HDRI AND IMAGE BASED LIGHTING

Master Project

Chong Deng

17913026
NCCA

Abstract

This report illustrates the process of create Image Based Lighting (IBL) with HDR
images. This program has been implemented by OpenGL and C++, and the shaders
have been implemented by GLSL. Cube map has been used to create the background
and the environment map of the object. Median cut algorithm has been implemented
in the program, and then used to sample the environment map, and calculate the
light colour and light position as well. In this report, the pipeline of the framework
and the main algorithm will be demonstrated. In order to display the HDRI properly,
some post-processing effects are used.

Keywords: Image based lighting, Cube mapping, HDRI, Real-time

Chapter 1 INtrodUCHiON ... 4

I 0]) =Tt 4
1.2 APPlication USEd.. ... 4
1.3 LiDraries USed ... s s sss s s 4
Chapter 2 Previous WOTK ... ssssssssssses 5
2.1 Image based lighting ... ————————— 5
2.2 Sample MethOdS ..o ——————————————————— 6
0] 1B s U3 8
Chapter 3 Technical backgrounds ..o 9
K 700 T 1)) 9
3.2 Median Cut AIGOrithIM ... 10
3.3 Environment map (Cube mapping) ... 10
3.4 Frame Buffer ODJect ... sssssaens 11
Chapter 4 IMPIeMENLScovrvcrermrmrmsmsssssssmsssssssss s 13
4.1 Diffuse convolution using HDRShOP ..o 13

Z 3720 5 10 0 200 0 T L, 14
4.3 Cube-MAPPING .cvcierrrrrimsmssirs s ——————————————— 15
T B =1 1, 15
4.5 GLSL and SRAders ... sssssssssans 16
TN R0 o 1= Y =T L) TP 16
4.5.2 TONEIMAPPING corrvrrermrersreesrersseessersessesssssesssesssesssessssassessssasse s sssessesssesssssssesssssssesssesssssesasssnss 23
4.5.3 BlOOMUING cccourreereetreesees s s ssess s e ss s s s s 24

4.6 frame buffer object......cccimirnmn i ———————— 25
4.7 Interaction GUIde:........ccovmmmsmrmsmmmmsms s —————————————— 25
4.8 RESUIL: o RS 26

04 1 P=1 01 7<) oS3 0000 4 Tl L1 1) o 27
5.1 Achievement OVEIVIEW ... sssass s s es 27
LI 0111 0D W00 7= 11 T=) 1 27
5.2.1 SRAAOWS: ottt s s s s s R 27
5.2.2 Interreflection betWeen ODJECES: ... ss s sssessenas 27
5.2.3 Deferred lIGhtING: ...t sess s s sssssssesas 28
5.2.4 The USage Of IMAGES: ... s s sn s 28
5.2.5 MOTE EffBCLS! .ttt s bbb 28
Chapter 6 References ... sssssssssasssses 29

Chapter 1 Introduction

In nowadays, more and more film production prefers to use seamless integration
of CG objects and real scene. Image based lighting provides a good way. Image
based lighting (IBL) is a process of illuminating the scene and CG objects by using
the light of real world. In the IBL process, the light, which is sampled from a
picture of the real world, is used to relight the CG scene. This technique can
create realistic rendered appearances and combine the computer-generated
objects with real scenes properly. So more and more films, like “Iron man2”, “The

”n

terminator”,”Avatar”, use this technique to get the attractive effect.

Image-based lighting is also popularly being used in video games and vitual
reality. Because one of the advantages is that the photorealism result can be
achieved easily without creating the complex real-world physical interactions.
The only requirement is some simple photographs. That's why almost all of
modern rendering softwares, such as Maya, Houdini, offer image-based lighting
options, although the exact terminology may vary.

1.1 Objective

In this project, HDR images are used to create the scene and the environment
map. Users can switch among different maps to get different scenes and different
lighting effects. The camera can be moved to observe different angles of the
object. Users can translate the object to see the change of the specular and
diffuse light. And also users can select among different primitives and obj files.
Different shaders are used to perform on the object to get different look. In the
post-process, users can switch between different tone mapping methods, which
are scurve, Rahman Retinex and bloom. The parameters of each tone mapping
method can be adjusted.

1.2 Application used
To perform this program, the following applications were used:

QtCreator - the IDE used to implement the application.

HDRshop - the software developed at the USC Institute, used for generate
textures.

Doxygen - used to generate the documentation of the program.

1.3 Libraries used
NCCA Graphics Library - developed by Jon Macey, and is based on OpenGL 3.x
and QT and has a dependency on boost_1_44_0

Chapter 2 Previous work

Image-based lighting is based on the foundation of texture mapping and
reflection mapping, which was first discussed by Jim Blinn and Martin Newell[]
in 1976. Image based lighting can be considered as an extension of environment
mapping. As Debevec explored this area a lot, it becomes a more and more
popular topic in the area of relighting.

Most research about image-based lighting can be refered to Debevec’s website [2]
and the book “High dynamic range imaging”[3l. They provide plenty of details of
development and the main principle of making image based lighting.

2.1 Image based lighting

At SIGGRAPH 98, Paul Debevec released a paper, "Rendering Synthetic Objects
into Real Scenes”,[*] this is the first paper which introduced the image-based
lighting officially. In this paper, Debevec described the general Method of image-
based lighting as the figure showed below:

Distant
Scene

light-based
(no reflectance
model)

Synthetic
Objects

Figure 1 The general model of image based lightingl4]

In order to represent a scene, Debevec constructed a new light-based model and
measure the illumination at the synthetic object location, and then composite the
three components using the global illumination with different rendering
technique.

In 2002, Paul Debevec published a tutorial “Image Based Lighting” [5] in IEEE
computer graphics and applications. In this article, he demonstrated the basic
steps of IBL.

First, he introduced several ways to capture an omnidirectional image of the real
world. The common ways are to use a fisheye lens, which has 180-degree field of
view, or a mirror ball, which has a reflective surface. Both of them can capture
the surrounding environment easily. When the image is obtained, the next step is

to apply it to the scene as an environment image. And then simulate the light
from the environment illuminating the CG object.

In this paper, Debevec explained how to generate IBL to light CG objects in
Radiance, which is running in Unix and for free. Pictures below are the scenes
generated from the Radiance. The code refers to the Article.

Figure 2 Radiance generated scene

Like the pictures show above, IBL can make the objects appear to belong in the
scene. The light, which illuminates the object, looks like from the background.
There are two important processes of IBL. One is omnidirectional photography.
The light in the real world is infinite from every direction, and contributes to the
objects, so the photography should be omnidirectional. And this is widely known
as light probe image. After we capture the images using the ways shown above,
we can use HDRShopl?2l to generate the images to get proper version, cubic
environment, or latitude/longitude, or angular map. The next is global
illumination. It is always implemented by ray tracing. [26] This method shows
how the light goes from the light source, reflect among the surfaces, refract into
an object. Finally, It can generate the CG object appearance. The book “High
Dynamic Range Imaging”, which is published in 2005, shows many details about
IBL, including how to generate light probe image, how to sample the image, how
to map the omnidirectional image, how the global illumination renderer
computes IBL images, how to simulate shadows and scene object inter-reflection.

2.2 Sample methods

Sampling is very important in the IBL. Accurate light information will be got if
proper sampling method is used. There are also many methods of sampling the
light probe images. Structured importance sampling, introduced by Agarwal,
Ramamoorthi, Belongie and Jensen in the year 2003, represented the distant
natural illumination on surfaces.!”]

Figure 3 Structured Importance Sampling of Environment Maps, 2003"

At SIGGRAPH 2004, Fast Hierarchical Importance Sampling with Blue Noise
Properties was introduced by Victor [Bl. In this method, they create a large
number of sample points, which are numbered using the Fibonacci number
system. This technique is also the importance based, and can be used in a large
area of computer graphic applications.

Figure 4 Fast Hierarchical importance samplingm

In the year 2005, Debevec presented a method called median cut algorithm for
lighting probe sampling. This algorithm used a summed area table to cut the
image into regions of equal energy, and was widely used in many applications. [°]

In the year 2009, Viriyothai and Debevec updated the algorithm together. This
algorithm is based on the median cut but make the maximum of two sub-region’s
variance minimized. In this case, the sample lights will have never been cut
through, when they are placed in the same region. [10]

Figure 5 Median cut and Variance cut (the middle one shows that median cut may behave
. [9,10]
improperly when two bright light are placed in the same region)

In this project, Median Cut Method will try to be used to sample the cube
environment map directly.

2.3 Shadows

Once the light was captured in the environment map, it is well realized that how
to cast shadows in a real scene. This is the most notable effects rather than the
appearance of the objects in the environment. In the IBL case, the light is coming
from infinite far away, so the shadow should need to match the potential light
directions, as a result, the shadow should be very soft. [11] To generate the
shadow, one method is to use shadow maps and provide the associated benefits.
The other is to use ray tracing. One approach is to take layered attenuation maps
to achieve the interactive rendering first and then apply the coherence-based ray
tracing of depth images which is not interactive but can remove the limitation of
the first methods. [121 Soft shadows can be generated by radiosity(3l. And many
methods have been extended from the basic radiosity method. [1415]

Chapter 3 Technical backgrounds

3.1 HDR

HDR pixel values can cover the full range of light in a scene; therefore, HDR
image contains a high dynamic range of intensity. It is good to use it as a light
source to illuminating the computer-generated objects and scenes. And if we use
suitable rendering algorithms, we can accurately simulate how the CG object and
the scene would look like as they were illuminated by the light, which is coming
from the real word.

The following are the format of the HDR image:

Format Encoding(s) Compression Metadata Support/Licensing
HDR RGBE Run-length Calibration, Open source software
color space, (Radiance)
XYZE Run-length +user-defined Quick implementation
TIFF IEEE RGB None Calibration, Public domain library
color space, (libtiff)
LogLuv24 None +registered,
+user-defined
LogLuv32 Run-length
EXR Half RGB Wavelet, ZIP Calibration, Open source library
color space, (OpenEXR)
+windowing,
+user-defined

Figure 6 Format of established HDR images"”’

The HDR format is widely known as Radiance picture format, such as.hdr, .exr. It
has been used in particularly for HDR photography and image-based lighting. In
this project, format .hdr is used to create the background and the environment
map as well. The pixel data has a 4-byte RGBE encoding. And the bits are like:

ﬁ Green Blue oo

Figure 7 HDRI component

For each component there is a formula to convert the RGBE to the colour RGB,
which is supported by the display devices. Suppose the components of HDRI is

({2, 5y, By, £), and the components of screen-supported colour is (R, G, B), then
we can have equations as below: [3]

E=[log, (max{i,,, @, B 0 + 12B]

R, =236
S T
[ty =256
b =|—
J.""" L2H
B, + 236
H= JL—1lE

Equation 1 the equations of RGBE to RGB

3.2 Median Cut Algorithm

For the sample of environment map, in this project, Median cut Algorithm is
chosen. As it is said above, this sample method was introduced by Paul Debevec
in 2005; the main algorithm is like this:

Step1: place the original light probe image into a region list as a single region.

Step2: For each region in the region list, get the longest dimension and subdivide
the region in order to divide the light energy evenly.

Step3: If the iteration is less than n, then go back to step2.

Step4: finally, put a light source in the center of each region, and set the colour as
the sum of pixel values within the region.

To calculate the light energy, we can use the formula below. Suppose the light
energy is Y, then we can get the representation of light energy:

Y=0.2125R+0.7154G+0.0721B

Equation 2 the equations of calculating illumination

In order to compensate the over-represent regions near the pole; the pixels of
probe image should first be scaled by cost, where & should be the pixel’s angle
of inclination. [°]

3.3 Environment map (Cube mapping)
Although there is many kinds of texture mapping methods can be chosen, like
equirectangular texture mapping, lat-long texture mapping and cube mapping.

10

Comparing to sphere mapping, cube mapping solves many problems like image
distortion, viewpoint dependency, and also computational efficiency. Another
advantage of using the cube mapping is that it provides a large capacity to
support real-time rendering of reflection. [1]

As a result, in this project, cube mapping is used. Generally, six side images are
needed for the six faces of cube surface. However, In this case, only one vertical
cross texture is needed for both background and the reflection of object.

So as to simulate the environment, which is considered to be infinitely far away,
cube maps are used to create the reflections. And Cube mapping reflection is a
standard part of real-time graphics recently. The reflection model displays the
illumination of a surface with reflection of the environment. The reflection value
is obtained by looking up the environment map.

Ey Reflection

Figure 8 the Reflection model

Considering the vector of eyes is V, and the reflection vector is R, the normal of
the object is N, then we can get the reflection formula like:

R=V+2(VeN) N

Equation 3 reflection formula

3.4 Frame Buffer Object

Frame Buffer Object is the OpenGL extension. It provides an interface to create
additional non-displayable frame buffer objects. By using this, an OpenGL
application can render the output to the application-created frame buffer object.
It has colour buffers, depth buffers, stencil buffer and accumulation buffer. It is
totally controlled by OpenGL. There are two types of frame buffer-attachable
images. One is called texture images. If an image of a texture object were
attached to a frame buffer, OpenGL would use “render to texture”. If an image of
a render buffer object were attached to a frame buffer, then OpenGL would
perform “off-screen rendering”.

11

Frame Buffer Object also provides an efficient switching method. Switching
framebuffer-attachment images is much faster than switching between FBOs. It
use glFramebufferTexture2DEXT() to switch between texture objects, while
using glFramebufferRenderbufferEXT() to switch between render buffer objects.

In order to do tone mapping, the first pass needs to be stored as an input so as to
generate the second pass. In this case, frame buffer object is used to store the
first pass on which the image-based lighting is applied. The first pass has been
saved as a texture and used by the tone mapping shaders.

12

Chapter 4 Implements

In this project, HDR images are used to represent the background as well as the
environment map of the object. A diffuse convolution is used as an environment-
map to light a diffuse object, while a specular convolution is to use as an
environment-map to light a shiny object. Pre-computing of the convolution has
been done, as this process would take quite a long time. But the All of these
images are format of .hdr. And use cube-mapping method to apply the
environment map.

4.1 Diffuse convolution using HDRShop

For doing diffuse convolution, a latitude/longitude format light probe image
should be loaded into HDRshop. Those images can be downloaded easily from
Paul Debevec’s website.

The size of the image, which used to be converted, should not be too large. So
once the image is loaded, do resize to make sure that the convolution can be
finished in a reasonable time. In this process, size of conversion is chosen to be
252%127.

Then use diffuse convolution (image->panorama->diffuse convolution) to
generate the diffuse map. Use the size we adjust above, it will still take 1536
seconds to convert the image to diffuse convolution.

After that, go to image->panorama->choose the cubic environment (vertical
cross) as the format of destination image. This will be used in cube mapping later.
And finally, those images are saved into .hdr format.

13

Figure 9 production of diffuse map using HDRShop

4.2 HDRI loading

There are lots of .hdr format images can be downloaded from website, that's why
this format is chosen in this project. To find a way to load this format cost such a
long time. And fortunately, there is an implement of load HDRI images method
has been found on the Internet. [16] The method has been modified to suit for the
class. The implement of HDRI components converted to the screen-support
components is like this:

float convertComponent(int expo, int val)

{
float v =val / 256.0f;

float d=(float) pow(2, expo);
return v*d;

}

List 1 Code for convert the RGB component

The RGB has been stored in a float pointer and the code is as follows:

void workOnRGBE(RGBE *scan, int len, float *cols)

{
while(len-- >0)
{
int expo = scan[0][E]-128;
cols[0] = convertComponent(expo, scan[0][R]);
cols[1] = convertComponent(expo, scan[0][G]);
cols[2] = convertComponent(expo, scan[0][B]);
cols+=3;
scan++;
}
}

List 2 Code for store the float value

By doing this all of the colour information has been stored in the float pointer,
which will be used in the cube mapping and median cut. We can tell from the
code that, the colour channel was stored separately. Col[0], col[3],col[6]...stored
red channel; col[1],col[4],col[7]...stored green channel; and col[2],
col[5],col[8]...stored blue channel, the rest may be deduced by analogy. So when
the HDR image is loaded, it is easy to get the colour information.

14

4.3 Cube-mapping

The traditional cube mapping is to store 6 different sides of a cube map as six
square textures and then project them onto six faces of a cube. In this project just
one vertical crossing cube map is used for both background creating and
environment map. In the program a function called memcpy() is used to split the
vertical crossing map into six-sided maps and store them separately in cubemap
array. So as it can be used when binding the texture. [17]

4.4 Mediancut
In this part, mediancut algorithm is implemented as follows:

Create the lights array and region array and initialize them at first. Next step is to
load the HDR image and get the width and height, and decide which is the longest
dimension.

Create a region list, and add the image to the region list, then get the long
dimension of the region, and scan it and then calculate the sum of the longest
dimension, and then get the median number from the sum, which we calculated
in advance.

Then we use the median number to do cut. This will create two new regions. And
this will be a loop until the size of the regions up to the iteration n, which is given
by the user.

When all the cut was done, create lights in the center of the region and calculate
the colour of the light using the average of the colour in the current area, and
save the picture as .png format finally (still fail to save it in .hdr format, so
use .png instead temporarily).

At the beginning of the project, median cut algorithm was supposed to use in two
ways, first is to sample the cube map and finally get the subdivided image. And to
be used as diffuse map after it has been blurred. Secondly, several lights can be
created based on the image so that they can cast the shadows properly. But the
effect was not very good. So the traditional way has been chosen finally, but the
median cut part has been conserved for the preparation of the future work.
Judging from the output image and the output data of the light’s position and
colour. The code refers to the NCCA median cut algorithm, but modified to fit for
the HDR format.

15

Figure 10 the image which is done by median cut

4.5 GLSL and shaders

GLSL is OpenGL Shading language, which is designed specifically for OpenGL. In
GLSL vertex shader and fragment shader are connected together into the
OpenGL pipeline. In the project, GLSL is used to define the lights travel methods,
in order to decide the appearance of the object, and also used for the tone
mapping and post-process.

To specify the usage of the shaders, a class for managing the shader has been
used. In this class, there are lots of function for shaders to create a new program,
access the .vs and .fs files, and attach the source to the program and so on. In the
application parts, different shader objects will be created and then call proper
functions to generate the shaders. Set parameter functions have not been
packaged in this class; this will make it easier to input the relative values from
interface.

4.5.1 Object Shader
Several kinds of different shaders are defined here; users can choose different
ones and apply them to different objects.

4.5.1.1 Reflection shader:

This shader is the simplest one; just one cube map has been used to simulate the
perfect reflective surface. In this shader, per-pixel method has been used. The
model is as follows:

Incident light normal ctionDirection

Figure 11 A perfect reflection model

16

As the model described, each view vector coming from eyes, will achieve the
surface and then reflect to the environment. The normal is the normal of the
surface. The reflectionDirection can be calculated using the GLSL built-in
function

Reflect (eyeDir, normal);
List 3 GLSL Reflect function

The direction of the reflection will be transfer to fragment shader, and this
vector will be used as an index to find the proper pixel of the cube map.

textureCube(specMap, ReflectDir);

List 4 GLSL the texture mapping function in fragment shader

Window _Help
906 RTimelBL

[Mainw| Transform

ders Postion

iclude - o

| Backgr 0.00 2 [0.00 2| [0.00

| DoMed —

| FBOh n B

| GLWind 10.00 2 [10.00 2/ [10.00

| HDRLo| Refraction Cut Area

| Lightpq . :)

| LightPr| 0.00 0.00 mediancut

| LoadTe

| Mainw Change

| Mediar

| Object. changeObject dodecahedron v
| Region —_—

| Shader changeBackground | uiffizi v

irfiles
naders
ces

<

<

changeshader specularshader |
tonemapping orignal |

<

| Backgr|

| DoMed post-process parameters

| F8O.cp)

| GLWing scurve_n |0.00 ‘| scurve_sigma 0.00 |*
| HDRLo| ~ =
Lightpq retinex_f [0.00 || retinex_k 0.00

| Lighter| retinex_N [0.00 |*| bloom_f 0.00 |*

| LoadTe,

| Mainw| bloom_k [0.00 |*| bloom_n 0.00 |*
Mediar|

bloom_N [0.00 |*

Camera Zoom

Compile Output
[newfilel {inbox - [Terminal] & [Fragme [Terminal] & [MainWi... [[Untitled [Terminal] ® MedianC... [[HDRLoa... ¥ [Sample ... [RTimeIBL]

Figure 12 reflection shader

4.5.1.2 Diffuse shader:

Diffuse reflection is due to the summing up of the many subsurface reflection.
But in this case, this shader used one diffuse map to simulate the diffuse
reflection. The diffuse map is converted by HDRshop.

AN

Incident t iffuse reflection

Figure 13 diffuse reflection model

17

As the model showed, the direction of diffuse reflection is massive. And this
normal is changed according to the view. Therefore, to calculate the normal of
diffuse reflection, the surface normal should be multiplied by the ModelView

matrix, so:

Narmaly: e = Madellficow « Normal,y e

Equation 4 calculate the normal of the diffuse reflection

And then use the diffuse normal as an index to find the right pixel in the diffuse

map.

B [Untitled [

Figure 14 diffuse result

4.5.1.3 Reflective and diffuse shader:

This shader combines the specular and diffuse shaders above together.

Transform

Postion

| 0.00 2| [0.00 /[0.00

Scale

[10.00 2 [10.00 2 [10.00
Refraction CutArea

[0.00 ‘| [0.00 * | mediancut

Change

changeObject dodecahedron v/
changeBackground |uffizi v
changeshader DiffuseShader v
tonemapping orignal v

post-process parameters

scurve n [0.00 |*] scurve sigma [000]2
retinex_f \m‘ retinex_k \ﬂ‘
retinex_N \m‘ bloom_f \ﬂ‘
bloom_k \m‘ bloom_n \ﬂ‘

bloom N [0.00 |*

Camera Zoom

 MedianC... [[HDRLoa... [[Sample ... [m Rfimeisl [I§

18

% 4 Fri 19 Aug, 2:23 AM

Transform

aders Postion

include

1 Backgt | 0.00 2/ [0.00 2/[0.00

+] DoMed f—

4] FBOh

] GLWin [10.00 2| [10.00 2 [10.00

21 HDRLoy Refraction Cut Area

1) LightP . . .

] LightPr | 0.00 0.00 mediancut
1 LoadTe|

11 Mainw| Change

&1 Mediat B T T —

11 Object. changeObject dodecahedron v
changeBackground |uffizi v

Region|

41 Shader

rerfiles —

shaders changeShader 1BLShader v
irces =

s tonemapping orignal v

£ Backgr
= DoMed
- ost-process parameters
+ FBOCp| post-pi P

= GLWin scurve_n [0.00 |*| scurve_sigma |0.00 |*

] HDRLo| = B
3 LightP retinex_f [0.00 |*| retinex_k | 0.00

£ LightPr retinex_N [0.00 |*| bloom_f [0.00
= LoadTe|

2 MainW| bloom_k [0.00 |*| bloom_n [0.00 |*
- Medial

nents

bloom_N [0.00 |*

Camera Zoom

[MainWi... [§ [Untitled [Terminal] @ MedianC... [[HDRLoa.

Figure 15 diffuse and reflect result

4.5.1.4 Fresnel equations and Fresnel term:

Flowing shaders have been using Fresnel equations.

The Fresnel equations were deduced by Augustin-Jean Frensel. It describes the
behavior of the light moving between two different media of different refractive
indices.

When the light transmit from one media to another, both the reflection and
refraction may happen. The model can be described like this:

media 1(it;)

media 2(ity)

&,

Figure 16 reflection and refraction model

As the figure shows above, we describe the angle between income light and
normal as t,, and describe the angle between reflection light and normal as #;,

19

the angle between refraction light and normal as #,, the refraction indices of the
two media are i, and it.. The relationship between incidence angles and the
reflection angles is given by the law of reflection:

Hf = Hr;
Equation 5 incidence angle and reflection angle

And Snell’s law defines the relationship between the incidence angles, refraction
angles and two medias refractive indices:

sin(d;) My
sin(#,) n

Equation 6 incidence angle and reflection angle

In physics, the Fresnel equation is very complicated, so we just need to use a
simple version to achieve the final effect. In this project, three values have been
used to represent the Fresnel equation, they are fresnelScale, fresnelBias and
fresnelPower. And the simple equation would look as below:

fresnelTerm = fresnelbias + fresnelscale * pow(1.0f+dot(-eyedirection, Normal),
frenelPower); [17.18.19]

(where fresnelBias=1-fresnelscale)
Equation 7 fresnel equation

4.5.1.5 Refraction:

This shader has been using the fresnel term created as above to simulate the
refraction of light. The main solution is to use two texture map, one is for
reflection, the other is for refraction, finally use the fresnel term as the weight
while doing the interpolation between this two textures. There is one important
thing should be noticed here: the normal of refraction and reflection are opposite
to each other.

J"l'.ﬂ'r'ﬂf-ﬂ!r.:-_:'.:.-;;_-.:f-_:r. = —:":"El'r'J‘TE-E[!,-Q-_.',.-,,L,_-L-[,_;”
Equation 8 normal of reflection and refraction
And in GLSL, it provide a function to calculate the refraction direction, so

refract (-eyedirection, normal, ratio);
List 4 refract function used in GLSL

is used in vertex shader and in this case, ratio is the indices of refraction
In the fragment shader,

gl_FragColor=mix(vec4 (refrCol,1.0), vec4(specCol, 1.0), Ratio);

20

List 5 use ratio which is generated by frensel to get the right pixel in the environment map.

is used to get the final pixel colour.

¥ 4 BB Fil9A

Transform

ders Postion

clude

| Backar| 0.00 2 000 2/ [0.00

| DoMed f—

| FBOh

| GLWing 10.00 2 [10.00 /10,00

| HORLoy Refraction Cut Area

| LightPd . . :

| LightPr| 0.00 | 0.00 mediancut
| LoadTe|

| Mainw| ange

| Mediar
| Object.
| Region
| Shader
irfiles
~aders
ces
<
| Backgr|
| DoMed
| FBOCP)
| GLWing
| HDRLo{
| Lightpq
| Lightpr]
| LoadTe
| Mainw|
Mediar|

changeObject dodecahedron v

changeBackground |uffizi v

changeshader RefractionspeDifshader v
tonemapping orignal v

st-process parameters
scurve_n [0.00 ‘| scurve_sigma 0.00 |*
retinex_f |0.00 * retinex_k 0.00 |*
retinex_N [0.00 ‘| bloom_f 0.00 |*

bloom_k [0.00 ‘| bloom_n 0.00 |*

bloom N [0.00 *

Camera Zoom

ample ... ‘m RTimeisL 8

Figure 17 reflection and refraction model

4.5.1.6 Reflection and diffuse using fresnel:
This part is almost the same as the one described above.

The difference is to use fresnel as the weight to interpolation between the
diffuse texture and the specular texture.

21

Fri 19 Aug, 2:23AM

Transform
Postion

| 0.00 2 |0.00 2| [0.00

Scale
[10.00 2| [10.00 2| [10.00

Refraction Cut Area

[0.00 ‘| [0.00 *' | mediancut

Change

changeobject |dodecahedrony] v |
changeBackground Uizl] v |
changeshader ([BRDRShader L o |
tonemapping orignal v

post: process parymeters
scurve_n [0.00 |*| scurve_sigma 0.00 |*
retinex_f [0.00 |*| retinex_k 000 |*
retinex_N [0.00 |*| bloom_f 000 |*

bloom_k [0.00 |*| bloom_n 0.00 |*

bloom N [0.00 |*

Camera Zoom

B [Untitled [Terminal] oa... i [Sample... ‘m RTimeisL =

Figure 18 Reflection and diffuse using fresnel

4.5.1.7 Chromatic distortion:

Chromatic distortion is a kind of aberration, which is a failure of the lens to focus
all the colours on the same point. It happens because different wavelength of
light has different refractive index. And the refractive index is inversely

proportional to the wavelength. So it can be implemented easily, dealing with the
RGB channel separately.

Here the refraction indices Eta should be defined as a vector, which contains the
different value of different colour channel refraction indices. Take red channel as

an example:

RefractR=vec3(refract(EyeDir, cNormal, Era.r));

List 6 deal with refraction direction of the red channel in .vs

refrCol.r = vec3(textureCube(Map,RefractR)).r

List 7 find red channel value the proper pixel in .fs

22

¥ < B4 Fri19Aug, 2:24 AM

Transform
Postion
| 0.00 2/ [0.00 2/[0.00
Scale
| 10.00 /10,00 210,00

Refraction Cut Area

| 0.00 * 000 “ | mediancut

Change
changeObject dodecahedron
changeBackground |uffizi

= —
tonemapping |oignal v

post-process parameters

<

<=

<

scurve_n [0.00 |*| scurve_sigma |0.00 |*
retinex_f [0.00 |*| retinex_k |0.00 |*
retinex_N [0.00 |*| bloom_f |0.00 |*

bloom_k [0.00 |*| bloom_n |0.00 |*

bloom_N [0.00 |*

Camera Zoom

55, file: src/ShaderPre
e: 55, file: src/Shade

[Terminal] [Fragme... @ [point.cp. [Terminal] @ [MainWi... [[Untitled [Terminal] @ MedianC... [[HDRLoa... F [Sample... ‘m RiimelsL [

Figure 19 Chromatic distortion

4.5.2 Tonemapping

HDR colours are limited to display on the normal device screen; in this case,
tonemapping is used to map HDR images to LDR images, so that the image can be
displayed on the screen. In this project, the HDR image has already converted to
the LDR when it is loaded. There are two methods to do tonemapping, one is s-
curve which is the global tonemapping, the other is Rahman Retinex which is
local tonemapping

4.5.2.1 S-curve (global tonemapping)

S-curve is the global tonemapping method. It just uses one nonlinear curve to
affect each pixel of the picture.

The represent curve can be described as following equation:

It 1
Ronar 1" + sigma™)

Equation 9 S-Curve equation

In this equation, R is the response and the value is between 0 and ¥, ... [is the
intensity of the light, n is a sensitivity exponent which generally between 0.7 and
1.0 sigma is a constant, and it controls the x axis of the curve.

In the project, S-curve has affect each pixel chanel, and n is the pixel size. So in
the fragment shader, the output colour can be implement as follows:

gl_FragColor.r=pow(colour.r, n)/(pow(colour.r,n)+pow(sigma,n));
gl_FragColor.r=pow(colour.g, n)/(pow(colour.g,n)+pow(sigma,n));

23

gl_FragColor.r=pow(colour.b, n)/(pow(colour.b,n)+pow(sigma,n));
List 8 implement of scurve in different channels

4.5.2.2 Rahman Retinex(local tonemapping)

Rahman Retinaex is a local tonemapping method. In this method, the local pixel
will be computed according to the pixel itself as well as the pixel, which is
surrounding to it. This method will use a blur filter to compress the pixels. And it
will act on each channel of the pixel seperately. The equation this project used is
as follows:

(N—n+1)"
RN —m+ 1)

W, =

A LT

Ly = AL wen - Tl b o= log 0 T

Equation 10 the equation of Rahman Retinaex

In this equation, f controls the weight of each scales, and decides the blurred
image which plays a important role, generally from -0.3 to 0.3 in steps of 0.1. The
value k represents the relative weight of the blurred image.

4.5.3 Blooming

After doing those tone mappings, it is time to add some special effects. A bloom
effect is used to glow the very bright areas in the image. This can display an
image, which is bright than it actually is. Bloom effect simulates effects of human
eyes. When part of environment was viewed by our eyes, it is always brighter
than rest of the area. Also, there is a glow effect around the area. So it can make
the image much more realistic. This effect can be implemented using a filter,
which falls off quickly. The bright pixels can contribute energy to the other pixels
around them. The filter falls off quickly so that it just make the extremely bright
pixels contribute to other pixels in a sudden without changing the other area.
Finally the different blurred texture is combined together and adds to the
original one in order to get the bloom effect.

In this project, in order to simplify the process, just one texture is used. In bloom
shader, the filter used is similar as the one used in the Rahman Retinex shader.
And use smoothstep function to calculate the bright parts of the image. This post-
process is based on the s-curve.

24

Figure 20 orginal shader, Rahman Retinex shader, scurve shader, bloom shader

4.6 frame buffer object
In this project, frame buffer object is used to render the frame to the texture. The
pipeline is as follows:

tonemapping and
post-process

fréﬁlebufferobiéct

Figure 21 tonemapping using frame buffer object

Use IBL shaders to render the first pass and put them into framebufferobject,
and then use tonemapping and post-process shaders to generate the first pass.
This will be output to the screen finally. When using bloom shader, the normal
method is to render the bright area of the image into framebufferobject and use
filter to blur the pass. In this project, the two steps are combined together.
However, in this place, the frame buffer object was still used because bloom
effect should use after the scurve shader.

4.7 Interaction guide:

Users can choose different primitives and change the value of position and scale.
Users can also change different shaders to observe different materials. Different
tone mapping method and post process can be choose as well.

25

4.8 Result:

Figure 23 other primitives

26

Chapter 5 Conclusion

5.1 Achievement overview:
In this project, several things have been achieved.

First, this project use the .hdr format directly, which has lots of resources on
Debevec’s website. This project has implemented loading of .hdr format. And use
mediancut algorithm to divide the image into proper religions, and finally
determine the vitual lights position and colour.

This project uses the cross map directly rather than use six different side images.
Cube mapping performed very well for both the skybox and the objects.

Different image based lighting shaders have been implemented. Some of them
are based on fresnel equation to get the good looking result.

Tone mapping and post-process shaders such as s-curve, bloom, Rahman Retinex
has been performed and it allows users to adjust the relative parameters to get
different outputs.

Users can zoom in and out the camera to observe the scene. Objects can be
moved to different places to get the different lighting results.

5.2 Improvements:
There indeed some parts of the application can be improved:

Now, median cut algorithm can manage the regions of the image, and also can get
the lights positions and colours but some errors happen prevent the light to cast
the shadows. And when use bloom shader, and choose the primitive as teapot or
dodecahedron, some black square would appear around the object, it might be
caused by the blur filter, and will be fixed in the furture.

5.2.1 Shadows:

Relatively, the implement of shadow is much more complicated. But shadow
plays a very important part of the lighting. This application will use lights to cast
shadows, based on the median cut method, with the technique of global
illumination.

5.2.2 Interreflection between objects:

The program is just carrying out the lighting of single object. In order to get more
attractive result, light spreading among objects will be implemented in the future
work.

27

5.2.3 Deferred lighting:

This project took a lot of time to combine the hdr format with the program and
also paid much more attention to the HDR and shader writing, ignoring the very
important lighting technique, which called deferred lighting. Deferred lighting
can be used to scale with more lights in order to affect the scene. The
information can be saved to texture instead of doing the actual lighting
calculation. The lighting will only be calculated as long as the geometry is
rendered.

5.2.4 The usage of images:

In the project, two maps are used to represent the diffuse light and the specular
light. And diffuse map is generated from specular map using HDRshop. Although
this will improve the speed of computation, it is still important to do it in the
program. Because if the diffuse map was created by the program, users can
import any other random HDR image as environment map.

5.2.5 More effects:
More effect can be added when doing the post-process, such as depth of field,
glow, glare and so on.

To conclude, according to this project, many techniques have been learned. But
there are many interesting parts of image-based lighting are ignored due to the
time, such as the implement of the shadow, the global illumination using IBL.
This will be accomplished in the future.

28

Chapter 6 References

[1] Blinn J., Newll M., 1976, Texture and reflection in computer generated images.
Communication of the ACM 19(10): 542-547.

[2] Debevec P., Debevec’s website

Available from http://ict.debevec.org/~debevec/ [Accessed 19 August 2011]

[3] Reinhard E., Ward G., Pattanaik S., Debevec P., 2005, High dynamic Range
Image, The Morgan Kaufmann series in compyter graphics, San Francisco.

[4] Debevec P. Rendering Synthetic Objects into Real Scenes: Bridging
Traditional and Image-Based Graphics with Global Illumination and High
Dynamic Range Photography. In SIGGRAPH 98, July 1998.

[5] Debevec P. 2002, Image---based Lighting, IEEE Computer Graphics and
Applications, P26---34

[6] Yu Y.,Z., Debevec P., Malik J., Hawkins T., 1999,Inverse Global illumination:
Recovering Reflectancd Models of Real Scenes from Photographs, SIGGRAPH 99,
26" conference on Computer graphics and interactive techniques.

[7] Agarwal S., Ramamoorthi R., Belongie S., Jensen,W.H., Stuctured Importance
Sampling of Environment Maps, Siggraph 2003.

[8] Hensley]., Scheuermann T., Coombe G., Singh M., and Lastra A., 2005, Fast
Summed---Area Table Generation and its Applications, EuroGraphics 2005 (v24)

[9] Debevec P., 2005, A Median Cut Algorithm for Light Probe Sampling
(SIGGRAPH Poster 2005)

[10] Viriyothai, K. Debevee P., 2009,Variance Minimization light probe sampling,
SIGGRAPH 2009, New Orleans, Louisiana, August 3-7, 2009.

[11] GPU Gems, NVDIA Developer zone, [Accessed 19 August 2011]

[12] Agrawala M., Ramamoorthi R., Heirich A., Moll L., 2000,Efficient Image-Based
Methods for Rendering softShadows.

[13] Alexander Keller. Instant radiosity. In Computer Graphics (ACM
SIGGRAPH ’97 Proceedings), volume 31, pages 49- 56,1997.

[14] George Drettakis and Francgois X. Sillion. Interactive update of global
illumination using a line-space hierarchy. In Pro- ceedings of SIGGRAPH 97,

29

Computer Graphics Proceedings, Annual Conference Series, pages 57-64, Los
Angeles, Cali- fornia, August 1997.

[15]Xavier Granier and George Drettakis. Incremental updates for rapid glossy
global illumination. Computer Graphics Forum, 20(3):268-277, 2001.

[16] HDRLoader, http://www.graphics.cornell.edu/~bjw/rgbe.html, [Accessed 19
August 2011]

[17] split the cubemap code
http://etudiant.univ-mlv.fr/~rdamon/IMAC3/openGL/td6/src_exo2

[18] Gamedev.net, (http://www.gamedev.net/topic/427702-diffuse--fresnel-term/)
[Accessed 19 August 2011]

[19]nullah blog (http://blog.csdn.net/nullah/article/details/5553668) [Accessed 19
August 2011]

[20]Sousa T., Crytek GPU Gems 2 ,Generic Refraction Simulation
(http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter19.html) [Accessed
19 August 2011]

[21] yangdelong, Fresnel and Chromatic aberration shader
http://blog.csdn.net/yangdelong/article/details/4427782 [Accessed 19 August 2011]

[22] HDRShop, Available from: http://gl.ict.usc.edu/HDRShop/ [Accessed 19
August 2011]

30

Chapter 7 Appendices

+<<inline >> width()
+<< inline>> height()
+<<inline>> luminance()

const float

UL: MainWindow ©
GLWindow *

HDRLoaderResult HDRLoader
e i L e o
Rl It &« DRLoaderResult &): bool
i<cstatic> RGBE Writepixels ALE(fi1eNan
aata:float *,
scantine width
nun_scantines:int); _int
HDR DoMedianCut
Thpixels: nglriCotour n UigntProbeTmage: AOR™
'n lunsnances: float* n Lights: ector<LightPoint>
- CoLSFromOR: Nt Cotour n_region: std::vectoreicRegion>
- 1ght +DoMC(_filename:const char *, n:int, outputfile:QString): void
-m_width: +saveCuttedInage(file:QString *): void
i hartosds mesut: WORLoaderResutt <cinlines> getLight(): std: ivector<LightPoint>
FHOR()
+~HDR()
+l0ad(_fitenane:const chart): bool

+ pixel(x:const int, _y:const int): fig

+lumPixel(x:const int, y:const int):| float const
MedianCut

Tm_number: float *

- m_image: HOR

+p: LightPoint

+ m_lights: std::vector <LightPoint>

HedianCut _inage:const char *)

+ ~HedianCut()

+sunRegionColour (_region:const McRegions
+getLight(index:int): const LightPoint &
createLightsInRegion (regions: const std::vector <HcRegion>§)
L itareqiomap iiinase 05t ring. regions: 1 ectar cRegtonsd):

ngl

olour

bool

GLWindow

7 pdateObjectTiner: int
g1::Canera *
-m_canScreen: ngl:
-m_transformstac
-m_transStackFinal:
-m_object: Object
env: Background
- m_diffGrace: TextureManager
-m_specGrace: TextureManager

m_backgroundshader,m_shader,
-m_bloonshader, m
-m_lightArray (8]
-m_fpsTimer:

Transformstack
::TransfornStack

-m_diffRnl,m_specRnl,n diffStpeters,n_specStpeters,m diffUffizi,m specUffizi:
-m_specularShader,m SHdiffuseShader,n iffuseShader,m RSDShader,m BRDFShader:

m_IBLShader, m LightsShader,m COShader :
scurveshader,m_pProShader,m origShader,m RRetinexShader:

int

TextureManager
ShaderManager

ShaderManager

ShaderManager

cut(_n:int,_regions:std::vectorsicRegions6): int - m_spinvFace: int
+convertF2B(f:float): int -m_mesh: ngl::0bj *
n_rotate: bool
“morigX: int
“morigy: int
“m_position: ngl::vector
McRegion “nscale: ngl: Vector
A tertr int LightPoint n_sel nsel m selectedpost; :
B : - “n_frae: std::string
o Fr-formars, Mot vactor extureinages (31 GLuint
+n_bottom: int [+n_colour: ngl::Colour MadoNC:_DeBeaiancut iy
[+icRegion() -m_luminance "”—;’“"1”’“"’ constchar.
[hcRegion(tettsnt, rigntssnt, topisnt, “"a_position: nl: Vector aFRoScreen:
-m_rotation: ngl::Vector
5 o rerraRatio, eiffuseScale; float
+<ctnliness 1svalia(): boot FCLaTFoI T _pos:ngt: ector cotour gt Cotoury . Aiscurvens
+<< inline>> width(): 1nt [_)«qmms» SetLuminance (_luminance void _m_scurvesigma: int
+<< inline>> height(): int +<<inline>> getluninance(): float B
[+ntddle(x:ints, y:ints): void +<<inline>> getColour(): ng
[+<<inline>> pixelIndex(x:int, y:int): int const +<<inline>> getPosition(): ngl::Vector
+<< intines> area(): int const \<cinlines> getRoatation(): ngl::Vector
[+<cintine>> longestdinension(): int const angles(_theta:float &, _phi:float & mode:bool): void
[+norizontalsum(_img:HOR *,_sun:float [+<<statics> getsphericalCoordinatesphere(): void
+verticalsun(_ing:HOR *,_sun:float *): int +<cstatics getspherscalcoorasnatevone(): void Hinonk: Float
[+sun(_ing:HOR *, sum:float +): int & X
+nedianPoint(_ing:const HOR 7, x:inté, yiint&): void const Sint): void
+cut (_median:int, re:McRegions, rl:McRegion&): wc +setBloomK (_1:float): void
<<cinlines cosinscale(d:float, max:float): float
i<cstaticos median(number:const float *,

S Aney int setshader (_i:int): void
+setzScate(z:double): void
+set¥scale((yidouble): void
+setXscale(x:double): void
+setonjecttode(_1:int): void
setzrositionl zidoubte): void
+setYPos ition(y:double): void
. oetiposition(double): Vot

TextureManager +GLWindow(_parent : Widget *)
T harResuLt: MORLoaderResult . ~GLuin
camx ShaderManager +processkeyDown(_event: QKeyEvent) : void
oy e e e o event:QkeyEvent *): void
e hchiatn: Stikietring
exane: oLuint Shade rianager (_shaderProgran:std
W | Poreeinaierreteooront vemasarsatnc st Serng,
tnheignt sshaderpath: tring): void
cnumber0fTextures: int +LinkShaders(): void
i +useshader(): void
BT T T T K (_index:GLuint, attriblame:std: :string): void
+setTexane (_texNane:GLuint): void
“bindTextureobject (_inagepath:const char *): void
+binacubeTexture () : vosd
<readHOR (f1lenane: const char *): bool
screatecubetapraces(): void [
FBO
T Tor GLuint
“m_depthrb: GLuint
Object - n_fboTexture: GLuint
“width:
“height: int
<<inline> gemigth(): Int
ransformStack [+<<inline>> getHeight(): int
createTexture(): void
| +createCubeTexture(): void
L +<cintine>> getTexture(): GLuint
= s Ot
Selectedobjec tring, shaddiProgranist:string): void clearUpFB0(): void
cctniiness. setoration . rotauan ngl: sfector, +checkrBostatus(): void
void [+bina(): void
+<<inline=> setPosition(_position:ngl::fector): void unbind(): void
+<cinlines> setscate(scatengl::vector): voi K
ry
Background
T vaotD: GLuint
“n_tranforn: ngl::Tranfomstack
[~createcube(_scale:GLTloat): void
~araw(_tranfornStacking:: Transfornstacke): void

31

