
1

SPHERICAL HARMONIC

BASED LIGHTING

MASTER'S THESIS

RAVI ACHARYA

NCCA BOURNEMOUTH UNIVERSITY

AUGUST 2011

2

CONTENTS

List of figures 3

1.0 Introduction 4

2.0 Previous Work 5

3.0 Technical Background 7

4.0 Implementation 11

 4.1 shSample 12

 4.2 shCollect 12

 4.3 shConstruct 13

 4.4 SHarmonics 16

 4.5 hdrManip 18

 4.6 shaderProgram 19

 4.7 GLWin 20

 4.8 Main 21

 4.9 SH Creation and Display 21

5.0 Results 23

6.0 Conclusion 26

7.0 References 27

8.0 User's Guide 29

3

LIST OF FIGURES

2.1 Lighting solution in Killzone 2 5

2.2 Diffuse lighting in Halo 3 6

3.1 Spherical Function Projection and Reconstruction 7

4.1 Class diagram of implemented system 11

4.2 Example Render 22

5.1 Bunny rendered using 10 samples 23

5.2 Bunny rendered using 100 samples 23

5.3 Bunny rendered using 1000 samples 24

5.4 Bunny rendered using 10000 samples 24

5.5 Bunny rendered with first order harmonics 25

5.6 Bunny rendered at 10000 samples with 2 bands 25

4

1.0 Introduction

This thesis illustrates a method that may be used for the lighting of an object through the use

of spherical harmonics.

The aim of this thesis is to render an object using spherical harmonics based lighting

techniques. This requires an understanding of the theory and the mathematics behind the

spherical harmonics and how they are described and used.

The first section illustrates previous works into rendering objects using spherical harmonics.

The reasons why each system was created is ascertained, and the advantages to such a

system are speculated.

The second section contains the technical background for this project, describing the maths

and the theory behind the spherical harmonics used, as well as describing their derivation

from their source, the Legendre Polynomials.

The third section describes the design of the system created, the details of implementation,

along with the issues encountered and their resolution.

The fourth section contains the results of this project, along with views of different lighting

sources and scenes.

The fifth section concludes the project, discussing future work and the current objectives of

the project.

The appendix contains guidelines on how to operate the program.

5

2.0 Previous work

The initial motivation for this project was an interest in the fast indirect global illumination

that can be produced in Pixar Renderman Pro Server using its spherical harmonic support.

This technique was used by Weta Digital in production for Avatar (2009, James Cameron,

20th Century Fox), in order to gather lighting directional information, and calculate

occlusion "efficiently and quickly" [SAINDON] on a large number of objects, most notably

the large forests rendered. Upon further research into the method used, it became clear that

as opposed to using a library to recreate the technique, more would be gained from

understanding the technique itself and how it can be used to greatest effect.

Spherical harmonics are very efficient data structures, and the greatest efficiency is required

in video games, where cycles are at a premium, yet image quality still remains sought after.

As such, the focus of the project moved to the exploration of the uses of spherical harmonics

in games such as Killzone 2 and Halo 3.

Spherical harmonics were used in Killzone 2 to calculate directional ambient lighting by

storing this information in second order harmonics [GUERILLA07]. These light probes were

placed in the levels by artists, and then presampled and stored. This is a Precomputed

Radiance Transfer method (PRT) which allowed for fast harmonic sample return, allowing

fast generation of diffuse lightsources. This was introduced by Peter-Pike Sloan et al, as a

system for real-time global illumination [SLOAN02].

Figure 2.1: The lighting solution in Killzone 2 incorporates second order spherical harmonics

allowing for fast ambient lighting. [IGNKZ2]

6

Third order spherical harmonics were again utilised in Halo 3 for diffuse lighting, with

lightmaps encoded as irradiance volumes, which were calculated per "cell" and then

interpolated between [CHEN08]. This resulted in an efficient dynamic diffuse lighting

solution. This results in a somewhat dynamic SH lighting solution, visible in figure 2.2.

Spherical harmonics remain immovable, and are generally used for static objects and

environments.

Spherical harmonics have also been implemented in the Unreal engine, as a PRT method for

a global illumination solver. Specifically, precomputed spherical harmonic sample volumes

are used to calculate ambient occlusion, environment lighting, interreflections, and indirect

lighting for dynamic objects. This was used for both occlusion and environment lighting in

Mirror's Edge, pre-baked using Autodesk's "Beast" lighting engine [WFIRE11].

The upcoming Battlefield 3 is to include dynamic radiosity by prebaking spherical

harmonics samples via a series of irradiance volumes similar to Halo 3 [EINARSS10]. A

system called 'Enlighten' is being used in Dice's Frostbite engine in order to light dynamic

environments by allowing for groups of objects to be processed independently, causing the

radiosity to be a local problem as opposed to a global operation.

The motivation for this project is to understand spherical harmonics as a system and to then

create an implementation that allows the lighting of an object through spherical harmonics

coefficients, created in C++ and OpenGL.

Figure 2.2: The directional diffuse lighting in Halo 3 is sampled in third order harmonics. Image

courtesy of Hao Chen. [CHEN08]

7

3.0 Technical Background

Spherical harmonics are widely used in physics, but have recently been used in a number of

ways in computer graphics, generally as a method of lighting objects. 'Spherical harmonics'

is a term given to the angular portion of the solution to Pierre-Simon Laplace's equation.

Spherical harmonics (SH) is a method of storing data. A spherical function can be stored in

spherical harmonics for only very small memory cost, which makes them useful for

representing information which might otherwise be cumbersome to handle, such as

environment maps. They have been used to represent light incidence from various

directions, as storing such a map in spherical harmonics requires only a few floating points.

Ramamoorthi et al [RAMAMOOR01] introduced a method to calculate the rendering of

diffuse objects under distant lighting utilising spherical harmonics. It was shown that only

nine coefficients are required to render illumination with an average error in the recreated

output of approximately 1%. These nine parameters can be found in the first two orders of

harmonics, as Lambertian bidirectional reflectance distribution function (BRDF) attenuates

non-diffuse light. As the lighting information is simplified as if it were affected by a low

pass filter, the amount of input data required to perform the calculation is minimised,

resulting in fewer lookups to a smaller data set. This results in a speed that allows for

interactive lighting presented in a paper by Sloan [SLOAN02].

Spherical harmonics function as a data structure. The input light map that is used is encoded

into a data structure. This is a process similar to a Fourier transform, with the image

decomposed into a spherical representation. This representation is then used to create

spherical harmonic basis functions with which coefficients can be calculated. Schönefeld

describes the method used to project a function and its reconstruction, shown in Figure 3.1.

Figure 3.1: Projection of polynomial into Legendre coefficients (left) and the reconstruction of the

original function by summing scaled basis functions (right). Image courtesy of Volker Schönefeld,

[SCHONEFELD05]

8

The reconstruction can be defined as:

where is the given function, is the Legendre coefficient and is the basis function. In

order to calculate the coefficients, a number of samples (based off the input map) are

required which will form the basis for the spherical harmonic. To return a reconstructed

function, the basis functions are individually scaled, and then summed, which results in a

relatively accurate approximation of the input function.

The spherical harmonic basis functions are derived from Legendre polynomials. These

Legendre polynomials are orthonormal which gives them some useful properties. These

basis functions are based on associated Legendre polynomials, represented by
 . The

function requires two arguments, and . In this case, is the index of the band, and is a

positive integer between 0 and . When the associated Legendre polynomials

degenerate into unassociated polynomials which once again return complex numbers, and

thus cannot be computed easily. Within a band the polynomials are orthogonal with

respect to a constant . Between bands they are still orthogonal but with respect to a

different constant . The actual solution to the Legendre polynomials requires some complex

mathematics which is not easy to compute [GREEN03,p10]. As a result, recursive definitions

are used, called recurrence relations, which define a later polynomial based on a solution to a

prior polynomial in the series.

There are three relevant recurrence relations:

 (2)

 (3)

 (4)

which are used when the associated Legendre polynomials are to be used in a computer

application, since it is possible for them to be calculated and return less errors than other

implementations [SCHONEFELD05,p5]. To evaluate a given value
 , the first equation

(2) is used. This results in a solution where . This is the primary equation as no prior

terms are required. The second function, (3) allows the number of the band to be increased,

and it requires the solution to (2) to evaluate.

(1)

9

The third function (4) is the main term of recurrence which requires (2) and (3) to be

calculated, and generated a higher band from the prior terms.

The order in which these are used is as follows:

1. To evaluate a given function
 , (2) is used to generate the highest

 possible.

2. If this is not true, , and (3) is used to raise the band until the required is met.

3. (3) is performed once, and (4) is iterated until the answer is found [GREEN03,p10],

[SCHONEFELD05,p5].

Samples from the input map are required in order for the SH function to have meaning, and

thus they are collected and used when projecting the basis functions. A number of samples

are taken from the input map, based on the accuracy of the representation required. Robin

Green commented that stratified sampling is of sufficient accuracy for basic spherical

harmonic lighting [GREEN03]. By collecting a random sample from each stratum, stratified

sampling ensures a low sample variance, which results in a more even representation of the

input data. These samples are used to gather light intensity values, which are then stored as

a set of spherical co-ordinates as the angles theta and phi

The SH basis functions are created from the Legendre polynomials. The samples created

earlier are used as arguments to the function, as well as and . However, in order to

generate the SH functions, and are redefined. remains a positive integer, but can

now describe a signed integer between and . As such the SH basis function's arguments

can be shown as:

 where R+

, and

Green defines a sequence , which flattens
 into 1D, which allows indexing

[GREEN03,p12]:

 (5)

where .This creates a 1D index of , which enables much easier storage and

lookup of the SH basis functions on a computer, and can be used where and exist in this

context. The SH basis function itself is indexed by (the sample) and by and .

It can be represented as follows:

 (6)

where represents the SH function and is an associated Legendre polynomial. is a

scaling factor used to normalise the functions with respect to , and is defined as follows:

10

 (7)

Green shows a method for calculating the scaling factor and comments that it is often

faster to precalculate the factorials used in the scaling function, as only 33 factorials are ever

required, and calculating factorials is a relatively slow process. Such a function increases

efficiency.

 can then be multiplied by the light intensity from that particular direction . Green

derived an equation from the Monte Carlo integrator [GREEN03,p16] which describes this

light integration,

in which

 is the probability function, is the lighting contribution from the input

lightmap, and is the pre-calculated array of unbiased samples indexed by (5) containing

 co-ordinates.
 can also be indexed into 1D series by (5) allowing easier computation.

This technique was also used by Ramamoorthi et al [SCHOLEFELD,p15] in order to

calculate the light function, which combines the spherical harmonics and the input light and

returns a coefficient which can be used to render a scene.

Once the coefficients have been calculated, the image can then be reconstructed as described

by Ramamoorthi et al:

 (9)

where is the diffuse lighting term, and are precalculated coefficients given by

Ramamoorthi et al as , and
 are the nine lighting coefficients from third order

harmonics. The image is then composed of a sum of spherical harmonic basis functions

weighted by the scaling provided by the coefficients
 . As these basis functions depend on

the surface normal for illumination and are defined over the entire object, it is possible to

show the object from any viewpoint without having to recalculate the coefficients, making

the process efficient [RAMAMOOR01,p3].

11

4.0 Implementation

The application developed contains the framework to allow the rendering of an object light

by spherical harmonics based light map.

The application class diagram is below.

shSample exists to store the variables required by a stratified sample. A structure is

declared, where a number of samples become known as a sampleCollection via a struct.

shSampleCollect contains a number of samples which it creates through the method

genSamples. A sample collection exists in shConstruct, which houses the spherical

harmonics functions and a shSampleCollect. SHarmonics contains the coefficients and

variables that are required by the shader that are calculated by shConstruct, along with

methods to create them. SHarmonics also contains methods to draw and handle input. It

Figure 4.1 Class diagram of implemented system.

12

contains a number of image files stored in hdrManips and models loaded via ngl::Obj to

draw the selected item.

The application developed has a number of classes which allows the creation of spherical

harmonics and the retrieval of the coefficients for use at render time.

4.1 shSample

shSample contains a direction vector 'm_dirVector', a spherical vector 'm_sphVector' and a

coefficient m_coefficient pointer. The direction vector used is included from the ngl Vector

library as this provides all the methods required, such as normalisation and a container for

the x,y and z variables.

The spherical vector consisting of theta and phi only requires two variables, but these can

safely be stored in the m_x and m_y members of ngl::Vector, with m_y simply being set to 1.

This is set in shSampleCollection.cpp on line 44:

44 sample->m_sphVector = ngl::Vector(theta,phi,1.0);

The double m_coefficient is used to store the basis function evaluation for that sample. This

class is used in shSampleCollection to represent a sample.

4.2 shSampleCollect

shSampleCollect handles the creation, storage and access of the stratified samples. It

contains a sampleCollection called m_samples which is a std::vector of type shSample. This

allows quick lookup of samples by shConstruct which will use them. m_numBands

describes the number of bands in the collection, and m_numSamples the number of samples

to collect.

constructor

The constructor shCollect() takes no arguments, and only sets m_numBands to the desired

number. No further initialisation is required.

genSamples(int nSamples)

This method generates a series of stratified samples as outlined in [GREEN03]. It takes the

number of samples required as an integer argument. A pseudocode breakdown of the

method follows:

{
 m_numsamples set to input number
 numreqsamples set
 1/n probability based off numreqsamples
 for 0 to numreqsamples
 {
 for 0 to numreqsamples
 {
 gen random x based off 1/n
 gen random y based off 1/n

13

 set theta based off x
 set phi based off y
 create new sample
 set sample.sphvector variables based off theta and phi
 convert sphvector to dirvector
 set sample.dirvector based on sphvector
 compute coefficients based on sample
 add sample to sample list
 }
 }
}

This results in a number of stratified samples stored in the sampleCollection m_samples.

getNumBands()

This method requires no arguments and returns the number of samples in the sample

collection as an integer value. This is used in shCollect::projectFunction to reconstruct the

amount of samples on which projectFunction will operate.

getSamples()

This method requires no arguments and returns m_samples as a sampleCollection. It is

called from shConstruct::projectFunction to gain the sample collection in a local context,

where it is used to gather light information from the input map based on the sample.

4.3 shConstruct

shConstruct contains the methods required to evaluate the SH basis functions as well as

project spherical functions. It contains m_sampler, an instance of the shSampleCollect class,

and uses this to create samples, evaluate their coefficients and store them. The scaled

coefficients after function projection are stored in m_coefficients during projectFunction().

constructor

The constructor shConstruct() requires an integer argument of the number of samples

required. This then calls genSamples on m_sampler. This creates the requested number of

samples, evaluates them and stores them in the m_sample array in m_sampler.

evalLegendre(int l, int m, double x)

This method requires three arguments, , and , where is the band, the index, and

the argument to
 . This method is an implementation of the three recurrence relation

(2), (3) and (4). A pseudocode breakdown of the method follows:

{
 pmm set to 1
 if m>0
 {
 somx2 set to root(10x^2)
 factorial set to 1
 until band number is met
 {
 pmm * pmm(-factorial)*somx2
 factorial + 2
 }

14

 if l equals m
 {
 pmmp1 = x((band*2)+1)*pmm
 }
 if l equals m+1
 {
 pll = 0
 until band+2 is met
 {
 pll=((2*currbandnum-1)*x*pmmp1-(currbandnum+numbands-
 1)*pmm)/bandsremaining
 }
 pmm set to pmmp1
 pmmp1 set to pll
 }
 return pll
}

This method evaluates the Legendre polynomial using the recurring relations stated above.

The order of usage of these relations was stated both by Green [GREEN03,p10] and

Schönefeld, [SCHONEFELD05,p5]. This function is called by shConstruct::evalSample(), and

thus is called for every sample during shSampleCollect::genSamples.

evalScaleFactor(int l, int m)

This method requires two arguments, the number of the band as , and the index as . It is

an implementation of (6). The function is calculated and then rooted before return. It makes

two calls to shConstruct ::evalFactorial at and at . A pseudocode breakdown

of this method follows:

{
 temp = ((2*l+1)*(factorial(l-m)))
 temp /= (4*pi*(factorial(l+m))
 root temp
 return temp
}

This calculates
 as shown in (7). It is called in shConstruct::evalSample() in order to

evaluate the scaling factor for the SH basis function
 and so is called for every

sample.

evalSample(int l, int m, double theta, double phi)

This method requires four arguments, as the index, the band number, and the

spherical coordinates of the sample. It returns a coefficient for the sample as a double, which

is stored in the sample itself as m_coefficient. The evaluation takes place once, either for the

case where , , or for every other case, where . This is an implementation of

(6). A pseudocode breakdown of this method follows:

{
 if m=0
 {
 return root2 * scalefactor * evaluated Legendre()
 }
 if m>0

15

 {
 return root2 * scalefactor * cos(m*phi) * evaluated Legendre()
 }
 else
 {
 return root2 * scalefactor * sin(m*phi) * evaluated Legendre()
 }
}

evalSample is called from shSampleCollect::genSamples() for every sample.

evalPCFactorial(int x)

This method requires an integer argument as the factorial requested. Green suggested an

array of precomputed factorials, however in this case the first 15 are precomputed;

factorialArr contains 15 factorials. If the factorial requested is greater, the 15th member of

factorialArr is used as a base to compute the requested factorial, which is then returned as a

double. A pseudocode breakdown of this method follows:

{
 create factorial array
 fill with precomputed variables
 if requested factorial is less than 15
 {
 return factorial from array
 }
 else
 {
 calculate factorial using last array value as a base
 return calculated value
 }
}

projectFunction(hdrManip *hdr)

This method requires a hdrManip as an argument, as it collects lighting information and

calculates the coefficients that will be sent to the shader for reconstruction. This function is

edited from Green's project_polar_function which generates the coefficients based on the

samples, the weight and the number of samples. A pseudocode breakdown of this method

follows:

 {
 number of samples returned = bands*bands
 create local sample array
 set factor to 4*pi/number of samples
 allocate mem to m_coefficients based on number of samples returned
 create iterator
 for all samples
 {
 get colour based on direction from image
 for number of samples returned
 {
 multiply colour by sample coefficient
 add to coefficients vector
 }
 }
 for number of samples returned
 {
 multiply sample by factor
 }
}

16

This method implements (8). The lighting contribution is given by the colour return from the

hdrManip. This is then multiplied by the sample and then added to the coefficient vector,

where is it multiplied again by the , the probability factor from the Montecarlo

integrator. This function is called once when the coefficients need to be calculated, during

SHarmonics::begin(). It is however used again when the source image is changed by user

input, during SHarmonics::input().

4.4 SHarmonics

SHarmonics allows interface between the spherical harmonics functions in shConstruct and

the rest of the program, with methods for drawing and input, along with the input files

required for the light term inclusion in shConstruct::projectFunction(). It stores a number of

hdrManip objects which contain hdr images for input to the function projection. It also

contains a number of floats and GLints used to store variables that will be sent to the shader

to reconstruct the image, variables for storing user input, along with four models. It contains

an a shConstruct called m_sphericalHarmonics, and an instance of a simple shader manager

called m_shader.

constructor

The SHarmonics constructor requires no arguments, and initialises a few members. The

hdrManips are allocated memory, m_sphericalHarmonics' constructor is called with a

number of samples as an argument. A new shader program is created, and the ambient,

diffuse and specular contribution multipliers, m_Ka, m_Kd and m_Ks are set, along with the

default object to be shown and the default hdr map. The default number of samples is

100000.

begin()

This method initialises the SHarmonics and is designed to be called once. It loads the

various files and calls the functions required to set up the spherical harmonics. It also

retrieves variables from the shader and loads the relevant .obj files. A pseudocode

breakdown of the method follows:

{
 call loadhdr function on hdr files
 set the shader files
 link shader
 retrieve Ka, Kd, Ks and gain from shader
 retrieve harmonic coefficients from the shader
 project spherical functions using default hdr image
 load obj files
 set default gain
}

This method is called from GLWin::begin() once, in its own initialisation loop. The default

variables are set in the code itself, with Ka at 0, Kd at 1, and Ks at 0. The default image

loaded is "beach_cross.hdr" by Paul Debevec [DEBEVEC], and the .obj files loaded are the

17

"Stanford Bunny", "Dragon", and "Happy Buddha", from the Stanford 3D Scanning

Repository [STANFOBJ]. The default gain value is set to 0.3 for "beach_cross.hdr". It is

changed when a new image is selected, but can also be changed by the user.

draw()

This method requires no arguments and draws the objects requested. It also sets shader

variables prior to drawing the object. A pseudocode breakdown of the method follows:

{
 glclear
 set shader to use
 set Ka, Kd and Ks on shader
 create local coefficient array
 set harmonic coefficients on shader
 set gain on shader
 switch based on selected obj
 {
 1: translate and scale
 draw bunny

 2: translate and scale
 draw dragon

 3: translate and scale
 draw buddha

 4: translate and scale
 draw sphere
 }
}

This method is called whenever the drawing of the object needs to be updated.

input(unsigned char key)

This method requires a key input on which a switch statement is performed. A pseudocode

breakdown of this method follows:

{
 switch on keypress
 {
 if(1/2/3/4)
 {
 change load number (affects model)
 call draw()
 }
 if(, or .)
 {
 change gain
 }
 if(e/r/t)
 {
 change sh number (affects image)
 reproject spherical functions
 change gain depending on image
 call draw()
 }
 }
}

This is a simple method that is called whenever a key input is sent to GLWin::input(). The

gain per image can be modified for aesthetic reasons, using the "," and "." keys.

18

4.5 hdrManip

hdrManip is a class used for storing and loading a hdr image in vertical cross format. This

class uses the RGBE header file written by Bruce Walter which allows reading of the RGBE

file format developed by Greg Ward, hosted at [CORNELL].

The hdrManip class contains an image array, which consists of a series of RGB float values,

with array[0] as red, array[1] as green, and array[2] as blue. This is created by

RGBE::ReadPixels_RLE, which is called by hdrManip::ReadImageRGBE. The class also

stores the height and width of the image loaded as integers.

constructor

The constructor requires no arguments, and sets the image array to 0, as well as the height

and width members.

returnColour(ngl::Vector vectorIn)

This method requires an input vector as an argument. This is called by

shConstruct::projectFunction to retrieve the colour of the pixel in the image based on the

direction of the vector which has been previously converted from spherical coordinates into

a Cartesian vector. A pseudocode breakdown of the method follows:

{
 declare local vector equal to input vector
 normalise direction vector
 set 1/pi
 set invl=1/root(x component squared + y component squared)
 set radius to 1/pi * acosf(z component) * invl
 set u to x component * radius
 set v to y component * radius
 set x = u * width squared
 set y = v * height squared
 set index to y * width + x * 3
 red component = imagearray[index]
 green component = imagearray[index+1]
 blue component = imagearray[index+2]
 return r,g,b as an ngl::Vector
}

This method finds the RGB component on the image of the location of the spherical

coordinate that is being sampled in shConstruct::projectFunction.

readImageRGBE(char fileIn)

This method requires the location of a file as input. It opens a file for reading, clears the

current image array, and writes pixels to sets of three floats as RGB data, using a method

contained in the RGBE header by Bruce Walter. A pseudocode breakdown of this method

follows:

{
 create rgbe_header_info
 open file
 delete image array
 allocate space for the image array

19

 set image array to 0
 call rgbe_readpixels_RLE from RGBE header
 close file
}

This method is called during SHarmonics::begin() where three images are loaded.

4.6 shaderProgram

shaderProgram handles the loading and usage of a shader. It was created with the intention

of providing a lightweight interface to send and receive variables to and from a shader. It

was based off a blog post by Jon Macey entitled "GLSL Shader Manager design Part 2"

[MACEY10]. It contains a number of methods used for loading, compiling, attaching and

linking a shader.

constructor

The constructor for shaderProgram requires no arguments and creates a shader program

under m_program.

setShader(char inFrag, char inVert)

This method requires the location of both the fragment shader and the vertex shader as

arguments. It relies on a number of GL calls in order to read, compile and attach the shader.

A pseudocode breakdown of this method follows:

{
 create fragment shader
 create vertex shader
 read infrag into a char array
 read invert into a char array
 compile fragment shader
 compile vertex shader
 get compile status for fragment shader, exit if error
 get compile status for vertex shader, exit if error
 attach fragment shader to program
 attach vertex shader to program
}

Errors are output if either the fragment or the vertex shader fail to compile. This method is

called by SHarmonics::begin(), whereupon it loads "shaders/reconstruct.fs" as the fragment

shader and "shaders/reconstruct.vs" as the vertex shader.

link()

This method links the shader. It was developed with code from [MACEY10]. A pseudocode

breakdown of this method follows:

{
 create information buffer
 link program
 get link information
 if information exists
 {
 get error message
 cerr the error message
 delete message
 cerr the link failure

20

 exit
 }
}

This method returns errors if they are found during the linking process, and causes the

program to exit if they are. It is called once from SHarmonics::begin().

readShaderFile(char inFile)

This method is used within setShader to read a file into a character buffer. It is called twice,

once for the fragment and once for the vertex shader. It will inform the user with an error if

it cannot open the specified file. It returns a character array, which within the method is

called charBuffer.

readFileSize(char inFile)

This method returns the size of the file in bytes. It is called from readShaderFile() so that the

character array charBuffer is of the correct size. <sys.types.h> and <sys/stat.h> are used, as

filestatus.st_size returns the size of a file in bytes. Another possible option would have been

to read the file and count the number of bytes. This method returns the size in bytes as an

integer.

4.7 GLWin

GLWin handles initialisation, drawing, resizing and input for the program. During begin(),

the GL initialisation occurs, and a SHarmonics m_sh is created. At this point,

SHarmonics.begin() is called, and the application is ready to render an object lit using

spherical harmonic based lighting.

begin()

This method initialises GL to its current state, and creates and initialises m_sh which is an

object of class SHarmonics.

resize()

This method allows for resizing of the GL window.

paint()

This is the draw method of GLWin, and handles top level transformations affected by user

input. Once the transformation is complete, draw is called from m_sh.

input()

This method sends keystrokes to SHarmonics::input(), as well as detecting and switching on

the input keys in order to allow the user some simplistic movement around the object. The

input from these six keys are taken into account in paint() and occur before m_sh is drawn.

21

4.8 Main

Main.cpp contains a MainWindow, which houses only a GLWin called m_window, and calls

the various functions initialize(), anim(), reshape(), display() and input() from GLWin.

4.9 SH Creation and display

The following pseudocode shows the process undertaken to create and display an object lit

via spherical harmonic lighting in this program.

{
 create SHarmonics object
 {
 add new hdrManips
 create a new shConstruct
 {
 create new samples based on input value
 for each sample
 {
 convert spherical coord to cartesian
 evaluate sample
 store coefficient in sample
 }
 }
 create new shaderprogram
 set shader variables ka, kd, and ks
 set user input variables
 load images to hdrManips
 {
 read headers
 read file and store rgb values
 }
 set shader files
 link shader
 retrieve current ka, kd, ks and gain values from shader
 retrieve current harmonic coefficients from shader
 project spherical functions into selected image
 {
 init base variables
 create local sample array
 for numsamples
 {
 for numsamples in retrieval
 {
 retrieve colour from image for spherical coordinate
 multiply colour by sample coefficient
 add result to coefficients array
 }
 }
 multiply every coefficient in array by factor
 }
 load obj files
 set base gain for current image
 send current ka, kd and ks to shader
 create local coefficient array
 send harmonic coefficients to shader
 send gain to shader
 scale, translate and draw the selected model
 wait for user input and redraw

}

Reconstruction of the image on the shader

22

The shader handles the reconstruction of the image from the SH coefficients passed to it.

This is based on the reconstruction given by Ramamoorthi et al in (9). The shader in use is

based off a shader at Rendering Wonders [RWND] which in turn is based off Ramamoorthi's

design (9). The shader requires a number of variables, such as the harmonic coefficients and

gain. It also allows for control of Ka, Kd and Ks but these are not implemented as yet.

Figure 4.2: Rendering example: The Stanford Bunny lit by spherical harmonics based lighting. The

light probe used is Paul Debevec's "beach_cross". 100000 samples and 3 bands were used.

23

5.0 Results

The application created does render images based on a number of vertical cross format .hdr

files courtesy of Paul Debevec. The spherical harmonics return different results when

different sample numbers are used, as this directly affects the accuracy of the reproduction

of the input image, as can be seen in Figures 5.1 to 5.4.

 Figure 5.1: The Stanford Bunny rendered with only 10 samples.

Figure 5.2: The Stanford Bunny rendered with 100 samples.

24

The default number of samples is 100,000 as there does not appear to be any noticeable

change in load or run speed. The quality of the lighting however still depends on the quality

of the input image. Each image has a different tolerance for the number of samples required

before image quality noticeably decreases, and this varies depending on the frequency of

unique light directions in the original image.

Figure 5.3: The Stanford Bunny rendered with 1000 samples.

Figure 5.4: The Stanford Bunny rendered with 10,000 samples.

25

The number of bands affects the quality of the image as it limits the number of coefficients

available. The term "band" is interchangeable with the "order" of harmonics. Figure 5.5

shows image created with only one band. Image quality increases along with the number of

bands, due to the number of resulting coefficients, though this is merely a margin of

accuracy. This implementation requires only three bands for the resulting nine coefficients.

Image quality will noticeably be adversely affected by a number of bands lower than three.

As can be seen in figure 5.5, shading errors appear as there is not enough information to

properly reconstruct the surface. Errors also appear in figure 5.6 with a large yellow

contribution appearing from an incorrect direction.

Figure 5.5: The Stanford Bunny rendered with 10000 samples but only one band.

Figure 5.6: The Stanford Bunny rendered with 10000 samples and only 2 bands.

26

This application runs at 620FPS on an Intel Qx6850 clocked at 4.1Ghz with an nVidia

GTX280 at stock clocks which shows that the application does provide real-time SH-based

lighting.

6.0 Conclusion

The aim of this project was to light and render an object using spherical harmonics based

lighting. As a result it could be concluded that this project was successful, but with much

room for improvement.

The produced application has a number of issues; there is no mouse control of the object, no

user interface, and it is built with GLut. The application could be converted to a Qt GUI

application and built using <QtOpenGL>, with a gui for loading .hdr files and controlling

input. The application itself still uses some depreciated code, which could be remedied.

The implementation of the spherical harmonics system itself is extensible. It could be easily

expanded to return more than nine coefficients, as it is already able to create more than 3

bands. Whilst the sampling is relatively fast, the ability to sort the samples by "importance"

could allow for more samples where they are needed, and less where there is not much

variation in the environment light intensity. Another possible extension would be to use a

number of probes for a room and interpolate between "cells", similar to the method used by

Halo 3, which would allow the object to be moved though a SH based lighting environment

as opposed to the static light that is currently rendered.

Spherical harmonics rotations are not currently implemented, though this could be achieved

using the ngl::Matrix class and the method outlined by both Schönefeld and Green

[SCHONEFELD05] and [GREEN03]. This would allow for a dynamic "night and day"

procedural lighting implementation, which could then be rotated to allow for a spherical

harmonics-based sky system. This could be further extended by layering a "sun" light into

the samples, allowing for a sun and sky system to be created.

Spherical harmonics allow fast computation of a number of processes that are useful in

games, such as interreflection, ambient occlusion, and soft shadowing. Unfortunately, these

processes require raytracing as outlined in [GREEN03]. The time allocated has been spent on

the implementation of the spherical harmonics and not a raytracer. Were a raycaster to be

implemented, it would allow for the real-time calculation of soft shadows, interreflections

and non-screen space ambient occlusion.

During this project, knowledge has been acquired which allows the theory behind spherical

harmonics and the mathematics required for their implementation to be understood, and

resulted in an enjoyable learning experience.

Figure 5.6: The Stanford Bunny rendered with 10000 samples and two bands.

27

7.0 References

[SAINDON] VFX Supervisor Eric Saindon in an interview with www.cgsociety.org, page 2.

Accessed at http://www.cgsociety.org/index.php/CGSFeatures/CGSFeatureSpecial/avatar on

07/2011.

[GUERRILLA07] Guerilla Games, Deferred Rendering in Killzone 2, Accessed at

http://www.guerrilla-games.com/publications/dr_kz2_rsx_dev07.pdf on 07/2011.

[IGNKZ2] Image courtesy IGN Entertainment, Accessed at

http://ps3media.ign.com/ps3/image/article/972/972576/killzone-2-20090414092626423.jpg on

07/2011.

[CHEN08] Hao Chen, Microsoft Research Asia, Accessed at

http://www.bungie.net/images/Inside/publications/presentations/lighting_material.zip on

07/2011.

[UDN11] Unreal Developer Network, Development Kit Build Upgrade Notes, Accessed at

http://udn.epicgames.com/Three/DevelopmentKitBuildUpgradeNotes.html on 07/2011

[WFIRE11] Wolfire Blog, GDC session summary: Battlefield 3 Radiosity, Accessed at

http://blog.wolfire.com/2011/03/GDC-session-summary-Battlefield-3-Radiosity on 07/2011

[EINARSS10] Per Einarsson, A Real Time Radiosity Architecture for Video Games,

SIGGRAPH 2010, Accessed at http://advances.realtimerendering.com/s2010/Martin-

Einarsson-

RadiosityArchitecture(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20C

ourse).pdf on 07/2011.

[SLOAN02] SloanP. P., Kautz J., and Snyder J. "Precomputed radiance transfer for real­time

rendering in dynamic, low­frequency lighting environments."SIGGRAPH 2002, Computer

Graphics Proceedings, p527–536, 2002.

[RAMAMOOR01] Ravi Ramamoorthi and Pat Hanrahan, "An efficient representation for

irradiance environment-maps", SIGGRAPH 2001, Los Angeles, CA, p497-500, 2001.

[SCHONEFELD05] Volker Schönefeld, "Spherical Harmonics". Accessed at http://heim.c-

otto.de/~volker/prosem_paper.pdf on 07/2011.

[GREEN03] Robin Green, "Spherical Harmonic Lighting: The Gritty Details", Game

Developers Conference 2003. Available at http://www.research.scea.com/gdc2003/spherical-

harmonic-lighting.pdf , Accessed 07/2011

[DEBEVEC] Paul Debevec, "Light Probe Image Gallery", Accessed at

http://ict.debevec.org/~debevec/Probes/ on 07/2011.

http://www.cgsociety.org/index.php/CGSFeatures/CGSFeatureSpecial/avatar
http://www.guerrilla-games.com/publications/dr_kz2_rsx_dev07.pdf
http://ps3media.ign.com/ps3/image/article/972/972576/killzone-2-20090414092626423.jpg
http://www.bungie.net/images/Inside/publications/presentations/lighting_material.zip
http://udn.epicgames.com/Three/DevelopmentKitBuildUpgradeNotes.html
http://blog.wolfire.com/2011/03/GDC-session-summary-Battlefield-3-Radiosity
http://advances.realtimerendering.com/s2010/Martin-Einarsson-RadiosityArchitecture(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20Course).pdf
http://advances.realtimerendering.com/s2010/Martin-Einarsson-RadiosityArchitecture(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20Course).pdf
http://advances.realtimerendering.com/s2010/Martin-Einarsson-RadiosityArchitecture(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20Course).pdf
http://advances.realtimerendering.com/s2010/Martin-Einarsson-RadiosityArchitecture(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20Course).pdf
http://heim.c-otto.de/~volker/prosem_paper.pdf
http://heim.c-otto.de/~volker/prosem_paper.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://ict.debevec.org/~debevec/Probes/

28

[STANFOBJ] Stanford University, "Stanford 3D Scanning Repository", Accessed at

graphics.stanford.edu/data/3Dscanrep/ on 07/2011.

[CORNELL] Bruce Walter, RGBE header, Accessed at

http://www.graphics.cornell.edu/~bjw/ on 07/2011.

[MACEY10] Jon Macey, "GLSL Shader Manager design Part 2", Accessed at

http://jonmacey.blogspot.com/2010/11/glsl-shader-manager-design-part-2.html on 07/2011.

[RWND] Marc Costa, "Spherical Harmonics", Accessed at

http://renderingwonders.wordpress.com/2011/05/28/spherical-harmonics/ on 07/2011.

[CPROJECT] Karsten Schwenk, "A Simple Class for Spherical Harmonic Expansion",

Accessed at http://www.codeproject.com/KB/cpp/sh_projection.aspx on 07/2011.

file:///D:/graphics.stanford.edu/data/3Dscanrep/
http://www.graphics.cornell.edu/~bjw/
http://jonmacey.blogspot.com/2010/11/glsl-shader-manager-design-part-2.html
http://renderingwonders.wordpress.com/2011/05/28/spherical-harmonics/
http://www.codeproject.com/KB/cpp/sh_projection.aspx

29

USER'S GUIDE

Once the application is compiled, there are a few controls once it has loaded. The application

takes a few seconds to begin, primarily due to .obj loading.

Controls:

Q move: -Y

Z move: +Y

W move: -Z

A move: -X

S move: +Z

D move: +X

1 model: bunny

2 model: dragon

3 model: buddha

4 model: sphere

E image: beach

R image: uffizi

T image: hotel

, decrease gain

. increase gain

ESC exit application

