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Abstract

Many applications in the film and game industries require multiple calculations to be

performed on vast data sets. Any of these tools that are required to run in real-time,

and be used interactively, must be developed with performance in mind. The following

paper aims to explain how the Central Processing Unit can be utilised effectively in

order to speed up an existing application. It explores programs written using both

SSE intrinsic instructions and Intels new SPMD programming compiler, as well as

conventional the conventional serial approach.
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Chapter 1

The Need for Speed

1.1 Introduction

In the multimedia, educational and medical industries, applications are consistently

developed that require 3D visualisations. These applications often require real-time

frame rates. This is due to the demand for interactive feedback from video games,

simulations and other computer graphics (CG) techniques. In recent years there has

been a rise in programability of the Graphics Processing Unit (GPU). This has followed

a vast increase in the speed of the GPU’s floating point arithmetic capabilities and

allows developers to store vertex and texture data into GPU memory to be processed

more quickly. This can be done by use of various shading languages, 1 which are

beginning to allow total customisation of the rasterisation process. In addition to this,

a trend has emerged for General-Purpose computation on Graphics Processing Units

(GPGPU). This allows more general computations and simulations to be performed

on the GPU using geometry processing and kernels. This technique has seen many

complex simulations and rendering methods, such as physically based shading, become

possible at real-time rates.

Whilst the use of GPU speed has gained much popularity in computer graphics,

the Central Processing Unit (CPU) is still the de-facto ‘brain’ of the machine and has

also seen hardware improvements. In contrast to the GPU however, programability of

the CPU is not very accessible for developers. There are features of CPU architecture

that quite often are not taken advantage of in conventional software development. The

opening section of this paper will analyse what makes up a CPU and how conventional

applications use it. I will then look at how the CPU can be more fully utilised. The

implementation of several tests and testing tools will then be explored to motivate

discussion on how to measure the success of performance tuning. Finally, a simple mesh

deformer will be used as a case study on implementing integrated speed-up techniques.

It should be noted that the aim of this paper is not to explore algorithmic ineffi-

ciencies or programming faults that lead to slow applications, but only to assess how

1GLSL, HLSL, CG etc.
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hardware can be used effectively.

1.2 The CPU

The architecture of the CPU varies from chip to chip. For this reason, the model

referred to in this paper will be a simplified abstraction, loosely analogous of modern

Intel processors. In conventional computer architecture, the CPU is the workhorse of

the machine. It consists of:

• Multi-Level Caches

• The Registers

• Arithmetic Logic Unit (ALU)

• Floating Point Unit (FPU)

1.2.1 Multi-Level Caches

The processor uses multi-level caches to very quickly access data and instructions. The

reason for this is that it is static memory and is the first place that will be checked for

data to be processed. The first cache to be checked is the level one (L1) cache. If the

required data cannot be found here, the L2 cache is checked followed by the L3 cache

and so on 2. Application data is ‘fetched’ into the caches from the Random Access

Memory (RAM) for use in operations. The reason for this is that RAM is a larger bank

of dynamic memory and needs to be loaded into static memory for processing. The

process of fetching from RAM is performed at a much lower clock speed than loading

data from caches. Modern CPU’s will compensate for this by intelligently fetching data

before it is used in the application. Issues surrounding this process can greatly slow

down applications, see section 1.4.2.

1.2.2 Registers

The registers of the modern CPU’s are commonly 128 bits wide. These registers are

a key part of the processor use to load data from the cache and submit this data to

the ALU or FPU. They are the highest performance memory in the processor and are

used for quick access and used in machine instructions. Figure 1.1 shows a diagram

representing a CPU register:

For most graphical applications, 32 bit floating point data provides a sufficient

precision-to-speed ratio; a 128 bit register can hold four of these values.

2modern processors usually have 2 or 3 caches
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8-bit Char 16-bit Int 32-bit Float 62-bit Double

Figure 1.1: Typical Memory Layout of a 128 bit register

1.2.3 ALU and FPU

The Arithmetic Logic Unit (ALU) is in charge of arithmetic and logical operations.

This refers to processes from addition and subtraction to ’exclusive or’ and other control

flow operations. The Floating Point Unit (FPU) is a more recent addition to modern

machines and is designed specifically to handle operations on 32 bit floating point data.

Depending on the type of operation requested, a different unit is used.
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Figure 1.2 is a diagram showing an approximation of the pipeline of data through

the CPU:

RAM

Multi-Level Caches

Data Registers

ALU / FPU

Data Cache

Output

Figure 1.2: A high level representation of data flow through the CPU

The flow of data through the CPU begins in the caches, which take data from RAM,

then moves into the registers before being submitted to the ALU or FPU for processing.

After this it is held in cache memory to be output in some form.

1.3 Conventional Implementations

Despite the aforementioned features of modern CPU’s, many applications do not utilise

the hardware supplied by these processors. Quite often the ‘Multiple Instruction Mul-

tiple Data’ (MIMD) model is used for processing operations. The reason for this is that

when using a compiler with no optimisations, coupled with developing in a ‘naive’ way,

data is submitted for machine instructions one chunk at a time. For example, when
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adding two floating point vectors (represented as XYZW), the conventional method is

as follows:

r e s u l t . x = v1 . x + v2 . x
r e s u l t . y = v1 . y + v2 . y
r e s u l t . z = v1 . z + v2 . z
r e s u l t .w = v1 .w + v2 .w

In the worst case, this code will be compiled to execute as it is written; one in-

struction after the other. The CPU registers will load and execute one element at a

time. More often than not, 3D applications have to perform hundreds of calculations

on thousands, perhaps millions of these floating point vectors. Most significantly, they

have to do this many times per second. Figure 1.3 symbolises the MIMD architecture.

Y3

X3

Z3

W3

Y1

X1

Z1

W1

Y2

X2

Z2

W2

Figure 1.3: The use of registers in operations using the MIMD architecture

MIMD is one of four architectures in Flynn’s taxonomy. Flynn, writing for the

Institute of Electrical and Electronics Engineers (IEEE), recognised that taking advan-

tage of certain types of processor architecture could lead to vastly better performance.

Figure 1.4 shows a diagram of Flynns 4 classifications of architectures.
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Instruction Pool

Data Pool

Data

Instruction Pool

Data Pool

Data

Instruction Pool

Data Pool

Data

Instruction Pool

Data Pool

Single Instruction
Single Data (SISD)

Multiple Instruction
Single Data (MISD)

Multiple Instruction
Multiple Data 

(MIMD)

Single Instruction
Multiple Data 

(SIMD)

Data Data Data

Data Data Data Data

Figure 1.4: Diagram showing some classifications in Flynns taxonomy

SISD and MISD architectures are most commonly found in specialist or legacy

systems, the final two of Flynns classifications on this diagram represent the two most

common models of application programming today.
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1.4 Other Performance Issues

There are additional features of computer architecture that can lead to reduced per-

formance when attempting to process a large data set with a lot of calculations.

1.4.1 Threading

Many applications execute on a single thread, meaning that all operations are executed

linearly. However, modern CPU’s often have multiple cores each having many threads.

This means that applications can perform heavy computations, concurrently, over these

threads. For example, in a 4-core machine each core acts like a separate CPU, on which

2 threads can be run. Therefore the developer can take advantage by chunking his data

into 8 parts and passing one chunk to each thread. In theory, some processes should

speed up eight-fold. 3 The most significant thing to consider when writing multi-

threaded systems is the state of the data. Developers must consider both:

• Accessing non-constant data from other chunks of threaded data

• After execution, waiting for each thread to finish to ensure data is synchronised

Developers must be careful with their memory access between threads, because

whilst operating on data in one thread, another will be processing in parallel. Fortu-

nately, there are several libraries that aid multi-threaded programming. 4 These help

to ensure application data is in a ‘safe state’ for operating over many threads.

Typically the way this is achieved is through the use of a construct called a mutex
5. This construct can be used to make sure that the process that locked the mutex is

the only one that can unlock it. In multi-threaded systems, data pools being shared

across threads will use this construct and check whether a mutex is already locked, if

it isn’t that thread can access and, in turn, lock it.

1.4.2 Memory Bandwith and Cache Misses

Some applications suffer from frequent cache misses, this means that when data is

needed for processing in the CPU, it is fetched from RAM. This is far slower than

loading data from the multi-level caches. When held in the cache, this data can be

read very quickly by the registers to be operated on. If data is requested for processing

and found in the L1 cache, this is a ‘hit’. If it is not in memory there then a L1 cache

‘miss’ has occurred, and an attempt will be made to retrieve it from the L2 cache. This

process is repeated down to the L3 cache. If none of the multi-caches hold the data,

then it must be retrieved from RAM. This is a very undesirable situation and will slow

3although in practice threading overheads reduce this
4Intels Threading Building Blocks, Boost, OpenMP, POSIX etc.
5Short form for Mutually Exclusive
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down applications if re-occurring. Fortunately, modern compilers will ‘intelligently’

predict the data that will required for incoming operations and fetch the relevant data

into cache memory. This goes some way to avoiding cache misses. Even if data is not in

the L1 cache, retrieving data from L2 or L3 memory, is far more preferable to a cache

miss. For examples and testing surrounding this limitation see Chapter 4.

It should be noted that a common tuning technique is to manually pre-fetch data

into cache memory. However, in most cases, the pre-fetching performed by modern

compilers is sufficient.
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Chapter 2

Improving Perfomance

2.1 Using CPU Width

The most performant of Flynn’s taxonomy of architectures is Single Instruction Multi-

ple Data (SIMD). In the context of a modern CPU, this means that the entire register

is submitted to the ALU or FPU at once and is processed with a single instruction.

Every chunk of data inside the register is processed in parallel. The size of the register

is often referred to as the ‘width of the lane’. In the MIMD model, data is processed

as a linear stream of instructions. Improvements made to CPU clock speed, previously

centred around increasing the throughput of data. In contrast to this idea of ‘going

faster’, it is becoming more important for developers to ‘go wider’; to use the full lane

size of SIMD registers. Figure 2.1 shows the same vector addition as in Section 1.3,

this time using SIMD.

2.2 SSE Instructions

In the late 1990’s, Intel released Streaming SIMD Extensions (SSE) for the Pentium

III processor. These extensions were then developed to incorporate additional arrange-

ments and types of data, such as double precision floating point numbers. This new

architecture was constructed with SIMD instruction units which allow SIMD to be fully

utilised. Modern CPU’s now typically support the latest version of extensions, SSE4.

SSE gained popularity with its ability to compute fast floating point mathematics.

These extensions supply assembly instructions for an array of processes. The ex-

amples in the list below are for floating point values:

• Memory / Register data movement e.g. MOVAPS (Move Aligned Packed Single-

Precision Floating-Point Values)

• Arithmetic e.g. ADDPS (Packed Single-Precision Floating-Point Add)

• Comparisons e.g. CMPSS (Compare Scalar Single-Precision Floating-Point Val-

ues)

9
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Figure 2.1: The use of registers in operations using the SIMD architecture

• Shuffling and Unpacking e.g. SHUFPS (Shuffle Single-Precision Floating-Point

Values)

• Data conversion e.g. CVTSI2SS (Convert Doubleword Integer to Scalar Single-

Precision Floating-Point Value)

• Bitwise Logical Operations e.g. XORPS (Bitwise Logical XOR for Single-Precision

Floating-Point Values)

Instructions like these are used to perform operations on entire registers1 at a time.

The speed of these processes is a major feature of modern CPU’s, which have many

registers built into them. Therefore in multimedia industries, that sometimes have

16-core machines, vast speed-gains are possible. One of the problems is, that writing

these instructions in hard-to-maintain assembly language is not a viable long-term

programability on the CPU.

It is important to note that whilst SSE instructions are not easily used, modern

compilers will often ’guess’ at parts of application that could be vectorised for SSE.

Most compilers will automate some SSE 1, 2 and 3 instruction sets. Despite this,

1more of which were added to CPU’s when SSE was released
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the full benefit of SIMD architecture can only be realised is developers can explicitly

program for it.

2.3 Intrinsics

In order to bypass the assembly instructions supplied by SSE, compiler intrinsics are

provided for use within application code. Intrinsic functions are built into the compiler

as appose to regular functions that are built into libraries or applications. There are a

different set of functions available depending upon the SSE instructions the developer

requires. There are header files provided that include special data types which define

SIMD vectors for floating points, double precision and integer amongst others. These

come with assignment operators for casting from serial to SIMD types. The type

referred to throughout this paper will be m128 , which is a 4 chunk register of 32 bit

floating point values.

Using these intrinsics, the assembly code highlighted in the previous section can be

written in application as shown:

• MOVAPS : mm load ps( float* )

• ADDPS : mm add ps( m128, m128 )

• CMPSS : mm cmpeq ss( m128, m128 )

• SHUFPS : mm shuffle ps( m128, m128, int )

• CVTSI2SS : mm cvtsi32 ss( m128, int )

• XORPS : mm xor ps( m128, m128 )

Using instructions like these has made programmability of the CPU more accessible

for developers; which is especially useful in 3D applications. The reason for this is that

data structures like four-by-four matrices and floating point vectors, representing co-

ordinates, are used for cartesian transformations. For example, transforming a point

from model to screen space by using the model-view-projection matrix. Not only can an

m128 type represent parts of these, but float pointers can be cast into float vector

pointers ( m128) for easier processing of large data sets. See appendix A.1 for an

example.

This not only allows less loop iterations than a serial implementation, but the

developer is able to take advantage of the multiple lanes of a SIMD architecture.

11



2.4 Intrinsic Difficulties

2.4.1 Data Arrangements

Although intrinsics allow the use of SIMD processing units there is an overhead to

programming using these instructions; code maintainability. These compiler intrinsics

are comparatively difficult to write when compared to serial applications. This is

because constant awareness of data layout and alignment is required on the part of the

developer. For example, an m128 type should be 16-byte aligned to achieve optimum

speed from SIMD code. The is because processors have a level of granularity for their

memory lookups. They will look up memory at a power-of two memory address. This is

done so that lots of time isn’t spent looking for data on a byte-by-byte basis. Therefore,

if the applications data is not aligned, the CPU has to load several chunks of memory

and discard the bytes it doesn’t need. (IBM, 2011) Aligning properly can become

particularly difficult to achieve when constructing arrays of complicated data structures.

In addition to this, even if the data is aligned, many calculations require individual

elements of SIMD lanes be operated on together, for instance when calculating vector

length:

l ength = s q r t ( x∗x + y∗y + z∗z )

In this example, not only is the W component not required, but the separate memory

chunks of the float vector need to be accessed individually.

In order to do this we need to get the individual elements of a float vector. Accessing

individual elements of the vector is known as gathering. This term refers to reading

the data based on its index within a vector lane. Storing data by index is known as

scattering. This technique of read/write operations is together known as gather-scatter.

The cost of doing this is very high and often renders using SIMD redundant.

To resolve issues of this nature, SSE includes shuffle instructions that allow fast

data copying into new registers. So, in this example, for every four m128 registers

they can be re-arranged between the following layouts:

The price of using gather-scatter techniques is far more costly than shuffling memory

and then operating on the data. However, the code to generate this shuffle requires

knowledge of the internal data format of the application and the CPU being used; it

is hard coded. In other words, if the SIMD lane size is 4, the shuffle instructions are

written explicitly to reflect this. See Appendix A.2. This code can quickly become

hard to maintain and is not generic or re-usable.

2.4.2 Hardware Dependence

As highlighted above the hardware dependence of different SSE instructions can become

problematic. When programming for 128-bit registers, we can use the m128 data

12
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Figure 2.2: A diagram showing the process of shuffling from AOS to SOA

type, whereas on CPU’s with 256-bit registers 2 a larger data set can be used in SIMD.

Whilst future proof software is rarely guaranteed, an m128 and m256 data type are

so conceptually similar that switching to more advanced software could be made easier.

This is a problem that Intel have tried to overcome, as discussed below.

2expected in the coming years in Intels AVX processors
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2.5 Intel SPMD Program Compiler

Released in mid 2011 was an LLVM3 based compiler called the Intel SPMD Program

Compiler (ISPC). The aim of this compiler is to take ISPC code and compile it to SSE

assembly code. SPMD stands for Single Process, Multiple Data and is analogous to

SIMD.

The idea is that developers can write “programs as if they were operating on a

single data elements” (ISPC, 2011) then the underlying processor and runtime system

executes several invocations of it concurrently with different inputs. This process is

similar to the pixel shaders in a programmable GPU pipeline. A program is written

for a single pixel, then compiled to tell the hardware to work on many pixels at a time.

Not only does this language remove some of the more complex and un-maintainable

aspects of SSE intrinsics but it is also, in general, future proof. It allows the developer

to easily tie in the application (C++) code with ISPC (SSE) code. Two key ideas in

ISPC are uniform and varying data types and the programCount and programIndex

variables.

2.5.1 Uniform and Varying

A uniform data type is one corresponding to regular C++ types. For example a uniform

float [] is a 32 bit floating point array. This is the typical type used for passing in a

pointer to your applications data-set. Varying data types are variables that change

over different program instances (see below).

Using variables in ISPC is similar to the use of the same data-types in C++. The

main thing to remember is that when using a float data type, the ISPC compiler will

generate SSE assembly to make this into a float vector ( m128) type. Without

any extra thought on the part of the developer a uniform float can be assigned to a

varying float, the compiler will handle the conversion automatically. In addition, ISPC

supports short vector types. Simply including:

typedef float<3> V3f ;

allows for 3 lanes of SIMD floats to be used as X,Y and Z components, allowing more

natural programability for 3D developers. These can then be accessed via swizzling

techniques common to many shading languages.

2.5.2 Global Variables

In ISPC, the global variable programCount corresponds to the width of the SIMD lanes

on the machine, for SSE this is four. Whilst programIndex can be used to retrieve

the number of the currently running program instance.The reason for this construct

3LLVM stands for Low Level Virtual Machine but in actual fact has little to do with virtual machines.
It is a “collection of modular and reusable compiler and toolchain technologies” (LLVM, 2011)
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is to allow future processor architectures to run the same ISPC code at speeds native

to their own specifications. This logic for vectorisation is analogous to that of CUDA

programming.

However, the current version of ISPC still requires some shuffle code for converting

between AOS and SOA, which removes this benefit of hardware agnostic code. This

means that shuffle code written for SSE will have to be re-written for Intels new AVX

processors. 4

A simple example kernel is shown below. In this example, two float arrays a multi-

plied together and the result is stored in the first one. The export keyword marks the

function to be made accessible in application. The keyword uniform tells the compiler

that conventional non-vector types are being passed in. 5 The for loop has conventional

form, significantly, i is incremented by programCount (4) each cycle. Then within the

loop programIndex is used as an index that varies over the width of the SIMD lane.

The operation is then performed using this index.

export void vmul (
uniform f loat a [ ] ,
uniform f loat b [ ] ,
uniform int count )

{
for ( uniform int i = 0 ; i < count ; i += programCount )
{

int index = i + programIndex ;
a [ index ] = a [ index ] ∗ b [ index ] ;

}
}

4These processors are not yet released and have 8-wide SIMD lanes
5all parameters in an exported function must be uniform
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Chapter 3

Measuring Success

In order to fully understand the benefits of certain techniques, gathering meaningful

data is paramount. This can be done in a number of ways. For CPU performance, two

methods were explored; benchmark timings and profiling.

3.1 Benchmarking

A a ‘naive’ method for testing the speed of an application or operation is to time

it. Simply recording when the process started and when it finished, can give a good

impressions of speed and help to compare different methods of computation. The

reason this method is not considered robust is that, especially with smaller data sets,

the overhead of other small processes can skew results. There are ways to lessen this

inaccuracy. Developers can perform many cycles of the process and accumulate our

results, alternatively data-sizes can be increased to a degree that produces meaningful

results. Although as mentioned in section 1.4.2, this can lead to memory bandwidth

issues.

The reason that this method is often referred to as benchmarking is that it does

supply a good estimation of the speed of an operation. It is important to note the use

of the term ’operation’. Benchmarking is rarely used to measure the performance of an

entire application. Its strength is in testing smaller, atomic operations or algorithms.

For a comprehensive test of application-wide performance, profiling is preferable.

A basic benchmark timer was developed in order to quickly gather data about

the execution time of different processes for the testing shown in Chapter 4. This

implementation was then developed further to be integrated into a working application

shown in Chapter 5.

3.2 Profiling

CPU profiling allows an application to run with some performance loss, whilst sampling

the stack at regular intervals to see which function is in control. The key feature of
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this kind of profiling is that the profiler samples n times every second and records

the method it found running at the time. If the sample size is large enough to be

representative (i.e. the application has lasted long enough to take more than just a

few samples) the methods in an application that are most commonly in control can be

found.

3.2.1 Open Source Profilers

There are two main open source profiling tools that have been explored; Google Perftools

and Valgrind . The key difference between these two tools is the method in which they

take samples.

Valgrind uses a technique called dynamic binary re-compilation. This means that

the Valgrind core will disassemble an applications machine code into an intermediate

representation. The tool being used 1 will then instrument it with analysis code. After

this Valgrind recompiles it to machine code. (Valgrind, 2011) None of the original

application code is actually run and as a result the execution of the program will

usually take at least ten times longer.

Perftools on the other hand, has the profile code compiled inside the application at

compile-time and as a result does not receive a very large slow down. This means that

the execution speed more closely represents the actual performance of an application.

It also allows automatic viewing of call-graphs in the web browser as SVG. This is very

useful for speedy viewing of profiles. The command line program ‘pprof allows quick

customisation of what nodes to focus on and which to ignore.

While Valgrind is quicker and easier to get setup and profiling applications, a

Perftools profile, once obtained, can better be used to get an impression of overall

application performance. This is greatly helped by using the Pprof tool with the top#

option to see total samples and heaviest functions.

With both tools it is possible to compile and profile debug builds. Whilst this may

be useful to get a more in depth look at what is being called, the sample weighting

does not reflect the execution times when built optimised.

In addition to these tools there is a popular free visualisation tool called kCachegrind.

kCachegrind is the de-facto profile viewer for Valgrind output, but can also be used

with Google Perfomance Tools. kCachegrind allows developers to view and interact

with their profiles to more easily target problem areas. It also allows viewing detailed

call-graph information and can show the profile by as source file, function, class or

compiled object. It allows an in depth look at how much time different sections of an

application are being processed.

A very powerful feature of this tool is that if you compile using the -g flag2, a profile

1For CPU profiles this is callgrind
2
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can be viewed within the source code. This means that in the Graphical User Interface

(GUI) developers can debug through the call graph on a line-by-line basis seeing how

many samples each line had.

3.3 An Example

Consider the program in Appendix A.3. In this program data is generated then clamped

within the range of 0.0 - 1.0, then remapped it to the range 10.0 - 100.0. The clamp

and remap implementations are found in Appendix A.4

Using Google Performance Tools this text version of the profile can be output:

Total: 1751 samples

761 43.5% 43.5% 1625 92.8% main

459 26.2% 69.7% 535 30.6% remap

316 18.0% 87.7% 316 18.0% clamp

214 12.2% 99.9% 214 12.2% _wordcopy_fwd_aligned

1 0.1% 100.0% 1 0.1% madvise

0 0.0% 100.0% 1 0.1% ::do_free

0 0.0% 100.0% 1 0.1% ::do_free_with_callback

0 0.0% 100.0% 1 0.1% TCMalloc_SystemRelease

0 0.0% 100.0% 1625 92.8% __libc_start_main

0 0.0% 100.0% 1625 92.8% _start

This shows that, as expected, main is responsible for initiating most samples. Af-

ter this point it is clear that the main areas to be improved are remap, clamp and

wordcopy fwd aligned. The first 2 functions have been defined in our application, but

the last is, to begin with, unknown. Viewing the call-graph in kCachegrind the origin

of this function is revealed.

It is now evident that wordcopy fwd aligned is being called in the memory alloca-

tion for the std::vector

3.3.1 Remap

Remap can now be targeted as an area to improve. With some shuffling around, a

constant can be calculated for each remap.

s c a l e = ( newMax − newMin ) / ( oldMax − oldMin )

Remap is then changed to use less operations.

( in − oldMin ) ∗ s c a l e + newMin ;

After profiling again, the top 5 slowest processors are as follows:
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Figure 3.1: A helpful Call-graph in kCachegrind
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Total: 1598 samples

779 48.7% 48.7% 1470 92.0% main

298 18.6% 67.4% 298 18.6% clamp

289 18.1% 85.5% 354 22.2% remap2

232 14.5% 100.0% 232 14.5% _wordcopy_fwd_aligned

0 0.0% 100.0% 1470 92.0% __libc_start_main

By altering the remap method the samples have been cut from 1751 to 1598 and so

the execution time is improved by 1.5s

3.3.2 Clamp

The next highest cost is the clamp (min/max) implementation. This is a conventional

method for clamping, a new method can be attempted however, this is shown in Ap-

pendix A.5

After Profiling:

Total: 1540 samples

722 46.9% 46.9% 1340 87.0% main

492 31.9% 78.8% 492 31.9% remap2

218 14.2% 93.0% 218 14.2% _wordcopy_fwd_aligned

107 6.9% 99.9% 260 16.9% clamp2

1 0.1% 100.0% 1 0.1% ProfilerStart

Here the samples are cut from 1598 to 1540, so there is a gain of 0.5s. This is a

small improvement but is still a gain.

3.3.3 std::vector allocation

Relying on push back to allocate memory is usually not a good idea. This is because

of the way push back allocates memory. Using Pprof to generate callgrind output the

source code profile can be viewed for our allocation. See figure 3.2. This shows that

around 20% (line 50) of samples taken from main occur in this loop. One option is to

try reserving memory then pushing to the back of the list.

The new profile after this change is:

Total: 1315 samples

790 60.1% 60.1% 1130 85.9% main

386 29.4% 89.4% 386 29.4% remap2

138 10.5% 99.9% 260 19.8% clamp2

1 0.1% 100.0% 1 0.1% madvise

0 0.0% 100.0% 1 0.1% ::do_free
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The allocation of data no longer appears on the top 5 slowest operations list and

2.2s have been take off.

The source code profile (figure 3.2) now shows that the application actually spends

longer inside this allocation loop, seconds may have been saved elsewhere but the

push back calls are expensive. Experimenting with resize yields the following results.

Profile:

Total: 1243 samples

503 40.5% 40.5% 1074 86.4% main

476 38.3% 78.8% 476 38.3% remap2

139 11.2% 89.9% 139 11.2% std::vector::_M_insert_aux

124 10.0% 99.9% 238 19.1% clamp2

1 0.1% 100.0% 1 0.1% madvise

Despite M fill insert appearing to eat up execution time, the key figure is the

sample size. The execution time has gone from 1315 to 1243 samples, which means a

0.7s gain. The final source code profile shown in figure 3.2 highlights the effect of this.

The loop has been targeted exclusively using kCachegrind , and its enabled further

optimisations of allocations. By filling the vector before hand, and then inserting the

execution time has been reduced by just under a second. It seems that, in this case,

resizing works best.

3.3.4 Summary

Over the course of the profiling for this sample application, the execution time has

gone from 1751 samples to 1243. Using Perftools and kCachegrind just under 6 seconds

have been shaved off, that’s a 30% speed gain. It is clear why using a profiler can

be a valuable practice for performance-minded developers. Although this example was

an isolated and simple one and a 30% gain may not always be achieved; it shows how

targeting specific weaknesses in applications could noticeably cut execution times.
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push_back

reserve

resize

Figure 3.2: The source code profiles of different methods of allocating memory in a
std::vector
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Chapter 4

Benchmark Comparisons: Serial,
SSE Intrinsics and ISPC

4.1 Initial Tests

A large part of implementation for this paper surrounded the extensive and thorough

testing of basic operations using the three different methods; Serial, SSE Intrinsics and

ISPC. The reason for this was twofold. Firstly, a benchmark of the possible speed

increases of using intrinsics was desired and secondly a comparison of ISPC with Serial

to verify the fidelity of Intels claims regarding the performance of ISPC. In order to

do these a simple benchmark timer was developed, the interface if which is shown in

Appendix A.6.

The initial set of testing I did was sending large data sets to be operated on using

SSE, Serial and ISPC. Figure 4.1 show my results.

The first thing to notice is the peaks of blue. These are either notoriously expensive

operations like divide and square root, or they are custom compound operations like

remap. This shows us that the more SIMD operations computed in a single pass, the

larger the benefit. This is because the memory access for data already loaded into

registers is the fastest possible way to read and process data.

Another important feature to notice is just how closely ISPC and Intrinsics perform.

The average execution time on each operation is virtually indistinguishable.

There is one disappointment revealed in these results however. The speed increase

from SIMD on the atomic operations is sometimes only just over one times. The reason

for this is related to memory bounds and cache missing. As explained in Chapter 1,

the memory bandwidth is being exceeded. This means that with 40 million bytes of

data, the caches are filling up and large chunks of memory need to be fetched from

RAM, drastically slowing process speed down. This over head of fetching from RAM

outweighs much of the advantage of vectorised instructions. The main bottleneck in

this case is how quickly the processor can load data, not how quickly it operates on it;

choosing MIMD or SIMD is almost irrelevant.
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To find a solution to this problem a second set of tests was designed.

Serial Intrinsics ISPC
add
sub
div
mul
sqrt
divByConstant
divByReciprocal
clamp
remap
remap2

13.4279 11.4624 11.4678
13.3653 11.4722 11.4619
46.2344 12.524 12.5136
13.3949 11.4776 11.5353
59.3836 14.8081 14.8434
23.427 8.28946 8.42286
11.48 8.2904 8.38224

11.6159 8.60712 8.46062
49.4987 12.743 12.7645
10.6998 5.01708 5.68488

0

6.00

12.00

18.00

24.00

30.00

36.00

42.00

48.00

54.00

60.00

add sub div mul sqrt divByConstant divByReciprocal clamp remap remap2

Average Time of Different Exectution Methods of Atomic Operations on a Large Data Set (40million bytes over 100 cycles)

Serial Intrinsics ISPC

Figure 4.1: Initial Tests of Performance of Several Simple operations using Serial, SSE
and ISPC implementations

The aim of further testing was to monitor how an atomic operation like addition,

performed over varying data sizes. Based on the results from the first set of tests only

Serial and ISPC were chosen to test. This was due to the extremely close performance

of intrinsics and ISPC on both atomic and advanced operations. (see figure 4.1) ISPC

appears to be both fast and easily programmable.

Figure 4.2 shows the amplitude of gains achieved from using ISPC to sum two arrays
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of floating point numbers at varying sizes.

DataSize(Kb) Times Gain
0.516
0.664
0.86
1.112
1.436
1.856
2.396
3.096
4
5.164
6.672
8.616
11.128
14.372
18.564
23.976
30.968
40
51.66
66.724
86.176
111.3
143.752
185.66
239.792
309.704
400
516.616
667.24
861.772
1113.02
1437.524
1856.632
2397.936
3097.052
4000
5166.196
6672.4
8617.736
11130.236
14375.252
18566.356
23979.368
30970.548
40000

2.4263666755
2.5658468266
2.7877894777
2.2430964972
2.5422300496
3.1799335979
3.331232493

3.0880005752
3.4466213915
3.4363260266
3.7291991852
3.6719224898
3.5180965088
3.1086374622
2.8356093695
2.8586039671
2.8565304266
2.843723564

2.7806822367
2.6857413077
2.4100036996
2.272944755

2.0285447656
1.9552730994
1.9237396329
1.9266034237
1.925692936

1.9279513396
1.9318243663
1.9302245066
1.9278146195
1.9157894182
1.8433277862
1.6256282289
1.2884353685
1.2072760819
1.1957732228
1.1809634229
1.1831155644
1.1838136282
1.2115782883
1.2014440785
1.1689749298
1.356370006

1.3041466601

0

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.516 1.436 4 11.128 30.968 86.176 239.792 667.24 1856.632 5166.196 14375.252 40000

Graph of the X. Gain of Using SSE Instructions With Different Sized Data
T

im
e
s 

G
a
in

DataSize(Kb)

Figure 4.2: The Gain of Using ISPC to Sum to Float arrays at Growing Data Size

This clearly shows three distinct fall offs that correspond to the different cache levels

of the processor.

• =̃ 9kb: At this stage the CPU is able to fetch everything into the L1 Cache in

time for fast SIMD processing.

• =̃ 20kb: Here, the CPU is having to fetch data from the L2 cache into its registers,

the size of data being fetched from here has been increasing since 9Kb
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• =̃ 170Kb The level of Data available in the L2 cache has been falling and now

regular fetches from the L3 are being made

• =̃ 3800Kb The data is now being fetched from RAM a lot and the gains of SIMD

instructions are lost

This shows that at a certain point, depending on the machine, the overhead of

exceeding memory bandwidth and cache misses will overshadow any gains made from

using SIMD. This suggests two important practices when making applications for use

with large data sets.

1. Chunk data into sizes that correspond to the “sweet spot” of you CPUs memory

bandwidth.

2. If you have to pass a large data set in one call, and cannot split it up, perform as

many of the operations needed in a single pass. This utilises good cache efficiency.

4.2 Measuring Gather-Scatter

As mentioned in Chapter 2, using gather-scatter techniques to read and write to in-

dividual elements of a SIMD register can have significant performance hits. A set of

tests was written to measure the impact of these techniques when doing some simple

inter-vector operations. The results, shown in figure 4.3, give a convincing argument

for processing data as structure of arrays (SOA) and appose to arrays of structures

(AOS).

The form of the operation accumulate is to sum each individual element of the

vector and store that value back to each element, like so:

v = v . x+v . y+v . z+v .w

The length operations simply calculates the length of the vector and stores it back

to each index.

v = s q r t ( v . x∗v . x + v . y∗v . y + v . z∗v . z )

This clearly shows us that the overhead of shuffling into SOA is worth the eventual

payoff of being able to use SIMD instructions. The cost of gathering even renders

the accumulate operations slower than the serial implementation! In the ideal case

developers should consider storing there data initially as SOA in order to try avoiding

the shuffling process altogether; although this is not often easy to do.

The code for the above tests is included with this paper and provided a strong basis

from which to more vigorously test ISPC in a 3D application.
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Actions Average Gain
Accumulate
Length

30.5066 1.0533196095
33.615 3.0085676037

Actions Average Gain
Accumulate
Length

71.7531 0.4478301286
71.6955 1.4105906228

Actions Average
Accumulate
Length

32.1332
101.133

0

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Accumulate Length

3.009

1.053
1.411

0.448

Comparison of Using Shuffle and Gather-Scatter Techniques for inter-Vector Operations

T
im

es
 G
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n

Operation and Method
Gather-Scatter Shuffle

Serial

Gather-Scatter

Shuffle

Figure 4.3: Gather-scatter and shuffle tests done over 100 cycles on 10 million floats
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Chapter 5

Mesh Deformer: Case Study

The aim of the following case study is to show the gains the can be achieved from using

ISPC for 3D applications. Although the example is contrived it demonstrates the gains

that can be achieved by utilising SIMD instruction architecture.

5.1 The Application

The application itself is a mesh deformer preview window. It currently supports two

different types of mesh deformations. Perlin Noise and Radial Distance. The defor-

mation of meshes is a procedure common in the film industry. It can contribute to

specialist visual effects needed for a large variety of projects. Deformation of a large

number of points can become a costly process and is not always very usable for artists.

5.1.1 Radial Deformer

The radial deformer is a simple one that uses the distance of the point from a spherical

field origin as a way of moving. The formula for this deformation is:

δP = 3

√
r3+ | P −O |3. | P −O |

P −O
+O

Where r is the radius of the sphere field and o is the origin. P is the point being

deformed.

The effect of this deformation on a grid of points is shown in figure 5.1. This figure

shows the output of a serial implementation of the radial deformer. It should be noted

that this effect scales to a 3D mesh reliably.

5.1.2 Perlin Noise

In 1983 Ken Perlin set about creating “a primitive space-filling signal” that had vari-

ation and looked random [19]. Importantly however, this noise had to be controllable

so it could be used to design different aesthetic. This means that a table of indices

or the permutation table can be used to lookup into another table of pseudo-random
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Figure 5.1: Visual output of Radial deformer on grid. Serial Implementation.

numbers; in this case between -1.0 and 1.0. Perlin originally used this range to easily

“peturb things” using the values to “fuzz out”[19] the values close to zero

Figure 5.2 shows the effect of a Perlin Noise deformer applied as a height field to a

grid, implemented in Serial.

Figure 5.2: Visual output of noise deformer on grid. Serial Implementation

5.1.3 A Quick Profile

A profile of the serial implementations of the two deformers shows what areas consume

most of the applications execution time. The data was collected by simply profiling

main() and performing each deformation 20 times in succession.

• Total - 2025 samples
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• Radial - 342 samples

• Noise - 633 samples

This profile shows that the problem areas are as expected, the most computationally

heavy sections of code.

5.2 Injecting ISPC

In order to speed up the calculation of the deformations ISPC algorithms were imple-

mented to utilise the speed that the CPU offers. The main criteria for the output of

these implementations was the fidelity of the effect in comparison to the serial original.

Figures 5.3 and 5.4 show the radial and noise deformers implemented in ISPC.

Figure 5.3: ISPC implementation of Radial Deformer

The level of aesthetic similarity to the serial implementations is evident. Having

achieved results aesthetically, the calculation speed must be assessed. Initially, bench-

mark tests can be compared between both implementations. Figures 5.5 and 5.6 shows

the application output of benchmark timings for the deformers.

The radial deformer has gone from to while to noise deformer has gone from to .

To support this overwhelming improvement, the new profile can be taken for the

ISPC version that reflect these results.

• Total - 1566 samples

• Radial - 102 samples

• Noise - 189 samples
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Figure 5.4: ISPC implementation of Noise Deformer

Figure 5.5: Benchmark timing of Radial Deformer

It is clear to see that from using the width and speed of the CPU to calculate

operations of some algorithmic complexity massive performance gains can be seen. By

compounding several atomic operations on a large data set, as shown in calculating

Perlin Noise, the CPU can be cache efficient and use SIMD instructions effectively.
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Figure 5.6: Benchmark timing of Noise Deformer
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Chapter 6

Conclusion

Overall, the findings of the research conducted for this paper were fairly conclusive.

Initially it was identified that SSE intrinsics are often difficult to develop and maintain;

they are also even more difficult to integrate with existing applications. For this reason

the recently released ISPC was chosen as the focus for exploration. The idea of a pro-

grammable CPU being analogous to GPGPU is, at first somewhat counter-intuitive.

However, once developers fully grasp how machine architecture can be used, a compiler

like ISPC begins to make more sense. It has been shown that ISPC aims to be extend-

able to future architectures and although some shuffling procedures limit this facility,

future versions are expected to automate this process.

Initial benchmark testing showed that, given the optimum memory size SIMD in-

structions can perform between three and four times quicker than serial operations.

Using structures of arrays to avoid complicated data accessing or shuffling also speed

the process up and ultimately a 3D application like the one shown in Chapter 5 can be

sped up considerably.

Among the recent trend toward GPGPU, the CPU can often get forgotten about as

a utility for speed. Much like the GPU however, its capacity for performance is growing.

In the next few years Intels AVX, 256-bit wide architectures will become accessible for

developers, and there is a lot of potential for advanced CPU usage. One example of

this has already been developed by Intel with their real-time ray tracer Embree [13].

Ultimately, the kind of speed gains shown in Chapter 5 are integral for the film

industry. Rendering is notoriously expensive and costs thousands of server-hours from

production to production. Pixar, in their latest release of Renderman implemented a

large SIMD backend to improve performance. Many companies have code bases that

are becoming legacy and tools that do not operate as quickly as desired. 1 This paper

shows that through General-Purpose CPU programming using ISPC, 3D applications

can benefit enormously.

1Ideally real-time
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Chapter 7

Appendices

Appendix A

1. Conventional Method for Loading Aligned Data for Processing in SIMD

// load a l a r g e data s e t to 128 b i t r e g i s t e r s
// to more q u i c k l y square them
f loat ∗ data = getData ( ) ;

m128 packedData = ( m128 ∗) data ;

for ( int i = 0 ; dataS i ze / 4 ; ++i )
{

packedData [ i ] = mm mul ps ( packedData [ i ] ,
packedData [ i ] ) ;

}

f loat ∗ processData ;
mm load ps ( processedData , packedData ) ;

2. Typical Shuffling Code

s h u f f l e code

3. Example Program to Demonstrate Profiling

#define DATASIZE 100000000

int main ( )
{

P r o f i l e r S t a r t ( ”path/ to / sample . p ro f ” ) ;

// l o o p s to run the program
// again f o r l a r g e r sample s i z e

for ( int c y c l e = 0 ; c y c l e < 20 ; ++c y c l e )
{

std : : vector<f loat> data ;

for ( int i = 0 ; i < DATASIZE; ++i )
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{
data . push back ( ( f loat ) i ) ;

}

// the range o f our clamped data
f loat oldMax = 1 . 0 ;
f loat oldMin = 0 . 0 ;

// the range we want to map to
f loat newMin = 1 0 . 0 ;
f loat newMax = 1 0 0 . 0 ;

for ( int i = 0 ; i < DATASIZE; ++i )
{

data [ i ] = clamp ( data [ i ] , 0 . 0 , 1 . 0 ) ;
data [ i ] = remap ( data [ i ] ,

oldMin , oldMax ,
newMin , newMax ) ;

}
}

P r o f i l e r S t o p ( ) ;
P r o f i l e r F l u s h ( ) ;

return 0 ;
}

4. Naive Clamp and Remap Implementations

f loat clamp ( f loat a , f loat min , f loat max)
{

f loat tmp = std : : max(min , a ) ;
return std : : min (max , tmp ) ;

}

f loat vremap (
f loat in ,
f loat oldMin ,
f loat oldMax ,
f loat newMin ,
f loat newMax
)

{
return ( in − oldMin ) / ( oldMax − oldMin ) ∗

(newMax − newMin) + newMin ;
}

5. New Form Clamp Without Min/Max

f loat r e t = 0 . 0 ;
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i f ( a > max )
r e t = max ;

else i f ( a < min )
r e t = min ;

else
r e t = a ;

return r e t ;

6. Interface for a Simple Robust Benchmark Timer

c l a s s Record
{
pub l i c :

Record ( ) ;
f loat m secs , m best , m worst , m total , m cyc les ;
t imeva l m startT , m endT ;

} ;

c l a s s Timer
{
pub l i c :

Timer ( ) ;

void s t a r tCyc l e ( const std : : s t r i n g & recordName ) ;
void endCycle ( const std : : s t r i n g & recordName ) ;

i n l i n e f loat peek ( const std : : s t r i n g & recordName )
{ . . . }

void addRecord ( const std : : s t r i n g & name ) ;

void writeToCSV (
const std : : s t r i n g & f i l e ,
const std : : s t r i n g & recordName ) ;

void writeAllToCSV ( const std : : s t r i n g & f i l e ) ;
s td : : s t r i n g getRecord ( const std : : s t r i n g & recordName ) ;
std : : s t r i n g ge tA l l ( ) ;

p r i v a t e :
s td : : map<std : : s t r i ng , Record> m records ;

} ;
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