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Abstract 

 

Volume rendering techniques allow high quality visualization of volumetric data 

sets, and have so far been widely used in the realm of medicine, geosciences and 

engineering. This project presents a framework for GPU-based direct volume 

rendering methods. Both texture slicing and ray casting methods will be discussed. 

For slice-based methods, the predominant proxy geometries are either 

view-aligned or object-aligned slices. Since the object-aligned technique causes 

visible artifacts, due to different adjacent sampling distances from perspective 

view angle, a view-aligned technique has been implemented to achieve a better 

result. With the increasing pace on the evolution of graphic hardware, a 

GPU-based ray casting method has been developed to meet the criteria for an ideal 

volume rendering. The volume shaders implemented for ray casting method in this 

work are single-pass ray casting. 

 

 

Key words: volume rendering, slice-based, object-aligned, view-aligned, ray 

casting, transfer function 
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1. Introduction 

Volume visualization plays an important role in both academic and industry 

domains. In addition to modeling and rendering volumetric phenomena, such as 

fluids, clouds, smoke, fire and dust, volume rendering is essential to scientific and 

engineering applications that are required to measure or generate 2-D projections 

of a colored semitransparent volume by sampled functions (Pawasauskas 1997). 

Medical scans (CT, MRI), 3D photography and mechanical simulation are all 

typical examples of the complex volume data which need to be visualized, stored, 

or transmitted (Lee Desbrum Schroder 2003). 

 

In general, there are two different kinds of volume visualization techniques. One is 

visualizing volumetric data by extracting iso-surfaces from discrete 

three-dimensional data, called indirect volume rendering, such as the classical 

marching cubes algorithm (Lorensen and Cline 1987). The main disadvantage of 

this method is that the use of surface configurations of cubes causes wrong surface 

production and hole generation (Jin et al 2006). Also, for high resolution volume 

data the number of generated triangles can be extremely high, thus the 

computation cost is quite expensive. The other kind of visualization technique is 

direct volume rendering, where algorithms map each voxel (an individual 

volume element, as pixel for “picture element”) to optical properties, such as color, 

opacity and gradient vector, rather than dealing with geometric surfaces from the 
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volume. Direct volume rendering has proven to be more robust and flexible than 

the indirect ones in visualization methods for three-dimensional scalar fields 

(Engel et al 2006). In this project, we will focus on the direct rendering methods.  

 

2. Previous work 

Since the basic principle of volume rendering was introduced by Kajiya (1984), 

most of the work in direct volume visualization were driven by the evolution of 

new graphic processors. The RealityEngine graphics system led to the 

establishment of the so-called slicing methods (Akeley 1993). Subsequently, 

application on PixelFlow graphics system overcomes the limitation imposed by 

RealityEngine, accelerating the interactive frame rates (Cullip and Neumann 

1993). Ray casting has been a well-known method for CPU-based volume 

rendering since the 1980s (Levoy 1988). However, GPU- based ray casting is still 

quite a new exploration with its first implementation in 2003 (Rottger et al 2003). 

The reason for the late development of GPU-based ray casting is that the advanced 

fragment shader functionality was not available earlier (Kajiya 1984). With more 

advanced texture mapping capabilities of today's graphics hardware, many 

enhancements to the ray casting principle have been proposed to “increase the 

interactivity and applicability of the method” (Weiler et al 2003). Also, some 

acceleration techniques proposed for the original ray casting approach, such as 

early ray termination and empty space skipping have been successfully adopted to 



Real-time Volume Rendering for Medical Visualization  Theory 

5 
 

texture-based direct volume rendering (Kruger and Westermann 2003) (Li, 

Mueller and Kaufman 2003 ) . 

 

3. Theory 

3.1 Basic Approaches 

Direct volume rendering can be further classified as either image-order or 

object-order methods  (Engel et al 2006). Image-order approaches generate the 

final image pixel-by-pixel casting a ray from each pixel, and re-sampling the 

volume along each ray at evenly located sample points, the most popular 

image-based method is ray casting. On the other hand, object-order methods 

follow a certain organized scheme to scan the 3D volume voxel by voxel in its 

object space. The traversed volume areas are then projected onto the image plane. 

The typical example of the object-order method is texture slicing, which is also a 

dominant technique for GPU-based volume rendering. There are other 

object-order methods such as shear-warp volume rendering (Csebfalvi Konig and  

Groller 2000) , splatting (Westover 1990) and cell projection (Shirley and 

Tuchman 1990). 

 

In the following sections we will mainly discuss the ray-casting and texture slicing 

methods. They are both GPU-based direct volume rendering approaches. 
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3.2 Volume Rendering Integral 

Direct volume rendering by its nature deals with transparent objects. Before 

rendering a translucent volume, we need to know the interaction between light and 

volume, including absorption, scattering, or emission. When the light is passing 

through the volume, the interaction needs to be evaluated at all positions in the 3D 

volume. 

 

An optical model is used to describe the behaviors of light transportation 

(Moreland 2004). During rendering, the optical model assigns optical properties, 

such as color and opacity, to each voxel. The most commonly used model is the 

emission-absorption optical model: 

I(D) = I0e−∫ k(t)dtD
S0 + ∫ q(s)D

S0
e−∫ k(t)dtD

S ds    (3.1) 

In which, k is the absorption coefficient and q describes the emission. The 

integration shows the light information from the entry point S0 to the exit point D. 

More complex one contains shadows and illuminations, which account for light 

scattering effects. (Engel et al 2006)  

 

For discrete volume rendering, each voxel corresponds to a position in the data 

space. The optical properties are accumulated along each viewing ray to form a 

projection of the 3D volume data. The accumulated color and opacity are 

computed according to the discrete volume rendering equation: 
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C = ∑ Ci ∏ (1 − Aj)i−1
j=1

n
i=1     (3.2) 

A = 1 −∏ (1 − Aj)n
j=1      

In which, Ci and Ai are the color and opacity of the voxel at sample i. Opacity 

Ai evaluates the absorption, while color Ci approximates the emission which is 

opacity-weighted by Ai. Because Equation (3.2) is a numerical approximation to 

the continuous optical model as Equation (3.1), the sampling rate, the length of 

ray segment between sample i and sample i+1, has a great influence on the 

“accuracy of the approximation and the quality of the rendering” (Fernando 2004). 

 

3.3 Texture Slicing 

Texture slicing techniques approximate the volume rendering integral by rendering 

a stack of geometric primitives inside the volume. These geometric primitives 

(usually polygonal slices) only represent a proxy geometry, as shown in Figure 3.1. 

They only describe the shape of the data domain, usually the bounding box, not 

the shape of the object contained in the data.  

 

Figure 3.1. Proxy geometry 

The proxy geometry is rasterized and blended into the frame buffer in back-to 
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front or front-to-back order. This process is called compositing, which will be 

looked at in detail in Section 4. In fragment shader, the calculated texture 

coordinate are used as a texture lookup. Each geometric primitive is assigned 

texture coordinates for sampling the volume texture. By projecting a high number 

of semi-transparent slices onto the image plane according to the compositing 

scheme, a 3D data set can be visualized. Texture slicing is widely used and very 

efficient because it only needs texture support and blending. According to the 

direction of the slices, it can be further categorized into Object-aligned texture 

slicing and View-aligned texture slicing methods.  

 

3.3.1 Object-Aligned Texture Slicing  

In Object-aligned slicing method (also referred as axis-aligned slices), the proxy 

geometry are oriented along with one of the major axes in object space.  

          

Figure 3.2. Object-aligned slices used as proxy geometry 

At the beginning of the implementation, volume data is loaded into OpenGL and 
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volume texture. The proxy geometry are initialized as six stacks of slices, 

respectively aligning with six axis (including positive and negative). After 

initialization, the polygonal slices are mapped with the respective 3D texture 

according to the texture coordinates. To allow the interactive rotation of the 

volume data, every time the viewing angle changes, the direction of the proxy 

geometry must be chosen again. The major axis must be selected “in a way that 

minimizes the angle between the slice normal and the viewing direction” (Engel et 

al 2006). This will effectively avoid viewing slices parallel to the viewing angle, 

which will results in none sample while intersecting. Therefore, with an angle 

larger than 45o, the stacks must be switched. When the angle between viewing 

direction and the slice normal is 45o, the slicing direction will become ambiguous 

and can be chosen arbitrary.   

 

The main advantages of the object-aligned slicing method are its simple concept 

and its high speed performance. However, it comes with several drawbacks. The 

sampling rate is depended on the distance between two slices. Once the distance is 

fixed, the sampling is fixed. It is easy to assume that the sampling points along the 

viewing direction have a fixed distance, resulting in a constant sampling rate. 

However, when applying a perspective projection, the distance between adjacent 

sampling points depends on the angle at which the assumed viewing ray intersects 

the slices (see Figure 3.3). 
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As a consequence, the result will only be accurate when the direction of viewing 

ray is perpendicular to the slices. The varying sampling distance with the view 

angle leads to visible artifacts, as shown in Figure 3.4. This shows two different 

sampling results due to slightly different viewing angles. We can increase the 

sampling rate to alleviate the artifacts and improve the image quality, but it doesn’t 

solve the problem fundamentally, and also, the higher sampling rate is at the cost 

of the computational complexity. In addition to the sampling artifact, the abrupt 

change of the stacks at 45o results in flicking because the sharply shift of the 

sampling positions. 

   
Figure 3.4. Aliasing artifacts of object-aligned slicing method 

Figure 3.3.The distance between adjacent sampling points (Salama 2006) 
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Due to the limited options available to improve the method, we turn to the 

view-aligned slicing method which will completely circumvent this problem.  

 

3.3.2 View-Aligned Texture Slicing 

The view-aligned slicing method achieves a more consistent sampling rate for 

different viewing directions by using viewport-aligned slices. This means the 

volumetric object is cut into slices orthogonal to the view direction, shown as 

Figure 3.5. The proxy geometry must be recomputed as long as the viewing 

direction changes. Because there is no abrupt change of slicing stacks, the 

flickering artifacts have been removed.  

          

Figure 3.5.View-aligned slices used as proxy geometry 

In parallel projection, the consistent sampling rate is been guaranteed (see Figure 

3.6 (a) and (b)). In the case of perspective projection, the distance of sampling 

points varies a bit (see Figure 3.6 (c)). However, it is only noticeable if the field of 

view is extremely large. We will come across the same problem when we are 
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doing ray casting. As long as the virtual camera views the volume object from a 

certain far distance, the effect of the inconsistent sampling rate is hardly visible. 

 

View aligned slices are first drawn in view space and subsequently the 

corresponding coordinates are calculated in the world space. By intersecting the 

slices with the volume bounding box, we can decide which parts of these slices are 

within the texture bounding box. The outside parts will be discarded in the 

fragment shader, considering we can’t add or remove any vertex in vertex shader. 

For each pixel of the slices, the corresponding 3D texture coordinate is calculated 

in fragment shader, and the color and opacity will be assigned by the texture.  

 

Compared with the object-aligned slicing approach, the view-aligned slicing 

method has proved superior in term of image quality, “removing some of the 

significant drawbacks while preserving almost all the benefits” ( Engel et al 2006).  

 

(a)                (b)                  (c) 
 Figure 3.6.Sampling distance of view-aligned slices (Salama 2006) 
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3.3.3 Discussion 

Texture slicing volume rendering techniques owe their success and popularity to 

the fast sampling and high rasterization performance of hardware, and moreover 

the basic rendering principle are quite simple to understand and implement.  

 

However, texture slicing volume rendering has a number of significant drawbacks, 

especially for large volume data sets. Since the number and the position of slices 

directly determine the rendering quality, the texture slicing approach will be 

strongly influenced by the complexity of the data sets. While in volume rendering, 

CT or MRI scan could be extremely large and in general it is common that a 

significant number of fragments does not contribute to the final image because are 

complete transparent or invisible. Furthermore, most volume rendering 

applications only focus on visualizing boundaries of objects or selected interesting 

regions. Therefore, texture slicing approaches are “rasterization-limited and can be 

hardly optimized from algorithmic point of view”. (Stegmaier et al 2005) 

 

On the other hand, the evolution of the modern programmable GPU and associated 

interfaces such as OpenGL, have led to novel graphics processors which provide 

an ideal platform for efficient ray casting implementations for volume rendering. 

The fragment shader of ray casting does not suffer from the flexibility issues. 

Furthermore, advanced fragment program promises a faster functionality that 

attracts lots of hardware manufacturers, which guarantee the advance of the 
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technique. According to these advantages, ray casting can be assumed as a 

future-proof approach for volume visualization. 

 

3.4 GPU-based Ray Casting 

The basic ray casting concept is to trace the rays from the camera to the volume 

and evaluate the volume rendering integral along the rays. The main advantage is 

that these rays are traced independently from each other through the volume. This 

gives more flexibility for implementing optimization strategies, such as “early-ray 

termination, adaptive sampling, and empty space skipping.” (Engel et al 2006) 

 

Figure 3.7. Ray casting principle (Salama 2006) 

In this project, single-pass GPU ray casting has been implemented. For each pixel 

of the bounding box of the volume data, a single ray is built from the camera. The 

volume data is re-sampled at discrete positions along the ray. The scalar values of 

the volume data are mapped to optical properties by accumulating light 

information along the ray. The ray-casting algorithm can be described by the 
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pseudo code in Listing 3.1. The detail of implementation will be presented in the 

next section.  

 

Listing 3.1. pseudo code for ray casting 

 

4. Implementation 

The implementation of volume rendering in this project consists of three major 

parts: a framework for the texture slicing approach, including both object-aligned 

slicing and view-aligned slicing methods, and a framework for the ray casting 

approach. They are all written in C++ with Qt and based on OpenGL and NGL 

libraries. The implementation of each framework has been introduced based on the 

volume rendering pipeline in the following sections.  

 

4.1 Texture Set-up 

A number of volume data sets have been implemented to illustrate the flexibility 

of the framework, such as Foot, Teapot, Engine, Skull, etc. The dataset library is 

Compute volume entry position 
Compute ray direction 
While the ray position is in the volume 
 Lookup the data value at current position 

Compositing the optical properties 
 Update the position along the ray 
End while 
Draw pixel colour 
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courtesy of University of Tübingen (2005). All the datasets are binary, storing 8 bit 

voxels for all slices and voxels in raw format. 

 

First, we need to load the volume data into a 3D texture. Above all, the data is 

loaded from the raw file into an array buffer, then the array is passed into local 

graphics memory using glTexImage3D function. The internal format is set to 

GL_INTENSITY, which means that the emission or absorption values are stored 

as an intensity value for each voxel.  

      

(a)                              (b) 

Figure 4.1.texture loading 

One thing that needs to be noted here is that if the first and the last slice contain 

data, we need to clear them with 0, otherwise this might cause problems when we 

render the data using ray casting method, shown as Figure 4.1. The tree in Figure 

4.1 (a) seems “leak out” from the cube, after clearing the end slices, the problem 

has been fixed as Figure 4.1 (b). 
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In this project, all the texture datasets are loaded when OpenGL is initialized, 

including the transfer function texture, which will specified later. Therefore, when 

the texture data is passed into graphics card, we need to tell the GPU which 

texture is used as the volume one, and which is for transfer function. In this case, 

glActiveTexture function is used to control which texture unit will affect. Each 

texture unit is assigned with a texture ID and glActiveTexture ( textureID ) selects 

the active texture unit. The number of texture units available is hardware 

dependent. 

 

4.1.1 Texture Slicing Approach 

For the texture slicing approach, the textures are prepared for stacks of slices. 

During rasterization, each slice is textured with the optical properties directly from 

its corresponding 3D texture map.  

 

4.1.2 Ray Casting Approach 

For the ray casting approach, the texture is mapped with the ray samples within 

the bounding box of volume data rather than stacks of slices. The ray is just a 

virtual beam as a visual cue intersecting with objects, so it deals with non-planar 

surfaces or solids.  
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4.2 Geometry Set-up  

This component mainly corresponds to the data-traversal step, which builds up the 

polygonal slices or ray samples to perform the intersection with the volume data 

and determines the sampling positions.  
 

4.2.1 World Space, View Space, and Texture Space 

Before talking about setting up the geometry, we need to specify the three different 

spaces which will be used in the following sections. Figure 4.2 shows the 

relationship between each other. Once an object has been created, each vertex of 

the object will have a relative coordinate to its centre in Object Space, and also, a 

relative position to the origin of the world, which is obtained by multiplying the 

Model Matrix with the model space coordinates. Therefore, the Model Matrix 

contains the object transformation in the World Space. To see the object, a virtual 

camera is introduced into the world, which gives the object a relative position to 

the camera, called View Space, which is computed through View Matrix. Therefore, 

all the object and camera transformations are stored in ModelView Matrix. It 

presents the transformation from the World Space coordinate system of the volume 

object into the View Space. The Projection Matrix is used to get the projection of 

the object onto the image plane.  

 

The Texture Space is used at the texture-mapping stage. To bind the volume 
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texture with the object, we need to know the texture coordinate of each vertex to 

get the color and opacity information for the vertex of the object.  

 

Figure 4.2.Relationship between spaces 

4.2.2 Object-Aligned Slicing Method 

In object-aligned slicing method we pre-computed and stored six stacks of slices 

along each axis in a bounding box. The bounding box confined the number of 

slices and their distances. These slices were a high number of equidistant planes 

which were equally-sized and equally-oriented in each direction. When we were 

drawing the polygonal slices, we need to choose the major axis to minimize the 

angle between the slice normal and the viewing direction.  

 

Axis selection: To calculate the viewing direction relative to the volume object, 

the ModelView Matrix must be obtained from the current OpenGL state. The 

viewing direction of the camera in Object Space is originally in the negative z-axis 

direction. It needs to be transformed into World Space by multiplying the 

Object 
Space 

Word 
Space 

Model 
Matrix 

View 
Space 

View 
Matrix 

ModelView 
Matrix 

Texture 
Space 

Texture Mapping 

Projection 
Matrix 

Image 
Plane 
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ModelView Matrix. The corresponding stack of slices is then chosen according to 

the maximum component of the transformed viewing vector.  

 

To show the slice movement with the corresponding texture, the intersections of 

the slice and the bounding box have been displayed. To calculate the position of 

the intersections, we performed the ray-plane intersection algorithm. In this 

approach, the slice is defined by three vertices, and the bounding box of the 

volume texture is regarded as a combination of 12 edges. To find the intersections, 

we basically repeated the ray-plane intersection algorithm for 12 times. The 

method is inspired by Sunday (2001), but much simpler and more efficient for this 

project.  

 

Ray-Plane Intersection Assume a ray from P0  to P1 , which are the two 

endpoints of each edge. Three vertices V0, V1 and V2 form a plane. The normal 

vector of the plane n�⃗  can be computed by the cross product of two vectors within 

the plane. 

n�⃗ = (V2 − V0) × (V1 − V0)    (4.1) 

Then, we calculate the direction of the ray, which is defined as: 

p�⃗ = P1 − P0   (4.2) 

If n�⃗ ∙ p�⃗ = 0, which mean n�⃗  and p�⃗  are perpendicular, the direction of the ray is 

parallel to the plane, thus there is apparently no intersection between the ray and 

plane.  
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Figure 4.3. Ray-Plane Intersection algorithm 

Another situation we need to exclude is that they do have a intersection, but it is at 

the extension line of the ray, which means it already exceeds the length of the edge. 

Assume the intersection is P, shown as Figure 4.3. We first calculate the dot 

product of the ray and the plane normal, which is the projection of P0P1��������⃗  on n�⃗ , 

then we need the projection of P0P������⃗  on n�⃗ . By comparing these two projections, 

we get the ratio of these two vectors. If the ratio is between 0 and 1, it means P is 

along the ray from P0 to P1. However, we don’t know the position of P. In fact, 

the vector can be alternately obtained from computing the projection of P0V0��������⃗  on 

n�⃗ , because both V0 and P are within the plane. They share the height from one 

point to the plane. Finally, the position of P can be easily obtained as Equation 4.4. 

The Ray-Plane Intersection algorithm is described by the pseudo code in Listing 

4.1. 

P1 

V1 

V0 

V2 

P 

P0 

h1 

h2 

n�⃗  
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h2 = p�⃗ ∙ n�⃗     h1 = P0V0��������⃗ ∙ n�⃗  ratio = h1/h2   (4.3) 

P = P0 + P0P1��������⃗ ∙ ratio     (4.4) 

 

Listing 4.1. pseudo code for Ray-Plane Intersection algorithm 

 

4.2.3 View-Aligned Slicing Method 

For the view-aligned slicing method, the geometry set-up component created 

view-aligned slices. It is assumed that the intersection calculation was performed 

on the GPU because the slices were originally drawn in the View Space. 

 

Calculating the World Space coordinates of view-aligned planes in the bounding 

box is a more complicated task. Polygonal slices were first drawn along the view 

direction in View Space (See Figure 4.4). Therefore, in vertex shader, the vertex 

position was obtained by only multiplying with the Projection Matrix. In fragment 

shader, we derived this proxy geometry by projecting the vertexes back to the 

World Space using the inverse of the ModelView Matrix. Consequently, the 

resulting quadrilateral is viewport-aligned. 

Compute the normal of the plane 
Compute the direction of the ray 
If the direction of the ray is perpendicular to the normal 
 No intersection 
Computer two projections  
If the ratio>1 or ratio<0 
 The intersection exceeds the length of the edge 
Else 
 Compute the position of the intersection 
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Figure 4.4. Depth Calculation for view-aligned slicing 

 

Depth computation: The z-axis coordinate of the slices in View Space were 

specified by a uniform parameter depth in vertex shader, which was updated for 

each slice to be rendered. Because the slices were at first drawn in the View Space, 

so we need to calculate the corresponding range of depth to make sure all the 

volume data in the bounding has been covered. The size of the bounding box was 

controlled by two uniform parameters mMin and mMax passed from CPU. In our 

project, all the bounding box was set as a unit cube with the centre in the origin. 

The depth of the bounding box from the camera was calculated by multiplying the 

eight vertices with the ModelView Matrix. The minimum and maximum of the 

eight z-axis coordinates comprised the depth of the slices. We did that in CPU to 

avoid calculating the range for each vertex every time. The depth needed to be 

updated when the ModelView Matrix changed. 

Slices 

Camera 

Bounding box 

minimum 

maximum 

Depth 

Z axis  
View Space 
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4.2.4 Ray Casting Method     

For ray casting, the geometry set-up is mainly concerned with the parametric 

set-up for the ray traversal. All the intersection calculation is performed in the 

fragment shader.  

 

Camera Position is used to calculate the ray direction as the starting point of the 

ray. Since the camera is initially located at the origin in Object Space, the camera 

position in World Space is computed by reversing the transformation dictated by 

the ModelView Matrix. 

 

The camera position needs to be set in a distance from the object, otherwise, it will 

cause the inconsistent sampling rate mentioned by Section 3.3.2, which will then 

lead to a distortion to the rendering object. To move the camera far away, then 

increase the scale of the transformation stack, it will solve the problem. 

 
(a) Distorted teapot    (b) teapot without distortion 

Figure 4.5. Distortion caused by the camera position 
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Ray Direction is calculated afterwards. The ray’s entry point to the volume data is 

given by the vertex coordinate of the bounding box. We can get the vertex 

positions also in World Space, therefore, we calculated the ray direction in the 

World Space. As a consequence, the ray direction is a uniform vector from the 

camera position to the entry point.  

 

It is now possible to sample the volume data with a set of loop, allowing for an 

overall number of 1024 iterations in this project. Because this process was related 

to the volume texture and took part in Texture Space, the ray’s entry point used 

here and all the texture sampling positions are the interpolated texture coordinates. 

 

Loop: The ray evaluates the volume rendering integral when it traverses through 

the volume data. The ray is sampled at discrete positions, and the traversal loop 

scans the rays along these positions. For each iteration of the loop, the current 

sample point performs the following subtasks: texture mapping, classification and 

compositing. More information will be described in the following sections. 

Subsequently, the current ray position is advanced to the next sampling location 

along the ray by a specific step size.  

 

Ray Termination: The traversal loop ends when the ray leaves the volume dataset. 

Only when the current ray position is still in the volume, it enters next loop. The 

texture coordinates are between (0,0,0) and (1,1,1). If the current coordinate is out 
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of this range, breaks out of the loop.  

 

4.3 Texture Mapping 

Texture mapping determines the sampling position and texture coordinates of the 

vertices that need to be rendered. The operations basically interpolate or filter a 

volume texture to obtain the color samples at specific location. The color samples 

are usually scalar values between 0 and 1. 

 

Volume rendering assumes a continuous 3D scalar field, which can be written as a 

mapping 

∅: R3 → R           (4.5) 

which is a function from 3D space to a single-component value (Fernando 2004). 

In fragment shader, we use the simple function texture3D(VolumeTexture, 

TexCoordinate) to get the sample color from the active 3D texture.  

 

To get the texture coordinates, the world spatial position within the bounding box 

is transformed into the Texture Space. We use the minimum and the maximum 

vertices to denote the range of the bounding box in the World Space. To remap it 

into the texture coordinates range from 0 to 1, we need to do an interpolation as 

TexCoordinate = worldPos−min
max−min

         (4.6) 
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Before assigning color sample to each vertex, we can decide if the vertex is going 

to be rendered or not using the fragment shader keyword discard. It terminates the 

shader for the current fragment without writing to the frame buffer or depth 

(Fernandes 2011). Hence, we can only render the fragment we are interested in. In 

this project, we used discard in several ways. Firstly, we discarded the fragment 

when the texture coordinate is not between (0,0,0) and (1,1,1). Secondly, we 

discarded the fragment when the ray did not hit anything we were interested in. 

Thirdly, we discarded the transparent fragment of the volume data. 

 

4.3 Classification 

Volume data set contains abstract scalar data values that represent some spatially 

varying physical property, such as density, temperature, or strength. In general, 

there is no natural way to obtain emission and absorption coefficients from such 

data. Instead, the user needs to decide how the different structures in the volume 

data should look by mapping locally measured data properties to optical properties. 

This mapping method is called transfer function. Transfer functions are essential 

to direct volume rendering because they make the data visible. “Good transfer 

functions reveal the important structures in the data without obscuring them with 

unimportant regions” (Kniss Kindlmann and Hansen 2002). “The process of 

finding an appropriate transfer function is often referred as classification.” (Engel 

et al 2006) 
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Transfer function design is a difficult and tedious task. It requires significant 

insight into the underlying data set. The feature of interest is not easy to identify in 

the transfer function domain. Moreover, it is difficult to isolate the interesting 

regions because other regions may share the same range of the data values (Kniss 

Kindlmann and Hansen 2002). The simplest and most common transfer functions 

are one dimensional, and they assign color and opacity to the voxel data (Fernando 

2004). Typically, transfer functions are implemented with 1D texture lookup 

tables.  

 

The first project illustrated three simple transfer functions to demonstrate the idea. 

The first one only assigning the same color which is then weighted by the sample 

colors (from texture mapping) to specify different regions of volume data. The 

second one applies a commonly used 1D graph to map different domains with 

different colors, shown as Figure 4.6. The alpha channel is separately assigned. 

The third one applies a simple linear equation to emphasis the interesting part of 

the dataset, shown as Equation 4.8. Since the range of gl_FragColor is between 0 

and 1, the function actually only keep the scalar value from 0.3 to 0.5. The result 

of the three transfer functions will be shown in Section 5. 

Transfer Function 1: gl_FragColor =  SampleColor × Color    (4.7) 

Transfer Function 2:  
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Figure 4.6. Graphic Transfer function 

Transfer Function 3: 

 gl_FragColor = ( SampleColor − 0.3) × 2.0 × Color   (4.8) 

 

The second project used a 1D texture as the transfer function. The texture lookup 

table is built in the CPU, then load into graphics memory with the function 

texture1D(VolumeTexture, TexCoordinate) . The texture coordinate is the resulting 

scalar value from texture3D function. 

 

4.4 Local Illumination Models 

Illumination models are used to improve the visual effect of the rendering objects. 

Local illumination models only consider light that comes directly from the light 

sources to the point being shaded. Every point is considered to be separated from 

all the other pointsb(Fernando, 2004). Traditional local illumination models are 

built upon the notion of the normal vector, which describes the local orientation of 

a surface patch and locally approximates the light intensity reflected from the 

surface of an object.  

1 

0 

R G B 

1/3 2/3 Scalar value 

Color 
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4.4.1 Blinn-Phong Illumination 

The most popular local illumination model in practice is the Blinn-phong model, 

which computes the reflected intensity as a combination of three illumination 

phenomenological approximations, ambient, diffuse and specular. 

Iphong = Iambient + Idiffuse + Ispecular  (4.9) 

 

Figure 4.7. The Blinn-phong illumination model (Salama 2006) 

The ambient light Iambient is modeled as a constant global light multiplied by the 

ambient coefficient. It is used to light up the completely black region.  

Iambient = kaIa     (4.10) 

The diffuse part of the model corresponds to the reflection of the surface, which is 

equally in all directions. Its brightness only depends on the angle between the 

direction of light I and the surface normal n. For view-aligned slicing, the 

direction of the light, is the opposite vector of the view direction, while for ray 

casting is the opposite vector of the ray direction. 

Idiffuse = kdmax((I ⋅ n), 0)      (4.11) 

The specular lighting shows the reflection behavior of shiny surfaces, which cause 

so-called specular highlights. While diffuse is a perfect mirror reflects light in 
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exactly one direction, the specular light is scattered around the direction of perfect 

reflection, shown in Figure 4.7. To compute the specular light, vector h, which is 

the halfway between the light direction and the eye direction, has been introduced. 

For ray casting, because the light direction and the eye direction are all from the 

camera to the surface point being shaded, so I is used instead of calculating h. For 

view-aligned slicing method, the light position is set to be (1.5, 1.0, 1.0). 

Ispecular = ksmax((h ⋅ n), 0)n   (4.12) 

In which the specular exponent n is called shininess of the surface, which controls 

the size of the resulting highlights.  

 

Figure 4.8 (a) shows the foot with the ambient light, (b) adds the diffuse light and 

(c) displays the final rendering outcome of the illumination model including 

ambient, diffuse and specular light.  

 

 
(a)                      (b)                        (c) 

Figure 4.8. The result Blinn-phong illumination mode 
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4.4.2 Gradient-Based Illumination 

In order to use Blinn-phong illumination model to discrete volume data, the 

external light is assumed to be reflected at iso-surfaces, which is the surface that 

results from tracing a specific field value within a dataset, inside the volume data. 

The normal used for shading a point is thus the unit vector which is perpendicular 

to the iso-surface through that point. Considering that the gradient vector of the 

scalar field points into the direction of greatest change, which is always 

perpendicular to the surface, we estimate the gradient vector to approximate the 

normal vector for local illumination. (Fernando, 2004) 

 

The gradient vector is the first-order derivative of the scalar field, as Equation 4.13. 

The normalized gradient is used as the normal, and the gradient magnitude is a 

scalar quantity which describes the local rate of change in the scalar field  (Engel 

et al 2006). 

∇f(x�⃗ ) = �∂f(x�⃗ )
∂x

∂f(x�⃗ )
∂y

∂f(x�⃗ )
∂z �

T
    (4.13) 

 

4.4.3 Gradient Estimation 

There are various techniques to calculate the gradient from discrete volume data. 

In our project the gradient estimation is computed in real-time on a per-pixel basis 

in the fragment shader. There are variety of methods for estimate the directional 

derivatives, such as finite differences and convolution filtering for gradient 
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estimation. They may have different complexity and accuracy according to the 

different methods. Finite differencing scheme, as a fast and efficient method for 

estimating gradients from discrete volume data, are used in our project.  

 

Figure 4.9. Finite differencing schemes (Engel et al 2006) 

The result of the first-order derivative of a 1D scalar function f(x) in the point xi 

is called central differences with an approximation error (Engel et al 2006): 

f ′(xi) = f(xi+1)−f(xi−1)
2h

+ o(h2)      (4.14) 

In which, xi+1 = xi + h, xi−1 = xi − h. h is the step size. The smaller h is, the 

smaller the approximation error is. However, if h is too small, we may get artifacts, 

shown as in Figure 4.10. The step size are separately 0.025, 0.01, 0.0025 and 

0.0005. It is obvious that 0.025 is too big to get a proper output, while 0.0005 is 

too small and result in visual artifaces. 

  
(a)  step size= 0.025                   (b)  step size= 0.01                      



Real-time Volume Rendering for Medical Visualization  Implementation 

34 
 

  
(c) step size= 0.0025                (d) step size= 0.0005   

Figure 4.10. Illumination mode with different step size of gradient calculation 

Each of the three components of the gradient vector ∇f(x�⃗ ) = ∇f(x, y, z)  is 

proximate by a central difference, resulting in (Engel et al 2006) 

∇f(x, y, z) ≈ 1
2h
�

f(x + h, y, z) − f(x − h, y, z)
f(x, y + h, z) − f(x, y − h, z)
f(x, y, z + h) − f(x, y, z − h)

�    (4.15)  

 

4.5 Compositing  

Compositing is fundamental for the iterative computation of the discrete volume 

rendering integral. It defines how the color values of the textured polygons that we 

draw are successively combined to create the final rendition. The compositing 

equation depends on the traversal order. The front-to-back iteration equations are 

used when the viewing rays are traced from the eye position (camera) into the 

volume. The back-to-front compositing scheme is used when the data set is 

traversed from its backside.  

Back-to-front compositing (Fernando 2004): 

                     C�i =  Ci + （1 − Ai）C�i+1     (4.16) 
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A�i =  Ai + （1 − Ai）A�i+1 

Where Ci and Ai are the color and opacity obtained from the fragment shading 

stage for sample i along the viewing ray, and C�i and A�i is the accumulated color 

and opacity from the back of the volume.  

Front-to-back compositing: 

                                     C�i =  �1 − A�i−1�Ci + C�i−1            (4.17) 

A�i =  �1− A�i−1�Ai + A�i−1 

Where C�i and A�i is the accumulated color and opacity from the front of the 

volume.  

 

The compositing equations specify a combination of the RGBA quadruplet of an 

incoming fragment (source) with the values already contained in the frame buffer 

(destination). They are easily implemented with hardware alpha blending. If the 

blending is disabled, the destination value will be replaced by the source value. 

While the blending is enabled, the source and the destination RGBA quadruplet 

are combined by a weighted sum forming a new destination value.  

 

For the front-to-back compositing, the source blending factor is set to 1 and the 

destination blending factor is set to (1- source alpha). It is important to note that 

this blending set-up uses associated colors (Blinn 1994), which are already 

weighted by their corresponding opacity. Therefore, OpenGL applications often 

use a different equation for back-to-front blending, denoted  
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C�i = Ai ∙ Ci + （1 − Ai）C�i+1 

Therefore, the stand alpha blending setup is as followed 

  

Which is used in this project.  

 

5. Result and Analysis 

The rendering result strongly depends on the structure of the data set, the chosen 

transfer function, the current view direction, and the sampling rate. This section 

will look at examples of some of the results achieved from the project, along with 

an analysis on certain features.  

5.1 Object-Aligned Slicing method 

Transfer function 

The three transfer functions mentioned in Section 4.3 were implemented by six 

volume data sets. From the rendering outputs shown as bellowed, It can be 

concluded that one transfer function may work well for certain volume data, but 

may not suitable for the others. Therefore, transfer function needs to be modified 

when applying to different data sets. The distance between adjacent slices for this 

test is set to be 0.01, the wooden pattern artifacts can be seen clearly from some of 

images. 

 

glEnable (GL_BLEND); 
glAlphaFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); 
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a) Foot 

 

Function 1     Function 2     Function 3 

b) tree 

 
Function 1     Function 2     Function 3 

c) engine 

 

Function 1     Function 2     Function 3 
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d) teapot 

 

Function 1     Function 2     Function 3 

e) aneurism 

 

Function 1     Function 2     Function 3 
 

f) skull 

 

Function 1     Function 2     Function 3 

Figure 5.1. Object-aligned slicing rendering results 

Texture Slice 

Textured slices can let the users observe more details inside the volume data. The 
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major axis can be chosen from x, y, z axises and diagonal direction to fit the 

different types of the volume data. 

 

 

Figure 5.2. Object-aligned slicing rendering, showing single slice 

5.2 View-Aligned Slicing method 

The view-aligned slicing method adopted the Blinn-Phong illumination models.  

Illumination Shader  
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Figure 5.3. Illumination model 

Multi-layer Shader 

Iso-surface rendering achieves a good result in emphasizing the important features 

of volume date, however, it suffers from the drawback of without preserving the 

most information of the volume data. To overcome the single iso-surface’s 

drawback, a combination of iso-surfaces and volume rendering test has been 

implemented in this project to enrich the visualization effects. Different features 

were extracted according to the varied scalar values sampled from the 3D texture.  

0.04-0.055 
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0.124-0.129

0.048-0.050
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0.08-0.12 

Figure 5.4. multi-layer shader for view aligned slicing texture 

The numbers besides the image are the color-sample ranges of the outside layers, 

the iso-value of the inside layer can be controlled by the user from the interface. 

 

1D Color-table Look-up Transfer Function  

1D color table look up texture can simultaneously assign different colors to 

different parts of one volume object, which can distinguish different features of the 

volume data. The user needs to change the color array to correspondingly change 

the 1D texture transfer function. 
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Figure 5.5. 1D Transfer Function Texture of texture slicing method 
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5.3 Ray casting 

Illumination Shader  

Illumination shader used for ray casting is quite similar with the view-aligned 

slicing method. A series of foot images shown below illustrate the different 

iso-surfaces with the different scalar value sampled from the 3D texture.  

 

Figure 5.6. Illumination model animation 

 

1D Color-table Look-up Transfer Function  

The theory of color-table look-up transfer function for ray casting is the same with 

the view-aligned approach.  
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Figure 5.7. 1D Transfer Function Texture of ray casting 
 

Multi-layer Shader 

For ray casting, two kinds of multi-layer shaders have been implemented. One is 

the combination of two iso-surfaces, the other one is the combination of the 

iso-surface with 1D Color-table Look-up Transfer Function. 
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Two iso-surfaces (tree)        iso-surface& 1D Transfer Function Texture (tree) 

 
  Two iso-surfaces (foot)   iso-surface& 1D Transfer Function Texture(foot) 

Figure 5.8. multi-layer shader for ray casting 
 

5.4 Efficiency Comparison  

The efficiency comparison between GPU-based ray casting and view-aligned 

texture slicing methods are measured by the frame rates, see Table 5.1. 
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 Texture Slicing Ray Casting 
Step Size 0.01 0.001 0.01 0.001 

Foot 36 5 131 23 
Teapot 44 5 132 23 

Aneurism 45 5 116 17 
Tree 37 5 120 20 
Skull 48 5 158 24 

engine 41 5 146 21 

Table 5.1. Comparison between texture slicing and ray casting volume rendering 

approaches. The figures represent average frame rates. 

With the same sampling rate for ray casting and texture slicing methods, the single 

pass ray casting runs much faster than texture slicing. The reason why ray casting 

is superior to texture slicing is mainly because ray casting only renders a single 

polygon to generate the necessary fragments, while texture slicing deals with 

thousands of polygonal slices. Ray casting performs a very low geometry 

processing and fragment generation overhead. 

 

6. Conclusion 

In this project, I used volume rendering technique which doesn’t require any 

specialized hardware to achieve real-time 3D modeling. Local illumination models 

and transfer function have been used to improve the quality of rendering and 

creating volumetric special effects. With the limited time to implement features, 

there are some of the applications can be improved and a lot of work can be fit 

into the current framework with future work.  
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1) The efficiency of GPU-based volume rendering algorithm is always limited by 

the ability of fragment processor because the major workload is handled by 

fragment processor. When the sampling distance decrease, the number of fragment 

needs to be processed will increase sharply, which will result in a very slow 

interactive operation. With even more larger data sets, the higher sampling rate 

and image resolution requires us to find way to access the volume data in an more 

efficient way. One solution is by “performing ‘expensive’ computations and 

accessing memory only selectively” and applied some advanced methods like 

“leaping over empty space, skipping occluded parts, and termination of rays” to 

help achieve the goal. (Engel et al 2006) 

 

2) From this project, we can see that the 1D Color-table Look-up texture transfer 

function can’t achieve a high resolution image. Moreover, 1D transfer function 

can’t deal with data value with multiple boundaries. Therefore, there is now a 

trend toward using multidimensional transfer function, which can capture the 

relationship between multiple data values and create more stunning visualization 

effects. (Kniss Kindlmann Hansen 2002) Curvature-based transfer function as a 

multidimensional transfer function has received much attention recently. 

(Kindlmann et al 2003) There is also a trend towards using gradient magnitude in 

the transfer function domain, since it can be used to emphasis the domain where 

has the biggest changes, thus the material boundaries can perform a strong visual 

effects. 
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