

1

MASTER PROJECT THESIS

REAL-TIME VOLUME RENDERING FOR
SCIENTIFIC VISUALIZATION

Min Jiang

MSc Computer Animation and Visual Effects

NCCA, Media School, Bournemouth University

18th August, 2011

Real-time Volume Rendering for Scientific Visualization
 Contents

II

Contents

CONTENTS .. II

ABSTRACT ...2

1. INTRODUCTION ..3

2. PREVIOUS WORK ...4

3. THEORY ...5

3.1 BASIC APPROACHES ... 5

3.2 VOLUME RENDERING INTEGRAL ... 6

3.3 TEXTURE SLICING .. 7

3.3.1 Object-Aligned Texture Slicing ... 8

3.3.2 View-Aligned Texture Slicing .. 11

3.3.3 Discussion .. 13

3.4 GPU-BASED RAY CASTING ... 14

4. IMPLEMENTATION ... 15

4.1 TEXTURE SET-UP ... 15

4.1.1 Texture Slicing Approach .. 17

4.1.2 Ray Casting Approach ... 17

4.2 GEOMETRY SET-UP .. 18

4.2.1 World Space, View Space, and Texture Space ... 18

4.2.2 Object-Aligned Slicing Method ... 19

4.2.3 View-Aligned Slicing Method .. 22

4.2.4 Ray Casting Method .. 24

4.3 TEXTURE MAPPING ... 26

4.3 CLASSIFICATION .. 27

Real-time Volume Rendering for Scientific Visualization

III

4.4 LOCAL ILLUMINATION MODELS ... 29

4.4.1 Blinn-Phong Illumination ... 30

4.4.2 Gradient-Based Illumination ... 32

4.4.3 Gradient Estimation .. 32

4.5 COMPOSITING .. 34

5. RESULT AND ANALYSIS ... 36

5.1 OBJECT-ALIGNED SLICING METHOD .. 36

5.2 VIEW-ALIGNED SLICING METHOD .. 39

5.3 RAY CASTING .. 44

5.4 EFFICIENCY COMPARISON ... 46

6. CONCLUSION .. 47

7. BIBLIOGRAPHY ... 49

Real-time Volume Rendering for Medical Visualization Abstract

2

Abstract

Volume rendering techniques allow high quality visualization of volumetric data

sets, and have so far been widely used in the realm of medicine, geosciences and

engineering. This project presents a framework for GPU-based direct volume

rendering methods. Both texture slicing and ray casting methods will be discussed.

For slice-based methods, the predominant proxy geometries are either

view-aligned or object-aligned slices. Since the object-aligned technique causes

visible artifacts, due to different adjacent sampling distances from perspective

view angle, a view-aligned technique has been implemented to achieve a better

result. With the increasing pace on the evolution of graphic hardware, a

GPU-based ray casting method has been developed to meet the criteria for an ideal

volume rendering. The volume shaders implemented for ray casting method in this

work are single-pass ray casting.

Key words: volume rendering, slice-based, object-aligned, view-aligned, ray

casting, transfer function

Real-time Volume Rendering for Medical Visualization Introduction

3

1. Introduction

Volume visualization plays an important role in both academic and industry

domains. In addition to modeling and rendering volumetric phenomena, such as

fluids, clouds, smoke, fire and dust, volume rendering is essential to scientific and

engineering applications that are required to measure or generate 2-D projections

of a colored semitransparent volume by sampled functions (Pawasauskas 1997).

Medical scans (CT, MRI), 3D photography and mechanical simulation are all

typical examples of the complex volume data which need to be visualized, stored,

or transmitted (Lee Desbrum Schroder 2003).

In general, there are two different kinds of volume visualization techniques. One is

visualizing volumetric data by extracting iso-surfaces from discrete

three-dimensional data, called indirect volume rendering, such as the classical

marching cubes algorithm (Lorensen and Cline 1987). The main disadvantage of

this method is that the use of surface configurations of cubes causes wrong surface

production and hole generation (Jin et al 2006). Also, for high resolution volume

data the number of generated triangles can be extremely high, thus the

computation cost is quite expensive. The other kind of visualization technique is

direct volume rendering, where algorithms map each voxel (an individual

volume element, as pixel for “picture element”) to optical properties, such as color,

opacity and gradient vector, rather than dealing with geometric surfaces from the

Real-time Volume Rendering for Medical Visualization Previous work

4

volume. Direct volume rendering has proven to be more robust and flexible than

the indirect ones in visualization methods for three-dimensional scalar fields

(Engel et al 2006). In this project, we will focus on the direct rendering methods.

2. Previous work

Since the basic principle of volume rendering was introduced by Kajiya (1984),

most of the work in direct volume visualization were driven by the evolution of

new graphic processors. The RealityEngine graphics system led to the

establishment of the so-called slicing methods (Akeley 1993). Subsequently,

application on PixelFlow graphics system overcomes the limitation imposed by

RealityEngine, accelerating the interactive frame rates (Cullip and Neumann

1993). Ray casting has been a well-known method for CPU-based volume

rendering since the 1980s (Levoy 1988). However, GPU- based ray casting is still

quite a new exploration with its first implementation in 2003 (Rottger et al 2003).

The reason for the late development of GPU-based ray casting is that the advanced

fragment shader functionality was not available earlier (Kajiya 1984). With more

advanced texture mapping capabilities of today's graphics hardware, many

enhancements to the ray casting principle have been proposed to “increase the

interactivity and applicability of the method” (Weiler et al 2003). Also, some

acceleration techniques proposed for the original ray casting approach, such as

early ray termination and empty space skipping have been successfully adopted to

Real-time Volume Rendering for Medical Visualization Theory

5

texture-based direct volume rendering (Kruger and Westermann 2003) (Li,

Mueller and Kaufman 2003) .

3. Theory

3.1 Basic Approaches

Direct volume rendering can be further classified as either image-order or

object-order methods (Engel et al 2006). Image-order approaches generate the

final image pixel-by-pixel casting a ray from each pixel, and re-sampling the

volume along each ray at evenly located sample points, the most popular

image-based method is ray casting. On the other hand, object-order methods

follow a certain organized scheme to scan the 3D volume voxel by voxel in its

object space. The traversed volume areas are then projected onto the image plane.

The typical example of the object-order method is texture slicing, which is also a

dominant technique for GPU-based volume rendering. There are other

object-order methods such as shear-warp volume rendering (Csebfalvi Konig and

Groller 2000) , splatting (Westover 1990) and cell projection (Shirley and

Tuchman 1990).

In the following sections we will mainly discuss the ray-casting and texture slicing

methods. They are both GPU-based direct volume rendering approaches.

Real-time Volume Rendering for Medical Visualization Theory

6

3.2 Volume Rendering Integral

Direct volume rendering by its nature deals with transparent objects. Before

rendering a translucent volume, we need to know the interaction between light and

volume, including absorption, scattering, or emission. When the light is passing

through the volume, the interaction needs to be evaluated at all positions in the 3D

volume.

An optical model is used to describe the behaviors of light transportation

(Moreland 2004). During rendering, the optical model assigns optical properties,

such as color and opacity, to each voxel. The most commonly used model is the

emission-absorption optical model:

I(D) = I0e−∫ k(t)dtD
S0 + ∫ q(s)D

S0
e−∫ k(t)dtD

S ds (3.1)

In which, k is the absorption coefficient and q describes the emission. The

integration shows the light information from the entry point S0 to the exit point D.

More complex one contains shadows and illuminations, which account for light

scattering effects. (Engel et al 2006)

For discrete volume rendering, each voxel corresponds to a position in the data

space. The optical properties are accumulated along each viewing ray to form a

projection of the 3D volume data. The accumulated color and opacity are

computed according to the discrete volume rendering equation:

Real-time Volume Rendering for Medical Visualization Theory

7

C = ∑ Ci ∏ (1 − Aj)i−1
j=1

n
i=1 (3.2)

A = 1 −∏ (1 − Aj)n
j=1

In which, Ci and Ai are the color and opacity of the voxel at sample i. Opacity

Ai evaluates the absorption, while color Ci approximates the emission which is

opacity-weighted by Ai. Because Equation (3.2) is a numerical approximation to

the continuous optical model as Equation (3.1), the sampling rate, the length of

ray segment between sample i and sample i+1, has a great influence on the

“accuracy of the approximation and the quality of the rendering” (Fernando 2004).

3.3 Texture Slicing

Texture slicing techniques approximate the volume rendering integral by rendering

a stack of geometric primitives inside the volume. These geometric primitives

(usually polygonal slices) only represent a proxy geometry, as shown in Figure 3.1.

They only describe the shape of the data domain, usually the bounding box, not

the shape of the object contained in the data.

Figure 3.1. Proxy geometry

The proxy geometry is rasterized and blended into the frame buffer in back-to

Real-time Volume Rendering for Medical Visualization Theory

8

front or front-to-back order. This process is called compositing, which will be

looked at in detail in Section 4. In fragment shader, the calculated texture

coordinate are used as a texture lookup. Each geometric primitive is assigned

texture coordinates for sampling the volume texture. By projecting a high number

of semi-transparent slices onto the image plane according to the compositing

scheme, a 3D data set can be visualized. Texture slicing is widely used and very

efficient because it only needs texture support and blending. According to the

direction of the slices, it can be further categorized into Object-aligned texture

slicing and View-aligned texture slicing methods.

3.3.1 Object-Aligned Texture Slicing

In Object-aligned slicing method (also referred as axis-aligned slices), the proxy

geometry are oriented along with one of the major axes in object space.

Figure 3.2. Object-aligned slices used as proxy geometry

At the beginning of the implementation, volume data is loaded into OpenGL and

Real-time Volume Rendering for Medical Visualization Theory

9

volume texture. The proxy geometry are initialized as six stacks of slices,

respectively aligning with six axis (including positive and negative). After

initialization, the polygonal slices are mapped with the respective 3D texture

according to the texture coordinates. To allow the interactive rotation of the

volume data, every time the viewing angle changes, the direction of the proxy

geometry must be chosen again. The major axis must be selected “in a way that

minimizes the angle between the slice normal and the viewing direction” (Engel et

al 2006). This will effectively avoid viewing slices parallel to the viewing angle,

which will results in none sample while intersecting. Therefore, with an angle

larger than 45o, the stacks must be switched. When the angle between viewing

direction and the slice normal is 45o, the slicing direction will become ambiguous

and can be chosen arbitrary.

The main advantages of the object-aligned slicing method are its simple concept

and its high speed performance. However, it comes with several drawbacks. The

sampling rate is depended on the distance between two slices. Once the distance is

fixed, the sampling is fixed. It is easy to assume that the sampling points along the

viewing direction have a fixed distance, resulting in a constant sampling rate.

However, when applying a perspective projection, the distance between adjacent

sampling points depends on the angle at which the assumed viewing ray intersects

the slices (see Figure 3.3).

Real-time Volume Rendering for Medical Visualization Theory

10

As a consequence, the result will only be accurate when the direction of viewing

ray is perpendicular to the slices. The varying sampling distance with the view

angle leads to visible artifacts, as shown in Figure 3.4. This shows two different

sampling results due to slightly different viewing angles. We can increase the

sampling rate to alleviate the artifacts and improve the image quality, but it doesn’t

solve the problem fundamentally, and also, the higher sampling rate is at the cost

of the computational complexity. In addition to the sampling artifact, the abrupt

change of the stacks at 45o results in flicking because the sharply shift of the

sampling positions.

Figure 3.4. Aliasing artifacts of object-aligned slicing method

Figure 3.3.The distance between adjacent sampling points (Salama 2006)

Real-time Volume Rendering for Medical Visualization Theory

11

Due to the limited options available to improve the method, we turn to the

view-aligned slicing method which will completely circumvent this problem.

3.3.2 View-Aligned Texture Slicing

The view-aligned slicing method achieves a more consistent sampling rate for

different viewing directions by using viewport-aligned slices. This means the

volumetric object is cut into slices orthogonal to the view direction, shown as

Figure 3.5. The proxy geometry must be recomputed as long as the viewing

direction changes. Because there is no abrupt change of slicing stacks, the

flickering artifacts have been removed.

Figure 3.5.View-aligned slices used as proxy geometry

In parallel projection, the consistent sampling rate is been guaranteed (see Figure

3.6 (a) and (b)). In the case of perspective projection, the distance of sampling

points varies a bit (see Figure 3.6 (c)). However, it is only noticeable if the field of

view is extremely large. We will come across the same problem when we are

Real-time Volume Rendering for Medical Visualization Theory

12

doing ray casting. As long as the virtual camera views the volume object from a

certain far distance, the effect of the inconsistent sampling rate is hardly visible.

View aligned slices are first drawn in view space and subsequently the

corresponding coordinates are calculated in the world space. By intersecting the

slices with the volume bounding box, we can decide which parts of these slices are

within the texture bounding box. The outside parts will be discarded in the

fragment shader, considering we can’t add or remove any vertex in vertex shader.

For each pixel of the slices, the corresponding 3D texture coordinate is calculated

in fragment shader, and the color and opacity will be assigned by the texture.

Compared with the object-aligned slicing approach, the view-aligned slicing

method has proved superior in term of image quality, “removing some of the

significant drawbacks while preserving almost all the benefits” (Engel et al 2006).

(a) (b) (c)
 Figure 3.6.Sampling distance of view-aligned slices (Salama 2006)

Real-time Volume Rendering for Medical Visualization Theory

13

3.3.3 Discussion

Texture slicing volume rendering techniques owe their success and popularity to

the fast sampling and high rasterization performance of hardware, and moreover

the basic rendering principle are quite simple to understand and implement.

However, texture slicing volume rendering has a number of significant drawbacks,

especially for large volume data sets. Since the number and the position of slices

directly determine the rendering quality, the texture slicing approach will be

strongly influenced by the complexity of the data sets. While in volume rendering,

CT or MRI scan could be extremely large and in general it is common that a

significant number of fragments does not contribute to the final image because are

complete transparent or invisible. Furthermore, most volume rendering

applications only focus on visualizing boundaries of objects or selected interesting

regions. Therefore, texture slicing approaches are “rasterization-limited and can be

hardly optimized from algorithmic point of view”. (Stegmaier et al 2005)

On the other hand, the evolution of the modern programmable GPU and associated

interfaces such as OpenGL, have led to novel graphics processors which provide

an ideal platform for efficient ray casting implementations for volume rendering.

The fragment shader of ray casting does not suffer from the flexibility issues.

Furthermore, advanced fragment program promises a faster functionality that

attracts lots of hardware manufacturers, which guarantee the advance of the

Real-time Volume Rendering for Medical Visualization Theory

14

technique. According to these advantages, ray casting can be assumed as a

future-proof approach for volume visualization.

3.4 GPU-based Ray Casting

The basic ray casting concept is to trace the rays from the camera to the volume

and evaluate the volume rendering integral along the rays. The main advantage is

that these rays are traced independently from each other through the volume. This

gives more flexibility for implementing optimization strategies, such as “early-ray

termination, adaptive sampling, and empty space skipping.” (Engel et al 2006)

Figure 3.7. Ray casting principle (Salama 2006)

In this project, single-pass GPU ray casting has been implemented. For each pixel

of the bounding box of the volume data, a single ray is built from the camera. The

volume data is re-sampled at discrete positions along the ray. The scalar values of

the volume data are mapped to optical properties by accumulating light

information along the ray. The ray-casting algorithm can be described by the

Real-time Volume Rendering for Medical Visualization Implementation

15

pseudo code in Listing 3.1. The detail of implementation will be presented in the

next section.

Listing 3.1. pseudo code for ray casting

4. Implementation

The implementation of volume rendering in this project consists of three major

parts: a framework for the texture slicing approach, including both object-aligned

slicing and view-aligned slicing methods, and a framework for the ray casting

approach. They are all written in C++ with Qt and based on OpenGL and NGL

libraries. The implementation of each framework has been introduced based on the

volume rendering pipeline in the following sections.

4.1 Texture Set-up

A number of volume data sets have been implemented to illustrate the flexibility

of the framework, such as Foot, Teapot, Engine, Skull, etc. The dataset library is

Compute volume entry position
Compute ray direction
While the ray position is in the volume
 Lookup the data value at current position

Compositing the optical properties
 Update the position along the ray
End while
Draw pixel colour

Real-time Volume Rendering for Medical Visualization Implementation

16

courtesy of University of Tübingen (2005). All the datasets are binary, storing 8 bit

voxels for all slices and voxels in raw format.

First, we need to load the volume data into a 3D texture. Above all, the data is

loaded from the raw file into an array buffer, then the array is passed into local

graphics memory using glTexImage3D function. The internal format is set to

GL_INTENSITY, which means that the emission or absorption values are stored

as an intensity value for each voxel.

(a) (b)

Figure 4.1.texture loading

One thing that needs to be noted here is that if the first and the last slice contain

data, we need to clear them with 0, otherwise this might cause problems when we

render the data using ray casting method, shown as Figure 4.1. The tree in Figure

4.1 (a) seems “leak out” from the cube, after clearing the end slices, the problem

has been fixed as Figure 4.1 (b).

Real-time Volume Rendering for Medical Visualization Implementation

17

In this project, all the texture datasets are loaded when OpenGL is initialized,

including the transfer function texture, which will specified later. Therefore, when

the texture data is passed into graphics card, we need to tell the GPU which

texture is used as the volume one, and which is for transfer function. In this case,

glActiveTexture function is used to control which texture unit will affect. Each

texture unit is assigned with a texture ID and glActiveTexture (textureID) selects

the active texture unit. The number of texture units available is hardware

dependent.

4.1.1 Texture Slicing Approach

For the texture slicing approach, the textures are prepared for stacks of slices.

During rasterization, each slice is textured with the optical properties directly from

its corresponding 3D texture map.

4.1.2 Ray Casting Approach

For the ray casting approach, the texture is mapped with the ray samples within

the bounding box of volume data rather than stacks of slices. The ray is just a

virtual beam as a visual cue intersecting with objects, so it deals with non-planar

surfaces or solids.

Real-time Volume Rendering for Medical Visualization Implementation

18

4.2 Geometry Set-up

This component mainly corresponds to the data-traversal step, which builds up the

polygonal slices or ray samples to perform the intersection with the volume data

and determines the sampling positions.

4.2.1 World Space, View Space, and Texture Space

Before talking about setting up the geometry, we need to specify the three different

spaces which will be used in the following sections. Figure 4.2 shows the

relationship between each other. Once an object has been created, each vertex of

the object will have a relative coordinate to its centre in Object Space, and also, a

relative position to the origin of the world, which is obtained by multiplying the

Model Matrix with the model space coordinates. Therefore, the Model Matrix

contains the object transformation in the World Space. To see the object, a virtual

camera is introduced into the world, which gives the object a relative position to

the camera, called View Space, which is computed through View Matrix. Therefore,

all the object and camera transformations are stored in ModelView Matrix. It

presents the transformation from the World Space coordinate system of the volume

object into the View Space. The Projection Matrix is used to get the projection of

the object onto the image plane.

The Texture Space is used at the texture-mapping stage. To bind the volume

Real-time Volume Rendering for Medical Visualization Implementation

19

texture with the object, we need to know the texture coordinate of each vertex to

get the color and opacity information for the vertex of the object.

Figure 4.2.Relationship between spaces

4.2.2 Object-Aligned Slicing Method

In object-aligned slicing method we pre-computed and stored six stacks of slices

along each axis in a bounding box. The bounding box confined the number of

slices and their distances. These slices were a high number of equidistant planes

which were equally-sized and equally-oriented in each direction. When we were

drawing the polygonal slices, we need to choose the major axis to minimize the

angle between the slice normal and the viewing direction.

Axis selection: To calculate the viewing direction relative to the volume object,

the ModelView Matrix must be obtained from the current OpenGL state. The

viewing direction of the camera in Object Space is originally in the negative z-axis

direction. It needs to be transformed into World Space by multiplying the

Object
Space

Word
Space

Model
Matrix

View
Space

View
Matrix

ModelView
Matrix

Texture
Space

Texture Mapping

Projection
Matrix

Image
Plane

Real-time Volume Rendering for Medical Visualization Implementation

20

ModelView Matrix. The corresponding stack of slices is then chosen according to

the maximum component of the transformed viewing vector.

To show the slice movement with the corresponding texture, the intersections of

the slice and the bounding box have been displayed. To calculate the position of

the intersections, we performed the ray-plane intersection algorithm. In this

approach, the slice is defined by three vertices, and the bounding box of the

volume texture is regarded as a combination of 12 edges. To find the intersections,

we basically repeated the ray-plane intersection algorithm for 12 times. The

method is inspired by Sunday (2001), but much simpler and more efficient for this

project.

Ray-Plane Intersection Assume a ray from P0 to P1 , which are the two

endpoints of each edge. Three vertices V0, V1 and V2 form a plane. The normal

vector of the plane n�⃗ can be computed by the cross product of two vectors within

the plane.

n�⃗ = (V2 − V0) × (V1 − V0) (4.1)

Then, we calculate the direction of the ray, which is defined as:

p�⃗ = P1 − P0 (4.2)

If n�⃗ ∙ p�⃗ = 0, which mean n�⃗ and p�⃗ are perpendicular, the direction of the ray is

parallel to the plane, thus there is apparently no intersection between the ray and

plane.

Real-time Volume Rendering for Medical Visualization Implementation

21

Figure 4.3. Ray-Plane Intersection algorithm

Another situation we need to exclude is that they do have a intersection, but it is at

the extension line of the ray, which means it already exceeds the length of the edge.

Assume the intersection is P, shown as Figure 4.3. We first calculate the dot

product of the ray and the plane normal, which is the projection of P0P1��������⃗ on n�⃗ ,

then we need the projection of P0P������⃗ on n�⃗ . By comparing these two projections,

we get the ratio of these two vectors. If the ratio is between 0 and 1, it means P is

along the ray from P0 to P1. However, we don’t know the position of P. In fact,

the vector can be alternately obtained from computing the projection of P0V0��������⃗ on

n�⃗ , because both V0 and P are within the plane. They share the height from one

point to the plane. Finally, the position of P can be easily obtained as Equation 4.4.

The Ray-Plane Intersection algorithm is described by the pseudo code in Listing

4.1.

P1

V1

V0

V2

P

P0

h1

h2

n�⃗

Real-time Volume Rendering for Medical Visualization Implementation

22

h2 = p�⃗ ∙ n�⃗ h1 = P0V0��������⃗ ∙ n�⃗ ratio = h1/h2 (4.3)

P = P0 + P0P1��������⃗ ∙ ratio (4.4)

Listing 4.1. pseudo code for Ray-Plane Intersection algorithm

4.2.3 View-Aligned Slicing Method

For the view-aligned slicing method, the geometry set-up component created

view-aligned slices. It is assumed that the intersection calculation was performed

on the GPU because the slices were originally drawn in the View Space.

Calculating the World Space coordinates of view-aligned planes in the bounding

box is a more complicated task. Polygonal slices were first drawn along the view

direction in View Space (See Figure 4.4). Therefore, in vertex shader, the vertex

position was obtained by only multiplying with the Projection Matrix. In fragment

shader, we derived this proxy geometry by projecting the vertexes back to the

World Space using the inverse of the ModelView Matrix. Consequently, the

resulting quadrilateral is viewport-aligned.

Compute the normal of the plane
Compute the direction of the ray
If the direction of the ray is perpendicular to the normal
 No intersection
Computer two projections
If the ratio>1 or ratio<0
 The intersection exceeds the length of the edge
Else
 Compute the position of the intersection

Real-time Volume Rendering for Medical Visualization Implementation

23

Figure 4.4. Depth Calculation for view-aligned slicing

Depth computation: The z-axis coordinate of the slices in View Space were

specified by a uniform parameter depth in vertex shader, which was updated for

each slice to be rendered. Because the slices were at first drawn in the View Space,

so we need to calculate the corresponding range of depth to make sure all the

volume data in the bounding has been covered. The size of the bounding box was

controlled by two uniform parameters mMin and mMax passed from CPU. In our

project, all the bounding box was set as a unit cube with the centre in the origin.

The depth of the bounding box from the camera was calculated by multiplying the

eight vertices with the ModelView Matrix. The minimum and maximum of the

eight z-axis coordinates comprised the depth of the slices. We did that in CPU to

avoid calculating the range for each vertex every time. The depth needed to be

updated when the ModelView Matrix changed.

Slices

Camera

Bounding box

minimum

maximum

Depth

Z axis
View Space

Real-time Volume Rendering for Medical Visualization Implementation

24

4.2.4 Ray Casting Method

For ray casting, the geometry set-up is mainly concerned with the parametric

set-up for the ray traversal. All the intersection calculation is performed in the

fragment shader.

Camera Position is used to calculate the ray direction as the starting point of the

ray. Since the camera is initially located at the origin in Object Space, the camera

position in World Space is computed by reversing the transformation dictated by

the ModelView Matrix.

The camera position needs to be set in a distance from the object, otherwise, it will

cause the inconsistent sampling rate mentioned by Section 3.3.2, which will then

lead to a distortion to the rendering object. To move the camera far away, then

increase the scale of the transformation stack, it will solve the problem.

(a) Distorted teapot (b) teapot without distortion

Figure 4.5. Distortion caused by the camera position

Real-time Volume Rendering for Medical Visualization Implementation

25

Ray Direction is calculated afterwards. The ray’s entry point to the volume data is

given by the vertex coordinate of the bounding box. We can get the vertex

positions also in World Space, therefore, we calculated the ray direction in the

World Space. As a consequence, the ray direction is a uniform vector from the

camera position to the entry point.

It is now possible to sample the volume data with a set of loop, allowing for an

overall number of 1024 iterations in this project. Because this process was related

to the volume texture and took part in Texture Space, the ray’s entry point used

here and all the texture sampling positions are the interpolated texture coordinates.

Loop: The ray evaluates the volume rendering integral when it traverses through

the volume data. The ray is sampled at discrete positions, and the traversal loop

scans the rays along these positions. For each iteration of the loop, the current

sample point performs the following subtasks: texture mapping, classification and

compositing. More information will be described in the following sections.

Subsequently, the current ray position is advanced to the next sampling location

along the ray by a specific step size.

Ray Termination: The traversal loop ends when the ray leaves the volume dataset.

Only when the current ray position is still in the volume, it enters next loop. The

texture coordinates are between (0,0,0) and (1,1,1). If the current coordinate is out

Real-time Volume Rendering for Medical Visualization Implementation

26

of this range, breaks out of the loop.

4.3 Texture Mapping

Texture mapping determines the sampling position and texture coordinates of the

vertices that need to be rendered. The operations basically interpolate or filter a

volume texture to obtain the color samples at specific location. The color samples

are usually scalar values between 0 and 1.

Volume rendering assumes a continuous 3D scalar field, which can be written as a

mapping

∅: R3 → R (4.5)

which is a function from 3D space to a single-component value (Fernando 2004).

In fragment shader, we use the simple function texture3D(VolumeTexture,

TexCoordinate) to get the sample color from the active 3D texture.

To get the texture coordinates, the world spatial position within the bounding box

is transformed into the Texture Space. We use the minimum and the maximum

vertices to denote the range of the bounding box in the World Space. To remap it

into the texture coordinates range from 0 to 1, we need to do an interpolation as

TexCoordinate = worldPos−min
max−min

 (4.6)

Real-time Volume Rendering for Medical Visualization Implementation

27

Before assigning color sample to each vertex, we can decide if the vertex is going

to be rendered or not using the fragment shader keyword discard. It terminates the

shader for the current fragment without writing to the frame buffer or depth

(Fernandes 2011). Hence, we can only render the fragment we are interested in. In

this project, we used discard in several ways. Firstly, we discarded the fragment

when the texture coordinate is not between (0,0,0) and (1,1,1). Secondly, we

discarded the fragment when the ray did not hit anything we were interested in.

Thirdly, we discarded the transparent fragment of the volume data.

4.3 Classification

Volume data set contains abstract scalar data values that represent some spatially

varying physical property, such as density, temperature, or strength. In general,

there is no natural way to obtain emission and absorption coefficients from such

data. Instead, the user needs to decide how the different structures in the volume

data should look by mapping locally measured data properties to optical properties.

This mapping method is called transfer function. Transfer functions are essential

to direct volume rendering because they make the data visible. “Good transfer

functions reveal the important structures in the data without obscuring them with

unimportant regions” (Kniss Kindlmann and Hansen 2002). “The process of

finding an appropriate transfer function is often referred as classification.” (Engel

et al 2006)

Real-time Volume Rendering for Medical Visualization Implementation

28

Transfer function design is a difficult and tedious task. It requires significant

insight into the underlying data set. The feature of interest is not easy to identify in

the transfer function domain. Moreover, it is difficult to isolate the interesting

regions because other regions may share the same range of the data values (Kniss

Kindlmann and Hansen 2002). The simplest and most common transfer functions

are one dimensional, and they assign color and opacity to the voxel data (Fernando

2004). Typically, transfer functions are implemented with 1D texture lookup

tables.

The first project illustrated three simple transfer functions to demonstrate the idea.

The first one only assigning the same color which is then weighted by the sample

colors (from texture mapping) to specify different regions of volume data. The

second one applies a commonly used 1D graph to map different domains with

different colors, shown as Figure 4.6. The alpha channel is separately assigned.

The third one applies a simple linear equation to emphasis the interesting part of

the dataset, shown as Equation 4.8. Since the range of gl_FragColor is between 0

and 1, the function actually only keep the scalar value from 0.3 to 0.5. The result

of the three transfer functions will be shown in Section 5.

Transfer Function 1: gl_FragColor = SampleColor × Color (4.7)

Transfer Function 2:

Real-time Volume Rendering for Medical Visualization Implementation

29

Figure 4.6. Graphic Transfer function

Transfer Function 3:

 gl_FragColor = (SampleColor − 0.3) × 2.0 × Color (4.8)

The second project used a 1D texture as the transfer function. The texture lookup

table is built in the CPU, then load into graphics memory with the function

texture1D(VolumeTexture, TexCoordinate) . The texture coordinate is the resulting

scalar value from texture3D function.

4.4 Local Illumination Models

Illumination models are used to improve the visual effect of the rendering objects.

Local illumination models only consider light that comes directly from the light

sources to the point being shaded. Every point is considered to be separated from

all the other pointsb(Fernando, 2004). Traditional local illumination models are

built upon the notion of the normal vector, which describes the local orientation of

a surface patch and locally approximates the light intensity reflected from the

surface of an object.

1

0

R G B

1/3 2/3 Scalar value

Color

Real-time Volume Rendering for Medical Visualization Implementation

30

4.4.1 Blinn-Phong Illumination

The most popular local illumination model in practice is the Blinn-phong model,

which computes the reflected intensity as a combination of three illumination

phenomenological approximations, ambient, diffuse and specular.

Iphong = Iambient + Idiffuse + Ispecular (4.9)

Figure 4.7. The Blinn-phong illumination model (Salama 2006)

The ambient light Iambient is modeled as a constant global light multiplied by the

ambient coefficient. It is used to light up the completely black region.

Iambient = kaIa (4.10)

The diffuse part of the model corresponds to the reflection of the surface, which is

equally in all directions. Its brightness only depends on the angle between the

direction of light I and the surface normal n. For view-aligned slicing, the

direction of the light, is the opposite vector of the view direction, while for ray

casting is the opposite vector of the ray direction.

Idiffuse = kdmax((I ⋅ n), 0) (4.11)

The specular lighting shows the reflection behavior of shiny surfaces, which cause

so-called specular highlights. While diffuse is a perfect mirror reflects light in

Real-time Volume Rendering for Medical Visualization Implementation

31

exactly one direction, the specular light is scattered around the direction of perfect

reflection, shown in Figure 4.7. To compute the specular light, vector h, which is

the halfway between the light direction and the eye direction, has been introduced.

For ray casting, because the light direction and the eye direction are all from the

camera to the surface point being shaded, so I is used instead of calculating h. For

view-aligned slicing method, the light position is set to be (1.5, 1.0, 1.0).

Ispecular = ksmax((h ⋅ n), 0)n (4.12)

In which the specular exponent n is called shininess of the surface, which controls

the size of the resulting highlights.

Figure 4.8 (a) shows the foot with the ambient light, (b) adds the diffuse light and

(c) displays the final rendering outcome of the illumination model including

ambient, diffuse and specular light.

(a) (b) (c)

Figure 4.8. The result Blinn-phong illumination mode

Real-time Volume Rendering for Medical Visualization Implementation

32

4.4.2 Gradient-Based Illumination

In order to use Blinn-phong illumination model to discrete volume data, the

external light is assumed to be reflected at iso-surfaces, which is the surface that

results from tracing a specific field value within a dataset, inside the volume data.

The normal used for shading a point is thus the unit vector which is perpendicular

to the iso-surface through that point. Considering that the gradient vector of the

scalar field points into the direction of greatest change, which is always

perpendicular to the surface, we estimate the gradient vector to approximate the

normal vector for local illumination. (Fernando, 2004)

The gradient vector is the first-order derivative of the scalar field, as Equation 4.13.

The normalized gradient is used as the normal, and the gradient magnitude is a

scalar quantity which describes the local rate of change in the scalar field (Engel

et al 2006).

∇f(x�⃗) = �∂f(x�⃗)
∂x

∂f(x�⃗)
∂y

∂f(x�⃗)
∂z �

T
 (4.13)

4.4.3 Gradient Estimation

There are various techniques to calculate the gradient from discrete volume data.

In our project the gradient estimation is computed in real-time on a per-pixel basis

in the fragment shader. There are variety of methods for estimate the directional

derivatives, such as finite differences and convolution filtering for gradient

Real-time Volume Rendering for Medical Visualization Implementation

33

estimation. They may have different complexity and accuracy according to the

different methods. Finite differencing scheme, as a fast and efficient method for

estimating gradients from discrete volume data, are used in our project.

Figure 4.9. Finite differencing schemes (Engel et al 2006)

The result of the first-order derivative of a 1D scalar function f(x) in the point xi

is called central differences with an approximation error (Engel et al 2006):

f ′(xi) = f(xi+1)−f(xi−1)
2h

+ o(h2) (4.14)

In which, xi+1 = xi + h, xi−1 = xi − h. h is the step size. The smaller h is, the

smaller the approximation error is. However, if h is too small, we may get artifacts,

shown as in Figure 4.10. The step size are separately 0.025, 0.01, 0.0025 and

0.0005. It is obvious that 0.025 is too big to get a proper output, while 0.0005 is

too small and result in visual artifaces.

(a) step size= 0.025 (b) step size= 0.01

Real-time Volume Rendering for Medical Visualization Implementation

34

(c) step size= 0.0025 (d) step size= 0.0005

Figure 4.10. Illumination mode with different step size of gradient calculation

Each of the three components of the gradient vector ∇f(x�⃗) = ∇f(x, y, z) is

proximate by a central difference, resulting in (Engel et al 2006)

∇f(x, y, z) ≈ 1
2h
�

f(x + h, y, z) − f(x − h, y, z)
f(x, y + h, z) − f(x, y − h, z)
f(x, y, z + h) − f(x, y, z − h)

� (4.15)

4.5 Compositing

Compositing is fundamental for the iterative computation of the discrete volume

rendering integral. It defines how the color values of the textured polygons that we

draw are successively combined to create the final rendition. The compositing

equation depends on the traversal order. The front-to-back iteration equations are

used when the viewing rays are traced from the eye position (camera) into the

volume. The back-to-front compositing scheme is used when the data set is

traversed from its backside.

Back-to-front compositing (Fernando 2004):

 C�i = Ci + （1 − Ai）C�i+1 (4.16)

Real-time Volume Rendering for Medical Visualization Implementation

35

A�i = Ai + （1 − Ai）A�i+1

Where Ci and Ai are the color and opacity obtained from the fragment shading

stage for sample i along the viewing ray, and C�i and A�i is the accumulated color

and opacity from the back of the volume.

Front-to-back compositing:

 C�i = �1 − A�i−1�Ci + C�i−1 (4.17)

A�i = �1− A�i−1�Ai + A�i−1

Where C�i and A�i is the accumulated color and opacity from the front of the

volume.

The compositing equations specify a combination of the RGBA quadruplet of an

incoming fragment (source) with the values already contained in the frame buffer

(destination). They are easily implemented with hardware alpha blending. If the

blending is disabled, the destination value will be replaced by the source value.

While the blending is enabled, the source and the destination RGBA quadruplet

are combined by a weighted sum forming a new destination value.

For the front-to-back compositing, the source blending factor is set to 1 and the

destination blending factor is set to (1- source alpha). It is important to note that

this blending set-up uses associated colors (Blinn 1994), which are already

weighted by their corresponding opacity. Therefore, OpenGL applications often

use a different equation for back-to-front blending, denoted

Real-time Volume Rendering for Medical Visualization Result and Analysis

36

C�i = Ai ∙ Ci + （1 − Ai）C�i+1

Therefore, the stand alpha blending setup is as followed

Which is used in this project.

5. Result and Analysis

The rendering result strongly depends on the structure of the data set, the chosen

transfer function, the current view direction, and the sampling rate. This section

will look at examples of some of the results achieved from the project, along with

an analysis on certain features.

5.1 Object-Aligned Slicing method

Transfer function

The three transfer functions mentioned in Section 4.3 were implemented by six

volume data sets. From the rendering outputs shown as bellowed, It can be

concluded that one transfer function may work well for certain volume data, but

may not suitable for the others. Therefore, transfer function needs to be modified

when applying to different data sets. The distance between adjacent slices for this

test is set to be 0.01, the wooden pattern artifacts can be seen clearly from some of

images.

glEnable (GL_BLEND);
glAlphaFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

Real-time Volume Rendering for Medical Visualization Result and Analysis

37

a) Foot

Function 1 Function 2 Function 3

b) tree

Function 1 Function 2 Function 3

c) engine

Function 1 Function 2 Function 3

Real-time Volume Rendering for Medical Visualization Result and Analysis

38

d) teapot

Function 1 Function 2 Function 3

e) aneurism

Function 1 Function 2 Function 3

f) skull

Function 1 Function 2 Function 3

Figure 5.1. Object-aligned slicing rendering results

Texture Slice

Textured slices can let the users observe more details inside the volume data. The

Real-time Volume Rendering for Medical Visualization Result and Analysis

39

major axis can be chosen from x, y, z axises and diagonal direction to fit the

different types of the volume data.

Figure 5.2. Object-aligned slicing rendering, showing single slice

5.2 View-Aligned Slicing method

The view-aligned slicing method adopted the Blinn-Phong illumination models.

Illumination Shader

Real-time Volume Rendering for Medical Visualization Result and Analysis

40

Figure 5.3. Illumination model

Multi-layer Shader

Iso-surface rendering achieves a good result in emphasizing the important features

of volume date, however, it suffers from the drawback of without preserving the

most information of the volume data. To overcome the single iso-surface’s

drawback, a combination of iso-surfaces and volume rendering test has been

implemented in this project to enrich the visualization effects. Different features

were extracted according to the varied scalar values sampled from the 3D texture.

0.04-0.055

Real-time Volume Rendering for Medical Visualization Result and Analysis

41

0.124-0.129

0.048-0.050

Real-time Volume Rendering for Medical Visualization Result and Analysis

42

0.08-0.12

Figure 5.4. multi-layer shader for view aligned slicing texture

The numbers besides the image are the color-sample ranges of the outside layers,

the iso-value of the inside layer can be controlled by the user from the interface.

1D Color-table Look-up Transfer Function

1D color table look up texture can simultaneously assign different colors to

different parts of one volume object, which can distinguish different features of the

volume data. The user needs to change the color array to correspondingly change

the 1D texture transfer function.

Real-time Volume Rendering for Medical Visualization Result and Analysis

43

Figure 5.5. 1D Transfer Function Texture of texture slicing method

Real-time Volume Rendering for Medical Visualization Result and Analysis

44

5.3 Ray casting

Illumination Shader

Illumination shader used for ray casting is quite similar with the view-aligned

slicing method. A series of foot images shown below illustrate the different

iso-surfaces with the different scalar value sampled from the 3D texture.

Figure 5.6. Illumination model animation

1D Color-table Look-up Transfer Function

The theory of color-table look-up transfer function for ray casting is the same with

the view-aligned approach.

Real-time Volume Rendering for Medical Visualization Result and Analysis

45

Figure 5.7. 1D Transfer Function Texture of ray casting

Multi-layer Shader

For ray casting, two kinds of multi-layer shaders have been implemented. One is

the combination of two iso-surfaces, the other one is the combination of the

iso-surface with 1D Color-table Look-up Transfer Function.

Real-time Volume Rendering for Medical Visualization Result and Analysis

46

Two iso-surfaces (tree) iso-surface& 1D Transfer Function Texture (tree)

 Two iso-surfaces (foot) iso-surface& 1D Transfer Function Texture(foot)

Figure 5.8. multi-layer shader for ray casting

5.4 Efficiency Comparison

The efficiency comparison between GPU-based ray casting and view-aligned

texture slicing methods are measured by the frame rates, see Table 5.1.

Real-time Volume Rendering for Medical Visualization Conclusion

47

 Texture Slicing Ray Casting
Step Size 0.01 0.001 0.01 0.001

Foot 36 5 131 23
Teapot 44 5 132 23

Aneurism 45 5 116 17
Tree 37 5 120 20
Skull 48 5 158 24

engine 41 5 146 21

Table 5.1. Comparison between texture slicing and ray casting volume rendering

approaches. The figures represent average frame rates.

With the same sampling rate for ray casting and texture slicing methods, the single

pass ray casting runs much faster than texture slicing. The reason why ray casting

is superior to texture slicing is mainly because ray casting only renders a single

polygon to generate the necessary fragments, while texture slicing deals with

thousands of polygonal slices. Ray casting performs a very low geometry

processing and fragment generation overhead.

6. Conclusion

In this project, I used volume rendering technique which doesn’t require any

specialized hardware to achieve real-time 3D modeling. Local illumination models

and transfer function have been used to improve the quality of rendering and

creating volumetric special effects. With the limited time to implement features,

there are some of the applications can be improved and a lot of work can be fit

into the current framework with future work.

Real-time Volume Rendering for Medical Visualization Conclusion

48

1) The efficiency of GPU-based volume rendering algorithm is always limited by

the ability of fragment processor because the major workload is handled by

fragment processor. When the sampling distance decrease, the number of fragment

needs to be processed will increase sharply, which will result in a very slow

interactive operation. With even more larger data sets, the higher sampling rate

and image resolution requires us to find way to access the volume data in an more

efficient way. One solution is by “performing ‘expensive’ computations and

accessing memory only selectively” and applied some advanced methods like

“leaping over empty space, skipping occluded parts, and termination of rays” to

help achieve the goal. (Engel et al 2006)

2) From this project, we can see that the 1D Color-table Look-up texture transfer

function can’t achieve a high resolution image. Moreover, 1D transfer function

can’t deal with data value with multiple boundaries. Therefore, there is now a

trend toward using multidimensional transfer function, which can capture the

relationship between multiple data values and create more stunning visualization

effects. (Kniss Kindlmann Hansen 2002) Curvature-based transfer function as a

multidimensional transfer function has received much attention recently.

(Kindlmann et al 2003) There is also a trend towards using gradient magnitude in

the transfer function domain, since it can be used to emphasis the domain where

has the biggest changes, thus the material boundaries can perform a strong visual

effects.

Real-time Volume Rendering for Medical Visualization Bibliography

49

7. Bibliography

Akeley, K., 1993. RealityEngine Graphics. SIGGRAPH ’93 Proceedings of the

20th annual conference on Computer Graphics and interactive techniques, NY:

ACM.

Blinn. J. F., 1994. Jim Blinn’s Corner: Image Compositing-Theory. IEEE

Computer Graphics and Applications. 14(5) 83-87.

Csebfalvi, B., Konig, A. and Groller, E., 2000. Fast Surface Rendering of Volume

Data. International Conference in Central Europe on Computer Graphics and

Visualization - WSCG ,

Cullip, T. J., Neumann, U., 1993. Accelerating Volume Reconstruction With 3D

Texture Hardware. Technical Report. NC: University of North Carolina at Chapel

Hill.

Engel, K., Hadwiger, M., Kniss, J. M., Rezk-Salama, C., 2006. Real-time volume

graphics. MA: A K Peters, Ltd.

Fernando, R., 2004. GPU Gems. US: NVIDIA Corporation.

Real-time Volume Rendering for Medical Visualization Bibliography

50

Fernandes, R. A., 2011. GLSL Tutorial. Available from:

http://zach.in.tu-clausthal.de/teaching/cg_literatur/glsl_tutorial/index.html

[Accessed 4 August 2011]

Jin, J., Wang, Q., Shen, Y. and Hao J., 2006. An Improved Marching Cubes

Method for Surface Reconstruction of Volume Data. Intelligent Control and

Automation. Dalian: WCICA

Kajiya, J. T., 1984. Ray Tracing Volume Densities. ACM SIGGRAPH Computer

Graphics. NY: ACM. 18(3) 165-174.

Kindlmann, G., Whitaker, R., Tasdizen, T. and Moller, T., 2003. Curvature-based

transfer functions for direct volume rendering: methods and applications. IEEE

Transactions on Ultrasonics Ferroelectrics and Frequency Control (2003),

513-520.

Kniss, J., Kindlmann, G. and Hansen, C., 2002. Multidimensional Transfer

Functions for Interactive Volume Rendering. IEEE Transactions on Visualization

and Computer Graphics, 8(3) 270-285.

Kruger J. and Westermann R., 2003. Acceleration Techniques for GPU-based

Volume Rendering. In Proceedings of IEEE Visualization '03. 2(3) 287-292.

http://zach.in.tu-clausthal.de/teaching/cg_literatur/glsl_tutorial/index.html�

Real-time Volume Rendering for Medical Visualization Bibliography

51

Lee, H., Desbrun, M., Schroder, P., 2003. Progressive Encoding of Complex

Isosurfaces. NY: ACM. ACM Transactions on Graphics (TOG)-Proceedings of

ACM SIGGRAPH 2003, 22(3).

Levoy, M., 1988. Display of Surfaces from Volume Data. IEEE Computer

Graphics Applications. 8(2) 29-37.

Li, W., Mueller, K. and Kaufman, A., 2003. Empty Space Skipping and Occlusion

Clipping for Texture-based Volume Rendering. In Proceedings of IEEE

Visualization'03, 317-324.

Lorensen, W. E., and Cline, H. E., 1987. Marching cubes: A high resolution 3D

surface construction algorithm. Computer Graphics, 21(4) 163-169.

Moreland, D. K., 2004. The Volume Rendering Integral. NM: University of New

Mexico Department of Computer Science. Available from:

http://www.cs.unm.edu/~kmorel/documents/dissertation/thesis_full/node8.html

[Accessed 4 August 2011].

Pawasauskas, J., 1997. Volume Visualization With Ray Casting. MA: Worcester

Polytechnic Institute. Available from:

http://web.cs.wpi.edu/~matt/courses/cs563/talks/powwie/p1/ray-cast.htm

http://www.cs.unm.edu/~kmorel/documents/dissertation/thesis_full/node8.html�
http://web.cs.wpi.edu/~matt/courses/cs563/talks/powwie/p1/ray-cast.htm�

Real-time Volume Rendering for Medical Visualization Bibliography

52

[Accessed 4 August 2011].

Rottger, S., Guthe, S., Weiskopf, D. and Ertl, T., 2003. Smart Hardware-

Accelerated Volume Rendering. VISSYM’s 03 Procceedings of the Symposium on

Data Visualization. 2(3) 231-238.

Salama, R. C., 2006. Real-Time Volume Graphics Tutorial. Available from:

http://www.real-time-volume-graphics.org/?page_id=28

[Accessed 4 August 2011].

Shirley, P. and Tuchman, A., 1990. A polygonal Approximation to Direct Scalar

Volume Rendering. Computer Graphics. 24(5) 63-70.

Stegmaier, S., Strengert, M., Klein, T. and Ertl, T., 2005. A Simple and Flexible

Volume Rendering Framework for Graphics-Hardware-based Raycasting. Volume

Graphics 2005, 187-241.

Sunday, D., 2001. Intersections of Rays, Segments, Planes and Triangles in 3D.

Available from:

http://softsurfer.com/Archive/algorithm_0105/algorithm_0105.htm#Segment-Plan

e . [Accessed 4 August 2011].

http://www.real-time-volume-graphics.org/?page_id=28�

Real-time Volume Rendering for Medical Visualization Bibliography

53

University of Tübingen, 2005. Volume Dataset Repository. Available from:

http://www.volvis.org/ [Accessed 4 August 2011].

Weiler, M., Kraus, M., Merz, M., Ertl, T. 2003. Hardware-Based Ray Casting for

Tetrahedral Meshes. In Procceedings of 14th IEEE Visualization 2003, 2(3)

333-340.

WestOver, L., 1990. Footprint Evaluation for Volume Rendering. Procc.

SIGGRAPH’ 90, Computer Graphics. 24(4) 367-376.

http://www.volvis.org/�

	Contents
	Abstract
	1. Introduction
	2. Previous work
	3. Theory
	3.1 Basic Approaches
	3.2 Volume Rendering Integral
	3.3 Texture Slicing
	3.3.1 Object-Aligned Texture Slicing
	3.3.2 View-Aligned Texture Slicing
	3.3.3 Discussion

	3.4 GPU-based Ray Casting

	4. Implementation
	4.1 Texture Set-up
	4.1.1 Texture Slicing Approach
	4.1.2 Ray Casting Approach

	4.2 Geometry Set-up
	4.2.1 World Space, View Space, and Texture Space
	4.2.2 Object-Aligned Slicing Method
	4.2.3 View-Aligned Slicing Method
	4.2.4 Ray Casting Method

	4.3 Texture Mapping
	4.3 Classification
	4.4 Local Illumination Models
	4.4.1 Blinn-Phong Illumination
	4.4.2 Gradient-Based Illumination
	4.4.3 Gradient Estimation

	4.5 Compositing

	5. Result and Analysis
	5.1 Object-Aligned Slicing method
	5.2 View-Aligned Slicing method
	5.3 Ray casting
	5.4 Efficiency Comparison

	6. Conclusion
	7. Bibliography

