And the highlighted pixel value of ‘5’ is the place where the kernel
has got anchored in this position. Thus, the result of the convolution aims to
change the value of ‘5’ and in this case has changed it to ‘7’.

CHAPTER 5. PRE PROCESSING

13

In a nutshell, a kernel is a window that is pivoted at the anchor, blocking the
entire image matrix except at its resolution.

Though it seems simple, an actual convolution can perform powerful digital
image processing calculations that result in derivatives, blurs, edge maps etc.
[Sinha, 2010] Thus the major role is in designing the values of the kernel that
best suit the operation. Not all convolutions perform the summation of
multiplied values, as there are some exceptions. One such exception is the
median filter.

Median filter, unlike usual kernels, sorts the values of the pixels and replaces the
anchored pixel with the median value. For example, a 3X3 median filter on the
same example stated above, results as in Fig. 5.4.

219)1)0)1)3 2[9[1]0[1]3
1/9{01511)0 1(9]0]1][1]0
t[1[0[T[0]3 aTiTolitol3
S|1(5]19/4/2 S[1[5]9[4]2
513]8]1191]3 5|3[8[1]9]3

Fig.5.4: Median Filtering

As we can see, the value ‘5’, which is the anchor of the median filter, has been
filtered to ‘1’. The filtered value is achieved by extracting the values visible
through the filter window (1,0,1,0,5,1,0,1,0 in this case), sorting them in
ascending order (0,0,0,0,1,1,1,1,5 in this case) and then replacing the anchor
with the median value of the sorted values. As the filter window traverses over
the entire image, the original image gets smoothened effectively. A median filter
of 4X4 resolution is used to smoothen the Kinect frame data that has previously
been interpolated using Nearest-Neighbour interpolation.

CHAPTER 5. PRE PROCESSING

14

Chapter 6

2D Chamfer Distance Matching

As the depth array has been pre-processed, it is the right time to dive into the
human detection procedure. This stage effectively improves the precision of the
actual human detection process that is employed in the third phase, thereby
reducing the time taken for the actual detection [Xia,L. 2011]. This phase is
further broken down into the sub-routines as discussed in this chapter.

6.1. Canny Edge detection

According to the Xia.L,[2011], the first stage in the human detection process is to
extract the edges that are embedded in the depth array to determine any trace of
human head contour. Canny edge detection has been employed because of its
robustness and its flexibility to adapt to all environments [Wikipedia, 2011].
Though Canny Edge Detection is a sub-routine of this phase, the processes
involved in this edge detection are broken down further.

Developed by John,F.Canny in 1986, Canny Edge Detection is a multi-stage edge
detection algorithm to extract as much edge details as possible from the original
image. The stages in the Canny edge detection are as follows [Kuntz,N. 2006]:

Applying Gaussian blur to the image

Calculating Edge Strength & edge direction at each pixel
Tracing edges

Non maximum suppression

B W=

When performing edge detection, it is necessary to decide the level and accuracy
of edge details to be extracted from the image. Moreover, the decision depends
on the requirements of the project. As the project deals with human head
contour edge detection, through 2D Chamfer Matching, it is not necessary to
have all the edges, especially the weak ones, extracted from the scene. As Sinha
[2010] mentions,

“Do you want to look at a leaf or the entire tree? If it's a tree, get rid of
some detail from the image (like the leaves, twigs, etc.) intentionally”

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

15

Blurring an image plays an important role in ignoring the minor details of the
image. With its mathematically proven abilities, Gaussian has proved itself as one
of the best blurring kernels [Sinha, 2010]. The Gaussian kernel is a 5 X 5 matrix,
as shown in Fig 6.1. Once the minor details in the image have been blurred out,
the actual edge detection starts by evaluating the gradient strength and its
direction at each and every pixel of the image. The gradient strength at a given
point (x, y) is given by the following equation

Gy =V (G2 + Gy?)
(Egn. 6.1)

In Eqn. 6.1, Gx and Gy are the X and Y derivatives of the gradient at the point
being considered [Sinha, 2010]. As discussed earlier in the previous chapter
(Section 5.5), about the basics of convolution, recall that one of the major uses of
convolution kernels is to find the derivatives at a given point. The kernels, also
called as Masks, used for finding the X and Y derivatives are respectively Sobel X
and Sobel Y masks. Sobel is a 3 X 3 convolution matrix and the masks used in this
project are shown in Fig. 6.2.

o+
24 |5 |4 |2
4 12 4
(1/159) |5 |12 |15 |12 |5
4 12 4
2 5 2

Fig. 6.1: The 5X5 Gaussian
Kernel [Kuntz, N. 2006]

110 |1 1|2
210 |2 0 (0 |O
110 |1 -1(-2 -1

Fig. 6.2: The 3X3 Sobel X & Sobel Y
Kernels [Kuntz, N. 2006]

The direction of the gradient at a given point (X, y) is calculated by the
formula in Eqn. 6.2 [Sinha, 2010]

0 = arctan (Gy/ Gx)
(Egn. 6.2)

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

16

Before starting the actual edge detection process, the most important point to
remember, Sinha[2010] says, is that an edge is always perpendicular to the
gradient direction. This makes us clear that gradient intensities change across
the edge and not along the edge.

In the edge detection process, let us assume that we are in the white pixel, as
shown in Fig. 6.3. There are only four possible edge directions viz. along east-
west (yellow pixels), along north-south (green pixels) and along the diagonals
(blue pixels and red pixels). Since we have already calculated the gradient
orientation of the pixel through Sobel masks, the primary task lies in the
segregation of the pixels based on their gradient orientations. This segregation
helps in faster tracing along the edges.

Fig. 6.3: Example Edge
gradients

In the example edge gradient stated in Fig. 6.3, if the gradient orientation is in
the range from 22.5 to 67.5 degrees it would make sense that the gradient
changes from the top left corner pixel to the bottom right pixel and thereby
inferring that an the edge flows along the forward diagonal.

0

- X
v 22.50
¥ 67.52

Fig. 6.4: Edge Orientation & gradient
direction

Now, the central blue pixel is marked as a part of the edge, if the gradient
strength at the pixel’s position is greater than a prescribed value. This value is
termed as the higher threshold in the Canny edge detection process. Thus the
next pixel along this particular edge would be either the top right or the bottom
left one. The index is transferred to that pixel and the check is performed once
again. Similar are the cases when the gradient directions range between, 67.5 to
112.5, 112.5 to 157.5 and 157.5 to 180 or 0- 22.5, except that the pixels indices

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

17

are transferred in accordance with each range. This process of segregation and
checking, called as Non-maximum suppression, results in thin edges as they
might have been broken at some points [Sinha, 2010]. To make them continuous,
a process known as Hysteresis is done with another check value ‘lower
threshold’. The pixels on either side along the edge direction of the edge pixel i.e.
in the directions perpendicular to the gradient direction are checked for the
same gradient direction. Passing the condition along with their gradient
strengths greater than lower threshold makes them the part of the edge.
Consequently, the edge gets grown till there is no change in the image.

6.2. Resolution Pyramid Construction

The importance of edge detection in 2D Chamfer Matching becomes more
authentic as Borgefors.G., [1988] mentions that matching is the prominent
problem in digital image analysis and edges are the most important low level
image features. An effective improvement in the conventional Chamfer Matching
technique was made in 1988 by Borgefors,G.,, by providing a hierarchical
algorithm that builds image pyramids. The idea behind this hierarchical
algorithm is to make several copies of the original edge image in lower
resolutions and build them as a pyramid. The original edge image lays in the base
of the pyramid, while the lower resolution ones stack the pyramid up.

Fig. 6.5: Resolution Pyramid Construction, with the original edge image at
level zero. Black pixels represent an edge while the grey ones represent
vacant ones

Borgefors,G.,[1988] mentions that the original image is converted into its lower
resolution form by a father-son relationship. For every four pixels in the lower
level, there is one pixel in the upper level; thereby the father pixel in the upper

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

18

level has four sons in the level immediately beneath it However, if any one of the
sons is 1, then the father becomes one. Otherwise, if none of the sons are 1, the
father becomes zero. This pyramid construction is christened as ‘OR Pyramid’
[Borgefors,G., 1988] The number of levels in the pyramid grows till the number
of fathers in the upper level becomes one. This is better illustrated in Fig. 6.5
where the black pixels represent 1 and the grey pixels represent 0. Though the
‘OR Pyramid’ was initially constructed, a slight deviation has been adapted in this
project in the pyramid construction. This was because of the undesirable results
that are discussed in the final chapters. The original edge image is resampled to a
lower resolution through the Nearest-Neighbour interpolation. Moreover, the
user can control the number of levels in the pyramid as the parameter has been
exposed in the User Interface. Though larger number of levels provides excellent
matching results, it has been restricted to ‘5’ considering the computational time
involved.

The major significance in building the resolution pyramid is to detect the edge
matches at different scales. The significance is dealt in length in the ‘Template
Preparation’ sub-section.

6.3. Distance Transform

In an edge image, each pixel is given a value that is a measure of its distance from
the nearest edge pixel [Borgefors,S., 1988]. Thus, an edge pixel will have a value
of zero, while its nearest non-edge pixel will have the value of ‘1". Therefore, the
distance transform created is another matrix of same resolution as the image,
however, with values of each pixel’s distance from the nearest edge, rather than
the pixel’s actual value. The most common ways of calculating the Distance
Transform are listed below: [Wikipedia, 2011]

1. Euclidean Distance
2. Manhattan Distance
3. Chessboard Distance

Io|lo|lo|lo|lo|lo|lo
L [| B | [B | B | (]
O]l l=|l=| <[l
IOl (== [l=] 1=l
IOl [l =[] 1= |1
1O]l=|l=|l=|l=|l=[l
o|lo|lo|lo|lo|lo|le
o|lo|lo]lo|lo|lo|lo
G [| B | o [| B | (]
1Ol [IN] IR IN] 1= |1
1] 1= INo| leo| INo| 1= |1
1] 1| IN| INS| INS| 1=+ [1
Io|l=|l=|l=[l=] 1=l
Io|lo|lo|lo|lo|lo|le

Fig. 6.6: The Binary Image and the corresponding distance map on the
right [Wikipedia, 2011]

The Euclidean method, computes the distances by applying the Pythagorean
formula of finding distance between two points [Wikipedia, 2011]. Though this
method provides the accurate results, the computational costs and time involved

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

19

are extremely high. The Manhattan method, computed the distances by simply
finding the absolute differences of the pixels’ coordinates [Wikipedia, 2011]. In
the Chessboard method, the distance is calculated as the greatest of the
coordinate differences between the pixels [Wikipedia 2011].

Borgefors,S., [1988] suggests another novel method called ‘Sequential DT’ which
is termed as ‘Chamfer Algorithm’ as well [Burger,W. and Burge,M., 2008]. The
two local distances in a 3 X 3 neighbourhood are the distance between the
horizontal /vertical neighbours and between diagonal neighbours. The algorithm
needs two Distance Masks each of 3 X 3 size. While one mask is traversed over
the image forward from top-left to bottom-right, the other traverses backwards
from bottom-right to the top-left [Burger,W. and Burge,M., 2008]. In order to
have the closest accuracy of the Euclidean method, Borgefors,S., suggests the
usage of 3-4 DT, where the forward and backward masks have the values as
shown in Fig. 6.7.

W =

- x 3

4 3 4

Fig. 6.7: Forward and Backward masks.
[Burger,W. and Burge,M., 2008].

The DT calculation starts with a map of the same resolution as the image.
However, the every element in the map is initialized with either infinity or zero.
If the pixel at (%, y) of the edge image is an edge, then the corresponding map
value at (x, y) is infinite and is zero if the pixel is not an edge. After this
initialization, the forward mask is traversed. The anchor point of the mask,
denoted as X’ in the Fig. 6.7 gets the minimal of the convoluted nearby map
values corresponding to the mask elements. Once the forward traversal is over,
the backward traversal takes place on the altered distance map with the
backward mask. Borgefors,S.,[1988] suggests to iterate this traversal as long as
the map values in the consecutive forward and backward traversal sets become
equal.

6.4. Diagonaled Iterative DT - A Proposal

A slight modification is done in this project by a process called Diagnoled
Iterative DT. The usual iterative traversal, suggested by Borgefors,S.,[1988]
resulted in an unending infinite loop, thereby worsening the performance of the
system. Consequently, the iterations were removed and when the traversal was
performed only once, the resulting DT map has relatively larger values than the
actual distance. Thus, the iterations were switched on, however with a condition
to stop when the maximum value in the distance map becomes lesser than the
actual diagonal of the image. For example, in an edge image of 640 X 480

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

20

resolution, the maximum possible distance a non-edge pixel can have will not be
greater than 800 (V (6402 + 4802) = 800). Moreover, if the distance value is
greater than 800, it suggests further iterations need to be done to reduce the
distance map values to a meaningful measure. Though the iterations get limited
to 20, at times they go up to 300. However, they are considerably faster than the
original method and have provided meaningful distance map values.

6.5. DT Pyramid

The Distance transform map has to be generated for all levels in the image. This
is because it is the distance map that is going to be matched and not the edge
images. As a result, another pyramid of the same dimensions but with distance
maps is generated. This pyramid is termed as the Distance Transform Pyramid
or simply ‘DT Pyramid’.

6.6. Template Preparation

As the name indicates, Chamfer Matching, is the technique of finding a part of an
edge image that matches perfectly with a reference image. This reference image
is called ‘Template’. In order to detect the human contour from the Kinect depth
frame, it would better to start with the head. Thus a binary template of human
head till the shoulders would be a good one in starting the matching process.
Contour of the entire human body would not be a perfect template, as different
templates cannot be loaded for different postures. Even if it is done, it is going to
be inefficient, because the postures vary widely. However, a head template, as
used by Xia,L. et.al[2011] shown in Fig. 6.8, would be an ideal one. This is
because, whatever be the posture of the human body, the human head remains
the same in shape and in size. However, the size of the head varies from person
to person and also at various distances from the point of capture. Here comes the
predominant significance of the resolution pyramids. When the matching is done
with a single template on a single edge image of original resolution, the
probability of a perfect match is extremely low. However, if the matching process
is done on each level of the pyramid, that has different scales of the original
image, the probability becomes higher. Consequently, the matching process
becomes efficient and faster.

Fig. 6.8: Template used Fig, 6.9: Template
by Xia.L. Et.al [2011] used in the project

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

21

The binary template used in the project, is just a replica of the template used by
Xia.LL et.al[2011]. The template resolution is set as 160 X 120. To help the
calculations in the next phase of 3D model fitting, the number of foreground
pixels in the template image is calculated.

6.7. Chamfer Matching

The actual matching process gets started in this stage. As discussed earlier, the
inputs for the Chamfer Matching are the DT Pyramid and the template image.
Though the Chamfer Matching can be performed using the original resolution
pyramid, using DT Pyramid provides sufficiently better results because of the
localized matching. As a first measure, the size of the template has to be checked
for a lower resolution than the DT being matched. This is just to a simple
checkpoint, to avoid unnecessary results. The template is traversed over the
entire DT map, from top-left to the bottom right. At each position of the template,
the sum of the squares of the DT values of the all the elements coinciding with
the edge pixels in the template is calculated [Borgefors,S., 1988]. When the
number of edge pixels in the template image divides this sum, the root mean
square (R.M.S) value of the match is obtained [Borgefors,S., 1988]. This value is
also known as the ‘Chamfer cost’ [Burger,W. and Burge,M., 2008]. For instance, if
at a given position of the template, all the edges of the template coincide with the
zeros in that region of the distance map, it denotes the perfect match. In other
words, an R.M.S value of zero gives the exact match and the position of the
template on the DT map gives the position of the feature that is being searched
and matched for. This in turn, gives another conclusion that; a position of the
template with extremely large R.M.S value has the worst match. As a result,
lower the R.M.S value better will be the match. The Chamfer Match gets clearer
in the Fig. 6.10.

At the given position (r, s) with respect to the (0,0) of the search DT map, the
R.M.S value is calculated by the formula,

R.M.S (,5) = (1/K) Y. D?(r+i, s+j)
For all (i, j) in Template
0<r<Ws 0<s<Hs
OSi<Wt,OSj<Ht
(Egn. 6.3)

In the Eqn. 6.3, K is the number of foreground pixels in the template image, (r, s)
is the position of the top-left corner of the template with respect to the top-left
corner of the DT Map, (i, j) is the local pixel position of the template and D(r+i,
s+j) is the distance value in the map at (r+i, s+j).

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

22

I Wm |

T

1 1

Ws | Wt IWm - Search Image Width
I IHm - Search Image Height
Wt - Template Width
Ht - Template Height
Ws - Wm - Wt
Hs - Hm-Ht

Fig. 6.10: Chamfer Matching : Template with the Search Image (DT Map)

As the Fig. 6.10 indicates, the number of R.M.S values obtained in one complete
traversal of the template from its start position to the end position would be

Search Area = (Ws-W) X (Hs-Hy)
(Eqn. 6.4)

However, it is not necessary to consider all these values. It is enough, if the first
threshold number of minimum values were considered for further processing.
Moreover, this is the case for a single level in the pyramid. Therefore, the number
of minimum R.M.S values and their corresponding positions would be

Number of Minimum R.M.S values = Threshold X Number of levels in Pyramid
(Egn. 6.5)

The threshold value is exposed in the User Interface for interactive control. The
output of the Chamfer Matching process is thus, the threshold number of regions
with the minimum R.M.S values. All the processes in the second phase have been
summarised in the Fig. 6.11.

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

number
Levels

Determi
of Pyra

Perform Qach level
_B

—_—
.
-

T

Chamfer Match at each
level

Fig. 6.11: Phase 2: 2D Chamfer Matching processes

23

CHAPTER 6. 2-D CHAMFER DISTANCE MATCHING

24

Chapter 7

Virtual 3D Model Fitting

Chamfer Matching technique is just a rough scanning approach. Therefore, the
results of Chamfer Matching cannot be authentic enough to spot the person’s
head. However, the results converge the area of exploration of the image,
thereby increasing the computational costs involved in this phase of virtual 3D
model fitting. As discussed in the previous chapter, the 2D Chamfer Matching
provides a series of regions in the original image where there might be a
presence of human “head-like”[Xia,L., et.al 2011] object. It is, however, not
necessarily be the actual human head. With this ambiguity and to arrive at exact
results Virtual 3D Model Fitting phase is started.

7.1. Calculating Head Parameters

A human head can be roughly estimated as a sphere of radius R. But, the radius is
not constant all over. Thus, the human head possesses two parameters viz. the
radius, along the horizontal axis and the height, along its vertical axis. In order to
generate a Virtual 3D Model of a sphere, the only parameter that is required is
the radius of the sphere.

head height v.s. Depth
120 T T T T T T T

+ data
110 N\ cubic [1

mof |

[5]
[
T

_‘.,__W,_#*,_,,_J__,,, _

(ae]

0 1 1 1 1 1 L o]
1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 7.1: Head Height and Depth relationship
Xia.L., et.al [2011]

CHAPTER 7. VIRTUAL 3-D MODEL FITTING

25

Xia,L., et.al [2011] have conducted a regression test and have arrived at a cubic
equation that gives the relationship between the depth value and the
approximate height of the head, if it were to be present in the position of that
depth value. The graphical result of this relationship is shown in Fig. 7.1.

The cubical equation that fits the graphical curve is computed as

-y =-1.3835X 109 x3 + 1.8435 X 10->x2 - 0.091403 x + 189.38
(Eqn. 7.1)
[Xia,L., 2011]

In Eqn. 7.1, x represents the depth value and y represents the height of the head
at the point where the depth is x. However, both the values are in millimetres. It
should be recalled that, in the Pre-processing Chapter, there was a discussion on
the conversion of the raw disparity values from Kinect to millimetres. Evidently,
it is easier in this phase to retrieve the depth values in millimetres. Substituting
the appropriate depth values at the pixels spotted by the Chamfer Matching in
the equation, the tentative height of the head at these locations can be calculated.
The radius of the head is calculated from the relation,

R=1.33h/2
(Eqn. 7.2)
[Xia,L., 2011]

7.2. Locating Circular Edges

If there happens to be a head in the chamfer spots, then the probability of a
circular edge in the region is high. Since, the radius had already been calculated
in the previous step, it becomes easier to trace the circular edge. However, the
radius for tracing a circular edge in an edge image should be in pixels and not in
millimetres. In order to convert the radius value in pixels, the spatial resolution
of the Kinect sensor needs to be known. As Wikipedia clearly states,

“The horizontal field of the Kinect sensor at the minimum viewing distance of

~0.8m (2.6 ft.) is therefore ~87 cm (34 in), and the vertical field is ~63 cm

(25 in), resulting in a resolution of just over 1.3 mm (0.051 in) per pixel”
[Wikipedia, 2011]

This has made the calculations much straightforward as the following relation
can convert the radius in millimetres to number of pixels,

Radlus (pixels) = (1/1.3) X Radlus (mm)
(Eqn. 7.3)

CHAPTER 7. VIRTUAL 3-D MODEL FITTING

26

With the Chamfer spot as the centre and the Radiuspixels) as the range, the
presence of edges in the region is performed. Mentioned earlier, as the human
need not be a perfect sphere, it becomes quite ideal to search within the strict
range of Radius (pixels)- A minute relaxation is given as a threshold, to arrive at a
circular disc region. The threshold is the number of pixels to reduce the
Radius (pixels) and to increase it as well. The search for an approximately circular
arc is searched in the region as shown in the Fig. 7.2.

Threshold

7

Chamfer
Spot
Fig. 7.2: Thresholded circular region where circular edge is searched

It is not necessary to carry all the chamfer spots to the next stage and the
erroneous spots can be discarded in this stage. Therefore, only the chamfer spots
that gave a certain maximum number of edge count in their thresholded region
are passed to the next stage, while the remaining are discarded. This improves
the efficiency of the final human head detection.

7.3. Virtual Hemisphere Model

As discussed earlier, the only parameter that is required for a hemisphere model
is its radius. To get the exact value of the radius, we make use of the Distance
Transform map that was generated in the previous stage. It is clearly mentioned
that the Distance Transform Map is the numerical representation of the edge
map, with values of each element being the shortest distance from its nearest
edge pixel. Thus, if the value of an element in the DT Map is ‘7’, for instance, it
means the nearest edge pixel from this pixel is somewhere 7’ pixels away.
However, the edge pixel could be in its north or east or west or south or in any
intermediate directions. Similarly, the DT value of the element at the Chamfer
spot gives the exact value of the distance of that corresponding spot from its
circular edge. Thus, the true radius, denoted as R (tue), of the chamfer spot that
has passed the initial threshold is the DT value obtained from the DT Map.

Once the true radius, R (true), is known it is required to build the 2D projection of
the 3D hemisphere model. It becomes quite obvious that, the 2D projection of a
3D hemisphere model results in a perfect semi-circular region. As a result, the

CHAPTER 7. VIRTUAL 3-D MODEL FITTING

27

projection can be visualized as a semi-circular region, with the diameter being
twice the value of true radius, R (wue). For example, the projection of a
hemisphere with R (true) as 4 pixels looks similar to the one in Fig. For a better
visualization, a vertical plane bisects the hemisphere, where the pixels are being
projected.

The hemisphere, once built, is considered for depth calculations in two senses
viz. the true sense and the ideal sense. Calculation of the ideal depth values starts
with an assumption that the hemisphere touches a vertical plane at one end,
where the depth is regarded as zero. The point of contact of the hemisphere with
the vertical plane is going to be the chamfer spot. This gets more precise, when it
is assumed as,

‘“Imagine you put the hemisphere like a mask in front of you face to face, define
the nearest point to you has depth-0, then you can get the depth of any other
points in the mask”

[Personal Communication, Xia,L., 2011]

I—‘l'ru‘c Radius - 4 —l
Fig. 7.3: Hemisphere - Radius (true) 4- Fig. 7.4: Hemisphere - Radius (true)4-
Front View Perspective View

With this assumption the ideal depth values can be calculated using the
relationship between the spherical coordinates and the Cartesian coordinates. In
a spherical coordinate system as shown in Fig. 7.7 any point in a hemisphere is
represented by the tuple [r, 6, ¢], where r is the radius of the sphere, 0 is the
azimuth angle in the x-y plane measured from positive x-axis and ¢ is the polar
angle from the positive z-axis.

CHAPTER 7. VIRTUAL 3-D MODEL FITTING

Fig. 7.5: Hemisphere - Radius (true) 4- Fig. 7.6: Hemisphere - Radius (true) 4-
Planar projection - Front View Planar projection - Front View

The Cartesian coordinates x, y and z are calculated based on the following
conversion, [Weisstein,E., 2011]

x=rcosfsing
y =rsinfsingd
z=rcos é. (Eqn. 7.4)

]

V

Fig. 7.7: The spherical coordinate system.
{Weisstein,E., 2011]

CHAPTER 7. VIRTUAL 3-D MODEL FITTING

29

Based on the assumption, as shown in the Fig. 7.8 the black dot is the pixel that
touches the vertical plane. The depth values are nothing but the distances of
every projected pixel on a plane that bisects the hemisphere, from the plane that
touches the hemisphere at the black dot.

T

Fig. 7.8: Ideal Depth calculation assumption

Mathematically, it is the absolute difference between the x coordinate value of
the Cartesian coordinate system and the true radius, R (true). As we know the
spherical coordinate tuple, at every point in the hemisphere model being
projected, the x values can very easily be calculated based on the above
equations. Thus the ideal depth values can be calculated for the projected pixels.

Since, the actual depth values are already known from the pre-processing stage
itself, getting the real depth values for the projected pixels is not a big task.
Further, the real depth values are normalized based on the equation,

Depth_Normalized (i, j) = Depth (i, j) - min. Depth in the semi-circular region
For all i, j in the semi-circular region

(Egqn. 7.5)
[Xia,L,et.al 2011]

At the end of this stage we have two sets of values viz. the normalized real depth
values and the ideal depth values of the region, where the hemisphere has been
placed with its centre as the Chamfer Spot and the true radius, R (true).

7.4. Fitting the Virtual Model

It should be noted that, if this Chamfer Spot were to be a real human head, the
normalized real depth values calculated, were not going to get deviated much

CHAPTER 7. VIRTUAL 3-D MODEL FITTING

30

from the ideal depth values. In other words, the deviation of the real hemisphere
model from the ideal hemisphere model is going to be very less. In a nutshell,
lesser the deviation more is the chance that the chamfer spot is a head. Based on
this logic, the idea behind the fitting stage is as simple as calculating the
difference between corresponding values in the normalized real depth and the
ideal sets. This is something like, placing the ideal hemisphere on the human
head and calculating the difference in depth values of their corresponding pixels.
This gets clearer in the Fig.

Fig. 7.9: The human head model Fig. 7.10: The hemisphere model placed on the head

=
s e

Fig. 7.11: Depth difference calculation. Fig. 7.12: The side view
Front View

CHAPTER 7. VIRTUAL 3-D MODEL FITTING

31

To increase the accuracy, the square error between the normalized real depth
values i.e. the depth of the human head, if it were a head and the real depth
values of the hemisphere model is calculated as

Err =) | normalized_real_depth (j, j) - ideal_depth (j, j) |?

(Egqn. 7.6)
[Xia, L., et.al. 2011]

As we already have threshold number of chamfer spots, we get the same number
of error values. The chamfer spot with the lowest error value is confirmed to be
the human head. Selecting the first ‘n’ number of chamfer regions that have the
minimal error values can increase the number of persons detected.

CHAPTER 7. VIRTUAL 3-D MODEL FITTING

32

Chapter 8
Extracting

The final stage in the human detection is based on a simple logic that, if the depth
value at the human head is ‘d’, for instance, the depth value of the entire human
body is not going to get deviated from the value ‘d’ much. As a result, all the
regions that have the depth value similar to the depth of the human head are
added to the region, with the chamfer spot as the seed. The deviation of the
depth values from the seed value is controlled by the threshold value. However,
if a person stands on the floor and if it gets covered in the frame, the floor areas
have the same depth as that of the human legs. In order to delineate the planar
floors from the human leg, and any other parallel surfaces like table, the planar
filter F is applied, with its anchor at either the third or the fourth element.

F=[1,1,1,-1,-1,-1]T
[Xia,L., et.al, 2011]

Applying this filter helps in extracting the edges between the human contour and
the planar floor areas. Thus, after applying the filter, Canny Edge detection is
applied once again, however only at areas where the planar floors are. Applying
the canny edge detector on the entire image produces a lot of noise. In order to
resolve this issue, the median filter is once again applied to the extracted edges
after applying the filter. The edge image, after smoothing with the median filter,
is combined with the initial edge image. Thus the extracting phase has the
chamfer spots with the minimal error values and the combined edge image. With
the chamfer spot as the seed location, the regions with the depth value similar to
the seed value are added to the seed location, thereby growing the region. The
locations that are extracted are highlighted on a plain black image, giving a black
and white extracted output of the human in the scene. This results in good
extraction results. However, planar filter application has certain problems that
are discussed in the Chapter 9.

CHAPTER 8. EXTRACTING

33

Chapter 9

Results & Discussion

9.1. Technical Specifications:

The following are the technical specifications of the machine on which the
project was carried out:

Processor: Intel Corei7
Clock Speed: 2.2 GHz
Number of Processors: 1
Number of Cores: 4
Cache: 6MB

Memory: 4GB

9.2. Test Environments

The project was carried out and tested in two environments. However, both
were indoor environments.

9.3. Close Plane Environment

To get lower false positive ad false negative rates, the distance between the
Kinect and the farthest plane it could capture was limited to 202 centimetres.
This was intentionally done, so that the human figures can interact with the
Kinect sensor within the range where Kinect sensor’s depth range is effective.
The sensor was also placed at a height of approximately 5% feet from the
ground. No importance was given to the lighting conditions as the sensor works
purely on infrared lasers. However, to aid the RGB camera, lighting was not
ignored completely. Starting off with very simple postures, the test was carried
out regressively with extreme human postures. The tests carried out in this
environment is split into four categories:

One person - without an obstacle
One person - with an obstacle
Two persons - without an obstacle
Two persons - with an obstacle

B e

Also, the environment had very less number of distractions other than the
human figures involved. As mentioned earlier, this was done to make sure that
most of the detections are positive. Timers were used to calculate the time take
to process each frame. Also, the time taken by the Chamfer Matching in each level

CHAPTER 9. RESULTS AND DISCUSSION

34

of the pyramid was also taken. Chamfer matching was the only process that
consumed most of the time in the detection process. Simple cardboard boxes
were used as obstacles. The main aim of using the obstacles was to provide
additional stronger edges to the environment. They were placed as close as
possible to the human figures and sometimes supported by hands, to check
whether the extraction includes the obstacles as well in the output. While
engaging two human figures, tests were carried out with the figures interacting
with each other i.e. having some sort of physical contact and also without
interaction.

Fig. 9.1: Close Plane Environment: The farthest plane from Kinect is only 202 cm

The Figs 9.2 to 9.6 show the detection and extraction results carried out in the
Close plane environment. The results were extremely satisfactory as the
contours extracted were precise even in the extreme postures. Though some of
the postures failed miserably, the best detection results have been shown here.
The poor results will be discussed further. It should however, be mentioned that,
the processing speed of a single frame ranged from a minimum of 22 seconds to
a maximum of 32 seconds, resulting in an average of 27 seconds per frame. It
was also to be noted that, a usual chamfer matching technique takes 60 - 120
seconds, for matching a template of size 257 X 257 over the search image of size
600 X 824 [Experienceopencv, 2011]. Also, the time taken by the chamfer
matching in each level of the pyramid was noted and were found to be on an
average of 13, 8, 5 and 2 seconds respectively from level zero to level four. The

CHAPTER 9. RESULTS AND DISCUSSION

35

tests were carried out at different threshold levels and at lower levels of
Pyramid. However, the best results obtained in this “Close Plane” test
environment had four levels of the pyramid, with the depth threshold to be 25.
The high and low thresholds for the Canny Edge detection were tried with
several combinations, finally resulting in a best combination of 3.0 and 4.0
respectively.

Fig. 9.2: Close Plane Environment with one person and no
obstacle. Simple postures

CHAPTER 9. RESULTS AND DISCUSSION

Fig. 9.3: Close Plane environment with one person and no
obstacle. Extreme postures

36

CHAPTER 9. RESULTS AND DISCUSSION

-
=

LN

Fig. 9.4: Close Plane environment with one person and
with an obstacle

37

CHAPTER 9. RESULTS AND DISCUSSION

38

U\
l@ D

Fig. 9.5: Close Plane environment with two persons and
without obstacle

CHAPTER 9. RESULTS AND DISCUSSION

Fig. 9.6: Close Plane environment with two persons and with
an obstacle

39

CHAPTER 9. RESULTS AND DISCUSSION

40

9.4. Far Plane Environment:

As the results were quite satisfactory in the “Close Plane” environment, the
experiment was shifted to test in “Far Plane” environment. The living lounge
was chosen as it had enough disturbances in the scene and had the far plane at a
distance of 6m from the Kinect. Markers till 3m from the Kinect sensor were
placed to mark the end of a metre. The Kinect sensor was placed in the same
height, like the “Close Plane” environment, of 5% feet from the ground plane. The
obstacles used in this environment were much similar to those used in the
previous environment. A large photo frame and stacked cartons were used as
obstacles.

Fig. 9.7: Far Plane Environment. The markers are placed at every metre
from Kinect

CHAPTER 9. RESULTS AND DISCUSSION

Fig. 9.8: Far Plane Environment with one person and no
obstacle

41

CHAPTER 9. RESULTS AND DISCUSSION

Fig. 9.9: Far Plane Environment with one person and
obstacles

42

CHAPTER 9. RESULTS AND DISCUSSION

l

Fig. 9.10: Far Plane environment with two persons and with no
obstacles

43

CHAPTER 9. RESULTS AND DISCUSSION

i

Fig. 9.11: Far Plane Environment with two persons and with
obstacles

44

CHAPTER 9. RESULTS AND DISCUSSION

45

Figs. 9.8 to 9.11 show the results in Far plane environment. The results obtained
were extremely satisfactory, though the processing time had the same average of
27.5 seconds. It was also inferred that, the best range within which the algorithm
gives the best results is between 1m and 2m. In the range of 2m to 3m, the
results became much noisy and were capable of capturing only one person. In
some cases, the results become exactly opposite as shown in Fig. 9.13. Later it
was discovered that it was because of the template like regions that had
dominated the human head in the scene. In some cases, the Canny threshold
values had to be decreased to reduce the weak edges in the disturbed
environment. As the human figures, move away from the Kinect, the probability
of getting exact detection results becomes extremely low. In case of the scenes
involving two persons, the plane of detection of one human figure can differ from
zero difference to a maximum of 0.75m. In some cases the planar regions were
also getting detected. After analysing all these results, the following inferences
have been made.

1. The best range of human detection, in both one person and two
persons environment is found to be 1.5m to 2.1m from the Kinect
sensor

2. The Canny edge threshold values must be as low as possible in any far
plane and highly disturbed environment

3. The lesser the number of levels in the Pyramid, lesser is the accuracy
of the detection results.

4. The detection gets poorer as the person moves away from the Kinect,
and is not at all detected beyond 3m in some cases

5. The chance of the head template getting matched with the
environments gets higher, if the environment is cluttered and filled
with many objects

6. Best and consistent results are obtained, in “Close Plane”
environment.

7. The consistency of the detection results in the “Close Plane” and the
“Far Plane” environments are found to be 72% and 65% respectively

8. Some of the erroneous detection results were found to be
a. None of the persons getting detected
b. Areas other than human figure getting extracted
c. Some parts of the human figures not getting extracted
d. Exactly opposite detection

9. Detections get improper when the person’s head gets occluded with
another person’s head.

The erroneous detections can be seen in Fig.9.12 and 9.13.

CHAPTER 9. RESULTS AND DISCUSSION

Fig. 9.12: Erroneous Detections

46

CHAPTER 9. RESULTS AND DISCUSSION

Fig 9.13: Erroneous Detections

47

CHAPTER 9. RESULTS AND DISCUSSION

48

Chapter 10

Future Work and Conclusion

The major improvement that needs to be done in the project is increasing the
frame-processing rate. Though the number of pyramid levels increase, the
processing should be improved and the detection should happen in as low as 0.4
frame/second. This will be achieved by implementing some calculations in GPU.
Further, attention needs to be focused in the OpenGL drawing routine because
the frames are drawn in the immediate mode. Efforts will be taken to implement
the retained mode. Also the consistency of the human detection has to be
improved, especially in far plane environment. Performing as many numbers of
tests as possible in different locations and thereby achieving the relationship
between the detection and the threshold values, the consistency can be
improved.

Similar to head detection, other body part detectors have to be implemented, so
that even if the person’s head is not in the scene, the human contour captured in
the scene could be detected. By thoroughly studying the square error values
obtained as a result of the 3D Model fitting, the detection of the number of
persons in the scene can be automated. In this project, however, only based on
the user input, the maximum number of heads to be considered is decided.

As a result, the human detection and extraction from the Kinect depth images
have been successfully implemented using C++ and OpenGL. Also, variety of tests
has been carried out to study the behaviour of the detection algorithm. A new
proposal on the modification of Distance Transform has been made. Further, this
algorithm has proved to be faster than the usual iterative ones. The erroneous
detections have also been analysed and the reasons for false detections were also
found.

CHAPTER 10. FUTURE WORK AND CONCLUSION

49

Bibliography

Burger,W. and BurgeM., 2008. Digital image processing. An algorithmic
introduction using Java. New York: Springer

Crock,N., 2 March 2011. Kinect Depth vs. Actual Distance. Mathnathan. [Accessed:
8 August 2011]

Dalal,N., and Trigges,B., 2005. Histograms of oriented gradients for human
detection. CVPR, 20-26 June 2005, San Diego, USA. Available from:
http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf =~ [Accessed: 8
August 2011]

Fisher,M., 2010. Kinect. Stanford:Stanford University. Available from:
http://graphics.stanford.edu/~mdfisher/Kinect.html [Accessed: 8 August 2011]
Ganapathi,V., Plagemann,C., Koller,D. and Thrun,S., Real-time motion capture
using single time-of-flight camera. ,CVPR. Available from:
http://ai.stanford.edu/~koller/Papers/Ganapathi+al:CVPR10.pdf [Accessed: 8
August 2011]

Herrera,D., Kannala,]., Heikkila,]., 2011. Accurate and practical calibration of a
depth and color camera pair. Oulu. Available from
http://www.ee.oulu.fi/~dherrera/kinect/2011-depth_calibration.pdf [Accessed:
8 June 2011]

Ikemura,S. and Fujiyoshi,H. 2011. Real-time human detection using relational
depth similarity features, ACCV. Available from:
http://www.vision.cs.chubu.ac.jp/04 /pdf/PIA64.pdf [Accessed: 8 August 2011]

Kuntz,N., 2006. Canny Tutorial. Available from:
http://www.pages.drexel.edu/~nk752 /Research/cannyTut2.html [Accessed: 8
June 2011]

Levi,K. and Weiss,Y., 2004. Learning object detection from a small number of
examples: the importance of good features. Computer Vision and Pattern
recognition. Available from:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.2657&rep=rep1&t
ype=pdf [Accessed: 8 August 2011]

Lowe,DG., 1999. Object recognition from local scale-invariant features.
International Conference on computer vision,1999. Available from:
http://citeseer.ist.psu.edu/viewdoc/download:jsessionid =
8363255D9476F7D11ABA1FAB02667F337d0i=10.1.1.218&rep=rep1&type= pdf
[Accessed: 8 August 2011]

BIBLIOGRAPHY

50

Niles,N.,, 3 May 2011. 3D point cloud from Kinect images. OpenCV-useres.
[Accessed: 8 August 2011]

Sabata,B., Arman,F. and Aggarwal,].K, 1993. Segmentation of 3D range images
using pyramidal data structures, CVGIP:Image Understangins. Available from:
http://cvrc.ece.utexas.edu/aggarwaljk/Publications/B.%Z20Sabata,%20F.%20Ar
man%20Segmentation%200f%203d%20range%20images.pdf [Accessed: 8
August 2011]

Schramm,M., 19 June 2010. Kinect: The company behind the tech explains how it
works. Virginia:AOL. Available from:
http://www.joystigq.com/2010/06/19 /kinect-how-it-works-from-the-company-

behind-the-tech/ [Accessed: 8 Aug 2011]

Sinha,U., 9 August 2010. Convolutions. Al Shack. Available from:
sinha.utkarsh1990@gmail.com. [Accessed: 8 August 2011]

Ten,S., 30 January 2010. How Kinect depth sensor works - stereo triangulation?
Mirror Image Mostly AR and Stuff. [Accessed 15 Aug 2011]

Weisstein,E., 2011. Spherical Coordinates. Mathworld - a wolfram web resource.
Wolfram Research. Available from :
http://mathworld.wolfram.com/SphericalCoordinates.html [Accessed” 8 August
2011]

WIKIPEDIA, 2011a. Canny Edge detector [online]. Wikimedia Foundation, Inc.
Available from: http://en.wikipedia.org/wiki/Canny edge detector. [Accessed: 8
August 2011]

WIKIPEDIA. 2011b. Taxicab geometry [online]. Wikimedia Foundation, Inc.
Available from: http://en.wikipedia.org/wiki/Taxicab_geometry [Accessed: 8
August 2011]

WIKIPEDIA. 2011c. Chebyshev distance [online]. Wikimedia Foundation, Inc.
Available from: http://en.wikipedia.org/wiki/Chessboard_distance [Accessed 8
August 2011]

WIKIPEDIA. 2011d. Distance Transform [online]. Wikimedia Foundation, Inc.
Available from: http://en.wikipedia.org/wiki/Distance_transform [Accessed 8
August 2011]

Xia,L., Chen,C., Aggarwal,].K,, 2011. Human detection using depth information by
Kinect. Workshop of aerial video processing in conjunction with CVPR , June 2011
Colorado, USA. Available from:
http://cvrc.ece.utexas.edu/Publications/HAU3D11 Xia.pdf [Accessed: 8 August
2011]

BIBLIOGRAPHY

51

Yang,HD. And Lee,S.W., 2007. Reconstruction of 3D human body pose from
stereo image sequences based on top-down learning, Pattern Recognition.

Available from: http://image.korea.ac.kr/publication/journal /07 _04.pdf
[Accessed: 8 August 2011]

Yet Another blogger, 31 December 2010. Chamfer Matching. OpenCV Adventure.
[Accessed: 8 August 2011]

BIBLIOGRAPHY

52

Class Diagram Overview

Appendix

Convert
1
> Circle
HemisphereModel |, LocateHead |+
>
ReSample LevelValues
-«
- | »l I 3 — 13 —
P . CannyEdgeDetect| Pyramid
2 »
|| ChamferSpot _
g PlanarFilter
L >
IdealDepthParams < ChamferMatch [+
-
PreparePixels <
-«
>
DistanceTransform
TrackK
1 PixelParams
[) *
PrepareTemplate > P
Extract
I3
1
QKinect > RGBWindow
1 3

MainWindow

APPENDIX

53

