
Conducting a Comparative Study of Traditional and Hybrid Xbox Control Systems

within a Developed Game

Alexander Poolton

NCCA, Bournemouth University

Abstract:

This paper investigates and analyses the simultaneous use of both the Xbox control-pad

and Kinect (a hybrid control system) in comparison to the traditional control system of

using only the Xbox control-pad. Both control systems are used within a developed

game, which operates as a test bed, and represents that of a typical game found within

the mature games genre. Usability tests, conducted on play testers, draw insight into

how the hybrid control system compares against the traditional control system.

Conclusions are then drawn with regards to to suitability of the hybrid control system,

as an alternative to the traditional control system, with emphasis on the mature games

genre.

 Page 1 of 53

Contents:

1. Introduction …... 7

1.1 Overview of Kinect-only Games …... 8

1.2 Overview of Kinect-Assisted Games ….. 11

1.3 Problems Posed by the Kinect ….. 12

2. Previous Works …... 13

2.1 Nintendo Wii Remote and Nunchuk …... 13

2.2 PlayStation Move Wand and Move Navigation …................................ 14

2.3 Hybrid Control System Proposal ….. 16

3. Technical Background ….. 17

3.1 Kinect Development …... 17

3.2 NITE Skeletal Tracking ….. 18

3.3 XInput …... 19

3.4 Development Environment …... 19

4. Stages of Implementation …... 21

4.1 Design Model and Usability Testing ….. 21

4.2 Game Outline …... 21

4.3 Hybrid Control System ….. 22

4.4 Game Mechanics …... 26

4.4.1 Player Behaviour …... 26

4.4.2 Flash Light …... 31

4.4.3 Gun and Bullet Effects …... 31

4.4.4 Enemy Behaviour ….. 34

4.4.5 Door and Key System ….. 36

4.4.6 Room Event System ….. 37

4.4.7 Audio Events …... 38

4.4.8 Light Events ….. 39

4.4.9 Heads-up Display ….. 39

4.4.10 Re-playability Factor …... 40

4.4.11 Game Settings and Main Menu …..................................... 41

 Page 2 of 53

5. Results of Usability Tests ….. 44

6. Conclusion …... 46

7. References …... 48

8. Bibliography ….. 51

Appendices ….. 52

 Page 3 of 53

List of Figures:

Figure 1: An image illustrating a user operating the Xbox 360 control-pad.

Figure 2: A picture illustrating the mini-game “Rally Ball”. “Rally Ball” is one of a

series of mini-games which make up the Kinect Adventures Xbox game. Note, the

player's limited movement space within the game.

Figure 3: An illustration showing a player performing a gesture, while using the Kinect.

Figure 4: A picture illustrating a Kinect side-task/mini-game within the Harry Potter

and The Deathly Hallows game.

Figure 5: An image illustrating the Wii Remote (right) and the Wii Nunchuk (left) being

held by a player.

Figure 6: An image illustrating the PlayStation Move Wand (right) and PlayStation

Navigation controller (left) held by a player.

Figure 7: An image illustrating two successful mature games (first-person shooters)

using the same outlined control configuration (discussed previously).

Figure 8: A diagram illustrating the body points that NITE tracks.

Figure 9: An image illustrating the OpenNI pre-built skeletal rig. Note, red dots to

indicate the tracking points have been included.

Figure 10: An image illustrating the two Kinect points for either hand. Only one set, a

Kinect point and the player's dominate hand will be used at any given time in the game.

Figure 11: A digram illustrating the Kinect point and Kinect hand tracking point

retaliative to each other.

Figure 12: A set of 3 images illustrating the Kinect collision box, with additional

collision boxes placed on the hands to collect collision between the boxes.

Figure 13: An image illustrating the object identification function. Note, the object's

name printed to the HUD in the lower-left hand corner.

Figure 14: A diagram illustrating the inheritance structure of the inventory items used

 Page 4 of 53

within the game.

Figure 15: This image illustrates the gun inventory item being added to the player's

inventory. The player can toggle the inventory GUI window on and off, by pressing a

button on the control-pad.

Figure 16: An image illustrating a “light crate” being lifted within the game.

Figure 17: An image illustrating the 3 different types of pick-up within the game

(battery, ammunition and health).

Figure 18: An image illustrating the player's different hit areas. Each hit area is a box

collider, and detect hits from enemy attacks.

Figure 19: An image illustrating the flash light turned on, within an area of the game

where the lights are turned off. Note, the flash light power level displayed on the left-

hand side of the screen.

Figure 20: An image illustrating the addForce method, adding a velocity vector to the

rigid-body of an object, from the bullet that struck it.

Figure 21: An image illustrating a bullet striking the surrounding environment, and

instantiating a bullet hole and sparks.

Figure 22: An image illustrating a behaviour of a bullet striking an enemy.

Figure 23: An image illustrating the orc's box collision hit areas. The hit areas

determine where the player's bullet hit, and deals damage to the orc accordingly.

Figure 24: A diagram illustrating the orc's firing system, showing the original line cast

destination, and the ultimate destination (with the random numbers added to the

destination’s Cartesian co-ordinates).

Figure 25: A image illustrating a key-card and door within the game.

Figure 26: An image illustrating a puzzle room (left) and an enemy room (right).

Figure 27: An image illustrating the player's HUD, in which the three HUD elements

(flash light, ammo and health statistics) have been highlighted.

 Page 5 of 53

Figure 28: An image illustrating the end of game statistics screen, informing the player

of their performance throughout the game.Figure 29: An image to illustrate the secret

collectable items which are hidden throughout the game.

Figure 30: An image illustrating the main menu of the game. The image shows the

different sub-menus the player can open, and explore.

Figure 31: An image illustrating the options GUI (a sub-menu of the main menu). The

player can use the GUI elements (sliders and a toggle) to modify the game's settings.

Figure 32: A graph illustrating the number of times a player died, within both versions

of the game

Figure 33: A graph illustrating the time taken to by a player to complete the game (the

time for both versions of the game have been recorded).

 Page 6 of 53

1. Introduction:

The purpose of this project is to develop a game which shall compare and critically

analyse two controls systems for the Xbox 360 platform, with emphasis on the mature

games genre. The two control systems are the Xbox 360 control-pad (only) and a hybrid

control system (the Xbox 360 control-pad and Microsoft Kinect simultaneously being

used by the player). The developed game will encompass as a series of usability tests, to

test these control systems against each other. From these usability tests, results can

derived with regards to how effective the hybrid control system (simultaneous use of

the Xbox 360 control-pad and the Microsoft Kinect) performed, in comparison to the

traditional configuration, of only using the Xbox 360 control-pad.

The two pieces of technology (Xbox 360 control-pad and the Microsoft Kinect) are

both used to facilitate Human-Computer Interaction between the player and the Xbox

360 platform. However, both achieve interaction, in a manner distinct of each other, and

are subsequently targeted at different user groups.

The Xbox 360 control-pad, the principle HCI hardware for the Xbox 360 platform is a

variant of the traditional "game-pad" (as used in previous gaming platforms) and as

such it is employed across all genre of games, developed for the Xbox 360 platform.

The controller itself is designed to used by the player with both hands holding either

side, whilst operating a combination of joysticks and buttons. The design itself is a

refinement of many iterations of traditional “game-pads” which have been proven

(repeatedly) as the most successful HCI input device to date, for gaming platforms.

Thus, users are instantly familiar with how to use these types of HCI controller devices,

in order to successfully operate games across multiple different genres.

 Page 7 of 53

The Kinect device is a recently developed piece of HCI hardware (released November,

2010) which tracks a player's body movement through an infra-red camera. Since the

Kinect's inception, games developed for it's use have fallen into two categories: games

in which the Kinect is the game's primary and only controller, and games where the

Kinect acts as the game's secondary controller (the primary controller being Xbox 360

control-pad).

1.1 Overview of Kinect-only Games:

Games which employ the Kinect as it's primary (and only) control device, are typically

targeted at "casual" players, and are thus heavily "mini-game" orientated. These games

typically provide players with a series of isolated tasks, in which they will have to

perform a series of body movements or sounds (using the Kinect's microphone) in order

to complete the set of tasks at hand. For instance, "Kinect Adventures" (Microsoft

Games Studio, 2010) presents a player with a mini-game called “Rally Ball” (see

Figure 2) in which the player must move their limbs in order to bounce balls at a

formation of blocks (a variation of a classic arcade game).

 Page 8 of 53

Figure 1: An image illustrating a user operating the Xbox 360
control-pad (Muich, 2006).

Figure 2: A picture illustrating the mini-game “Rally Ball”. “Rally
Ball” is one of a series of mini-games which make up the Kinect

Adventures Xbox game. Note, the player's limited movement space
within the game (Henry, 2011).

Typically, these mini-games are complied together to create a compendium, to create an

overall game. For instance, "Kinect Adventures" illustrates a typical example of the

"mini-game compendium" genre where several mini-games are brought together for

player's to play against the computer AI or other human players. Thus, these games are

typically targeted at "casual" players, and formulate the overwhelming majority of

“Kinect-only” games on the market today. Which in turn has caused Kinect-only games,

to be rejected by more “serious” gamers, and thus these games have have failed to

penetrate the mature gaming genres, such as first-person shooters or role playing

games. Additionally, Kinect only games, which are not apart of the mini-game

compendium genre, are generally sports games which feature the same set of tasks a

typical mini-game would feature. For instance, the tennis game “Virtua Tennis 4” (Sega,

2011) is in reality a refined version (as the player's feet remain in a static position in the

same manner) of the “Rally Ball” mini-game as seen in "Kinect Adventures" (see

Figure 2).

Coupled with the mini-game driven nature of Kinect-only games, another major

deterrent for games developers to develop games for “serious” gamers, are the limited

set of controls the Kinect devices offers, toward the more mature genre of games (such

as first-person shooters or role-playing games). This is apparent in the fact that, whilst

the Kinect tracks a player's body movements, problems can occur when a player

accidentally covers a limb (such as a hand) which causes the Kinect to lose tracking of

 Page 9 of 53

that limb. Which given the precision and accuracy required for a player to operate a

first-person shooter (in comparison to other gaming genres) would only cause

frustration and poor usability (in terms of Human-Computer Interaction) among serious

gamers. Furthermore, the Kinect is designed “to be operated between a distance of two

and ten metres” (Microsoft, 2010) and thus enabling players to walk back/forward,

left/right and rotate to a high level of accuracy (which is a requirement of first-person

shooters) would again cause poor usability (i.e. moving closer and further away from

the television screen would prove unsuitable). Thus, creating a more mature Kinect-

only game is not in keeping with what the Kinect was designed for (namely for a player

to stand in a somewhat static space, while performing body movements and gestures,

facing toward the Kinect device – see Figure 3).

Additionally, the level of input controls required for a first-person shooter or role-

playing game is typically quite substantial, in comparison to other game genres. For

instance a typical shooter might require at least 6 to 8 essentially actions, such as:

jump, fire, reload, throw grenade, open door etc. to successfully operate the game.

Whereas some of these actions (for instance actions such as opening a door) can be

gesture based (i.e. the player pushing their hand forward), the number of unique

gestures and/or actions are limited, and much less accessible to a player, in comparison

to the familiarity found when using a traditional controller. Furthermore, the player

could in theory, perform movement controls (forward, back, left, right) with one hand,

and look controls (look up, down, left, right) with the other hand (i.e. moving each

individual hand independently to control both look and move functions). However, in

doing so, the player would then be unable (or at least very limited) to perform several

 Page 10 of 53

Figure 3: An illustration showing a
player performing a gesture, while

using the Kinect (Brutal Gamer, 2010).

actions at once, and may possibly experience some interference between commands

(i.e. trying to walk forward, turn and shoot simultaneously).

1.2 Overview of Kinect-Assisted Games:

The other category of games which utilise the Kinect, are games in which the Kinect is

used as a secondary controller. Games which are developed in this manner, use the

Kinect as a “side-task” tool, where the player uses the Xbox 360 control-pad for the

majority of the game, and is then prompted to place the traditional Xbox 360 control-

pad down, and switch to using the Kinect. Once the Kinect task is completed the player

then resumes playing with the Xbox 360 control-pad. For instance, in the “Harry Potter

and The Deathly Hallows – Part 1” (EA Bright Light, 2010) game, players perform

gestures to launch spells at enemies (or other various actions, such as throw potions, or

hide under a cloak) as a part of an “on-rails” series of challenges in either single or co-

operative mode (see Figure 4). However, when playing the main story mode of the

game, which consists of a third-person character control, as seen in games such as

“Grand Theft Auto IV” (Rockstar North, 2008) players use the Xbox 360 control-pad.

This methodology of using different control devices for different tasks again illustrates,

how the Kinect isolated by itself, cannot deliverer the level of control required to

operate a detailed set of controls. Furthermore, this change between control devices can

cause the game to appear somewhat disjointed, and in turn cause the Kinect device to

be perceived as a “gimmick” or cumbersome by the mature gaming community.

 Page 11 of 53

Figure 4: A picture illustrating a Kinect side-task/mini-game within the
Harry Potter and The Deathly Hallows – Part 1 game (IGN, 2011).

1.3 Problems Posed by the Kinect:

To reiterate the two major problems the Kinect itself poses when developing games for

a mature audience are):

• The Kinect alone does not provide a high enough level of input/interaction to

successfully operate a game targeted at mature players, such as a first-person

shooter or role-playing games. Thus, these games cannot be developed as

“Kinect-only”.

• Forcing the player to swap between the Xbox 360 game-pad and the Kinect

causes the player's experience of a game to feel disjointed, and thus provides a

poor user experience. Furthermore, it re-enforces the idea that the Kinect is

simply an add-on tool, and not integral to the overall game.

Thus, this thesis will now discuss solutions, which will address the problems, that have

been outlined (see above).

 Page 12 of 53

2. Previous Work:

Currently there are two configurations of HCI devices on gaming platforms, which

combine two HCI devices to enable the user to control: both their movement and look

functions, whilst also providing a suitable level of input controls for player “actions”

(i.e. jump, use, fire weapon etc.). These three criteria encapsulate the key functionality,

typical mature games require. The two HCI device configurations are the Nintendo's

“Wii Remote and Wii Nunchuk” (Nintendo, 2006) for the “Nintendo Wii” games

console and Sony's “PlayStation Move Wand and PlayStation Move Navigation

Controller” (Sony, 2010) for the “Sony PlayStation 3” games console.

2.1 Nintendo Wii Remote and Nunchuk:

Nintendo's Wii Remote and Wii Nunchuk configuration is operated by the player

holding each HCI controller in opposing hands (the Wii Remote, being the primary

controller, is held in the player's dominant hand). The “Wii Remote” enables the

player's position to be calculated (using trigonometry) via an infra-red light sensor bar,

that is positioned level to the display. The Wii Remote itself consists of 11 input

buttons, and a built-in accelerometer, which is typically used to calculate the rotation of

the controller, or exerted force of the player's hand (i.e. the punching force of a player,

within a boxing game).

Figure 5: An image illustrating the Wii Remote
(right) and the Wii Nunchuk (left) being held by a

player (VaroLogic Blog, 2008).

 Page 13 of 53

The Wii Nunchuk, being the Wii's secondary controller, is held in the player's weaker

hand and is connected via cable to the bottom of the Wii Remote (see Figure 5, above).

The Wii Nunchuk provides the player with a joystick, and two additional input buttons.

A typical configuration established within the majority of mature Wii games, is for the

Wii Remote to control the player's in-game movement (up, down, left, right), while the

Wii Remote provides the player with the look/aiming functionality (by controlling the

player's view within the game). The hardware itself promotes this methodology, by

providing the player with a button located on the underside of the Wii Remote, which

imitates that of a gun trigger.

2.2 PlayStation Move Wand and PlayStation Move Navigation:

The PlayStation Move Wand and PlayStation Move Navigation controller, use exactly

the same configuration as established by the Nintendo Wii. Where the Move Wand is

placed in the player's dominant hand, to control the player's viewpoint and the Move

Navigation controller is used control the player's movement within the game. However,

the technology does differ, in the way it determines the player's hand position. The

PlayStation Move instead utilises a similar method to the Kinect, by using a stationary

camera the “PlayStation Eye” to track the distinctive orb positioned on top of the Move

Wand (see Figure 6, below), thus tracking the player's hand position. The Move

Navigation controller also imitates the Nintendo's Nunchuk, and provides 8 inputs

buttons for the user.

Figure 6: An image illustrating the PlayStation Move Wand (right)
and PlayStation Navigation controller (left) held by a player

(Kotaku, 2011).

 Page 14 of 53

Upon investigating both of these HCI control configurations, the most striking

implications are their similarities and not their differences (which are negligible). This

key point highly suggests that this configuration of providing a player with two HCI

devices in opposing hands. Where one is able to control the player's viewpoint, and the

other the player's movement, in which the dominant and weaker hands control each

respectively, is the best solution to the problems posed (see Section 1.3 - Problems

Posed by the Kinect). The reasoning for this configuration (of one controller typically

being used in the dominant and weaker hands) is due to the fact that the look/aim

functionality requires a higher degree of accuracy in comparison to the move/navigation

functionality. Thus, the HCI control device that controls the player's viewpoint/aim is

typically placed in their dominant hand. Furthermore, to re-enforce this argument, both

configurations scrutinized (see above) have been used within an array of successful

mature games. Games such as “Red Steel” (Ubisoft Paris, 2006) and “Killzone 3”

(Guerrilla Games, 2011) developed for the Wii and PlayStation 3 respectively, both

illustrate that the discussed control configuration works well with respects to real-world

use. Furthermore, illustrating that this control system appeals to “serious” gamers

(addressing the outlined problem of the Kinect-only games, not being able to penetrate

the mature games genre, see Section 1.3 - Problems Posed by the Kinect).

 Page 15 of 53

Figure 7: An image illustrating two successful mature games (first-person shooters)
using the same outlined control configuration (discussed previously) (Syfan Media,

IGN, 2011).

2.3 Hybrid Control System Proposal

Therefore, the research conducted, suggests the solution to the two key issues posed in

the introduction of this thesis (see Section 1.3 - Problems Posed by the Kinect) is to

combine the two Xbox HCI devices together (the Xbox 360 control-pad and Kinect) in

a “hybrid control system”.

Thus, from the research gathered, the player would use their dominant hand to control

their viewpoint within the game. This function could be controlled either with the Xbox

game-pad or Kinect. However, the advantage of having a freely moving hand, over

another hand holding one side of a controller (in which it was not designed to be held)

would favour the hand being tracked via the Kinect, to control the player's viewpoint.

Thus, with the player's “Kinect hand” the player would able to control their viewpoint

in the relation to where they moved their hand (i.e. if the player moves their hand

upwards, then the in-game camera also looks upwards).

Gestures could also be used by the player's “Kinect hand”. However, the movement

would have to be limited in order not to create “interference” between desired

commands (i.e. the player waving their hand to open a door, would cause them to look

left and right with each wave, which is not a desired effect). Thus, gestures should be

limited to the z-axis or the hand (thus not affecting the x or y axis). For instance,

gestures, such as the player reaching out (away from their body) to grab an item, or to

push a door open.

Subsequently, the Xbox 360 control-pad would be placed in the player's weaker hand,

providing a joystick to control the player's movement (up, down, left, right) and 8

buttons input buttons. This number of input buttons, would provide the player with a

suitable number of inputs in order to play a mature game, addressing problem outlined

previously (see Section 1.3 - Problems Posed by the Kinect).

 Page 16 of 53

3. Technical Background

In order to test the proposed solution, a game will be developed, which will implement:

the move and look functionality previously outlined (see Section 2.3 – Hybrid Control

System Proposal), several Kinect related functions (i.e. pick-up item, open door) and

other common functionality found within a game (i.e. enemy artificial intelligence,

goal-orientated game play and player feedback).

The purposed game being developed, shall be a first-person shooting game, as this is a

mature genre, it correlates to one of the outlined problems to be addressed (see Section

1.3 - Problems Posed by the Kinect). Furthermore, given the constrained time frame for

implementation, a role-playing game (which has been previously discussed) would be

extremely difficult to develop as games in this genre is very “content-heavy”, and

would add little to the results of this thesis. However, elements (such as a picking up

items, and a player inventory) shall be added, to provide adequate insight into how the

usability relates to both the first-person shooter and role-playing genre (the most

popular mature gaming genres).

3.1 Kinect Development:

As apart of the HCI to control the player's look functionality, the Kinect will be used to

track the player's dominate hand. The Kinect currently has three prominent developing

platforms: OpenKinect, Microsoft Kinect SDK and the OpenNI framework coupled

with NITE middleware.

OpenKinect is an open-source framework, which provides users with direct access to

the Kinect's depth information and camera. However, skeletal algorithms to track the

player's body are not currently supported, and implementing the algorithms from

scratch is outside the scope of this thesis.

The Microsoft Kinect SDK supports skeletal algorithms, however the SDK itself is still

in beta stages (as of time of writing) and thus has not had time to mature as a piece of

software. Additionally, the Microsoft SDK does not have any official or unofficial game

engine support, due to it still being in it's infancy.

 Page 17 of 53

The OpenNI framework plus NITE middleware is a mature Natural Interaction Device

development platform. The framework itself supports numerous Natural Interaction

devices including the Kinect and Asus' recently announced “Wavi Xtion” (Asus, 2011)

motion sensing system. Furthermore, the OpenNI framework + NITE middleware

currently supports two game development engines, ORGE and Unity (in which it has

created wrappers for both).

Thus, given the maturity of the OpenNI framework plus NITE middleware, it's support

for multiple types of Natural Interaction devices (enabling more flexibility and future

expansion of the implementation) and it's official support of two current game engines;

it is the most suitable choice to develop with, during this project.

3.2 NITE Skeletal Tracking:

NITE (the middleware placed on top of the OpenNI framework) provides the skeletal

tracking algorithms used to track several points on the player's body by the Kinect. In

total NITE tracks up to 14 points across the user's body, as shown in Figure 8 (see

below). However, as a part of this project, the only points that are significant, are the

player's dominate hand (the hand they will control their in-game view with). Therefore,

before the game starts the player will select which hand this wish to control their view

with (i.e. is the player right or left handed), and in turn the game will use the specified

dominate hand to control the player's view. Additionally, the head transform point may

also be used to roll the camera, dependant on the rotation of the player's head,

replicating a lean function found within many first-person shooting games.

 Page 18 of 53

3.3 XInput:

XInput is a Microsoft API for interfacing with input devices namely the Xbox 360

controller. The system provides developers with button mapping (thus functions can be

mapped to various buttons and axis/joystick controls). Therefore, allowing developers

to re-map the controller to utilise the functionality within their developed game. XInput

is supported by both ORGE and Unity. Note, XInput is supported by numerous game

engines. However, as ORGE and Unity are the only game engines supported by

OpenNI, they are more suitable options to develop the game with.

3.4 Development Environment:

Utilising an existing game engine, in favour of creating a small game engine from

scratch was chosen, due to the time constraints of the project; coupled with the fact the

focus of this thesis, is a comparative study of Xbox 360 controls, and not to develop

low-level game technology. Therefore, allowing the project to focus on the HCI

principles, usability and integration of controls within a developed game. As opposed to

additionally creating a basic game engine to test these aspects, was deemed the most

suitable approach. Furthermore, using an existing game engine, would allow for a game

with a much wider scope and larger set of game mechanics. Which in turn would

provide a more diverse set of functionality to test the control configuration (especially

 Page 19 of 53

Figure 8: A diagram illustrating the body points that NITE track (Tribal Lab, 2011).

the Kinect itself). This would furthermore provide richer usability results and a much

closer (although still extremely small in comparison) resemblance to a fully featured

commercial game (allowing the results to have some tangible meaning to game

developers).

The chosen development platform for this project will therefore be the Unity game

engine. The platform was chosen due to it's support of OpenNI and XInput.

Furthermore, the Unity game engine has various components, such as rigid body

dynamics and ray casting which are built into the game engine, enabling developers to

create behaviours and functionality using them. Therefore, increased efforts can be

placed focusing on key principles of the implementation (i.e. creating a game which

acts as rich usability testing environment) which in turn will provide richer usability

results to draw conclusions from.

 Page 20 of 53

4. Implementation Stages

4.1 Design Model and Usability Testing:

Once a suitable development environment had been chosen, a development model was

selected, to ensure the implementation of the game was performed in an effective

manner. The iterative development model was chosen, as it is a common practice within

the games industry to ensure games under development receive iterative usability tests

(play testing). The purpose of iterative testing is to provide developers with constant

feedback, on key principles of the game, such as usability, bug-testing and general user

feedback. Thus, iterative usability tests shall be carried out regularly (weekly)

throughout the game's development. The group of play testers shall consist of a mixed

age group, with differing gaming experience (i.e. some inexperienced with games,

while others being very experienced with games). This mixed demographic will provide

a broader horizon of usability test results, and thus richer insights into whether the

problems outlined (see Section 1.3 - Problems Posed by the Kinect) were addressed.

The practice of “using a mixed demographic of test subjects, is a common practice

within usability testing, and is known as Hallway Testing” (Rubin, Chisnell, 2008).

Once formed, the usability test group consisted of 8 mixed participants (each with

different levels of gaming experience). Each usability test would consist of a play test

of a specific game mechanic, while qualitative studies (the user would be asked a series

of questions, i.e. “Do the controls feel easy to operate?”) were conducted. The game

mechanic would then be modified or kept the same, dependant on the usability group's

feedback.

4.2 Game Outline:

The game itself follows a linear goal-orientated gameplay style, in addition to a simple

linear story arc. The game is set within a prison wing, where two prison guards are

currently working. The game starts with the main protagonist (one of the prison guards,

the character, the player plays as during the game) carrying out a routine patrol of the

prison wing. Upon the discovery of blood, the player is lead to discover the second

guard in a pool of his own blood. The player then discovers the inmates of the prison

 Page 21 of 53

(orcs) have escaped, and have entrenched themselves throughout the complex. The

player must then fight their way out of the complex, solving various puzzles, and

ensuing gunfights, in order to survive.

4.3 Hybrid Control System:

The hybrid control system consists of the Xbox control-pad (to move the player) and

the Kinect control system (which enables the player to look, and perform various other

actions, such as open doors and pick up objects).

As previously stated the Unity engine uses XInput (see Section 3.3 - XInput), and thus

interfacing with the Xbox controls is already integrated within the Unity engine.

Therefore, all that is required to use the Xbox 360 control-pad within Unity is to re-map

the buttons and joystick axis to their desired functions. Furthermore, Unity offers a pre-

built first-person control system implemented within the engine, as a part of it's

standard assets. Thus, instead of recreating a standard first-person control system, it was

decided it was better to re-use the functionality and focus efforts on building the Kinect

control system, and the rest of the game. This is largely due to the fact that building a

standard first-person control class from scratch, would be a redundant effort, as it has

been developed countless times before within the industry. Once the Xbox axis controls

(the joysticks) had been mapped to the first-person control class (to enable the in-game

camera to be moved forward, backwards, left and right) the Kinect control system

needed to be developed.

One of the key reasons for using Unity is that OpenNI officially supports the game

engine, and has created a wrapper to use NITE functionality within Unity. Furthermore,

a sample project is included with the wrapper, which encompasses a pre-built skeleton

(as shown in Figure 9, see below). After testing the OpenNI rig with the Kinect,

optimizations were made by disabling non-essential features, such as displaying the

users depth image within game. With the default features OpenNI used, the game was

ran at 50 frames per second. However, after optimization (disabling of non-essential

features) the game ran at 160 to 180 frames per second.

 Page 22 of 53

To enable the player to control the first-person camera within the game, in relation to

where they moved their dominate (or “Kinect hand”), a point of reference was needed.

This point of reference would be used to calculate the vector magnitude between the

hand transform and the point of reference. From this vector magnitude, the camera'

pitch and yaw could be rotated according, dependant on if the player's hand moved up

or down in relation to the point of reference. The point of reference which was entitled

the “Kinect point”, was placed according to a series of usability studies, investigating

where users felt most comfortable holding their hand (in front of their torsos) for a long

period of time. From this usability study it was found that users tend to rest their elbow

just above their hips, in order to support it, when holding their arm out for lengthy

periods of time. Therefore, providing even though this thesis will present a prototype

game (which will last less than 15 minutes) it should be still kept in mind that

commercial games typically encompass a playing time of 20 hours of more, and thus

the player will want to be positioned in the most comfortable position possible. Thus,

from this usability study the “Kinect point” was positioned just under the player's

shoulder of their dominate hand (see, Figure 10). Obviously, there required to be two

Kinect reference points, one for each hand (dependant on which the player selected as

their dominate hand). Thus, according to which hand the player select to use to control

the in-game camera, the opposing Kinect point will be disregarded and the Kinect point

of the corresponding hand will be used.

 Page 23 of 53

Figure 9: An image illustrating the OpenNI pre-built skeletal rig. Note,
red dots to indicate the tracking points have been included.

The displacement between the hand point and the Kinect point is calculated between a

scale of -1 and 1 (as shown in Figure 11, see below) and then multiplied by a scaling

factor (sensitivity); which allows the player to look/aim at a faster or slower rate (a

function found within the majority of first-person shooting games). When the player's

hand is at it's natural rest point (the Kinect point) the camera remains at a fixed position.

Thus, enabling the player to change the viewpoint of the camera when they desire (by

moving their hand, in the desired direction).

 Page 24 of 53

Figure 10: An image illustrating the two Kinect points for either hand. Only
one set, a Kinect point and the player's dominate hand will be used at any

given time in the game.

Figure 11: A digram illustrating the Kinect point and
Kinect hand tracking point retaliative to each other.

The final component of the Kinect control system was to implement the “reach”

functionality (which would later be used to invoke the “use”, fire gun and pick up

actions). The reach functionality acts as an extra input button for the player, by enabling

them to invoke an action (i.e. firing their gun or opening a door) by reaching out in

front of their torso. This functionality was initially achieved by using the z-axis

magnitude between the Kinect point and the Kinect hand point. For instance, once the

hand exceeded a pre-set threshold (i.e. it was far enough away from the user's body) a

boolean value would be set to true, enabling the player to pick up an item. However,

upon experimenting another method provided a “crisper” and more satisfactory

response, as stated by users, as part of the usability tests. This method was to parent a

collision detection box to the player object within Unity and pre-set the distance

(similar to the threshold value, implemented in the previous method) between the torso

and collision box (see Figure 12, below). The same boolean value (mentioned earlier)

was then set to true or false, dependant on if the collision boxes placed on the pre-

defined (as selected by the user, at the start of the game) dominate hand of the Kinect

rig, had entered or exited the Kinect rig collision box (the collision box place in front of

the rig). The pre-set distance between the rig and collision box was tested with users in

the testing group, with both shorter and longer arms, and provided the correct results

without failure. Thus, based on the user feedback and the perfect test results, this

method was kept, as opposed to the former implemented method of implementing the

pick up/use functionality.

 Page 25 of 53

Figure 12: A set of 3 images illustrating the Kinect collision box, with additional collision boxes
placed on the hands to collect collision between the boxes.

The player's “lean” functionality, which allows players to lean in-game (around corners

and objects), was also implemented. Players can lean in-game, by leaning left or right,

in front of the Kinect (or simply rotating their head). The direction the player leans (or

rotates their head) will cause the in-game camera to also rotate/lean in the same

direction.

4.4: Game Mechanics:

Upon completion of the Kinect control system (which enabled the player to freely move

and look) a game in which to test the control system needed to be developed. The

development of the game was broken down into manageable components, each

implementing a different game mechanic. The game mechanics chosen to be

implemented, are those that are typically seen in first-person shooters or role-playing

games, such as: a weapon system, enemy artificial intelligence, door and key systems,

pick ups, event-driven gameplay and goal orientated gameplay.

4.4.1 Player Behaviour:

Object Identification, Pick up, Lift and Use Functionality:

Once the player could freely move using the Kinect control system, the first set of

functionality to be implemented was identification, picking up and using objects. Ray

casting was used to cast a ray in a positive z-axis direction from the centre of the screen

(the player's crosshair). Hit information gathered by the ray cast would then be returned

and used to output a string of the object's name to the player's head-up display (as

shown in Figure 13, see below). Note, the ray has a limited length, which is set via a

class member variable (m_itemReachRange).

 Page 26 of 53

Within the game there are two types of objects, inventory items and non-inventory

items, both of which can be picked up. Each item houses a different set of behaviours

dependant on it's type and also name. For instance, an item which is of type “Inventory

item” will be added to the player's inventory. Whereas, a item of type “Non-inventory

item” can also be collected, but will have different behaviours dependant on it's name

(i.e. both a battery pick-up, and health pick-up are non-inventory items, but invoke

different behaviours). Once the player's crosshair is over the item, the player must then

press the use/pick-up button in order to pick the item up. Note, the player's crosshair

does not need to be exactly over the object, as a built in tolerance was implement; and

as such the player can still pick up an object, if their crosshair is near enough to the

object. This was used to aid inexperienced players, when aiming, to pick up an item

with greater ease. Upon pick-up, non-inventory items invoke a behaviour (dependant on

name) and are then destroyed (in order to use memory efficiently). Inventory items are

added to the player's inventory (a dictionary collection) and are parented to the player,

so that they can use them within the game (i.e. the gun and flash light will be positioned

in player's hands, in order to use them). The pick-up button also constitutes as the

player's use button, and can be used to open doors throughout the game. Additionally, as

previously mentioned, players can use/pick-up using the hybrid control system

(utilising the Kinect), by reaching out in front of their torso (see Section 4.3 Hybrid

Control System - Xbox Control-Pad and Kinect Control System). Thus, a player can

pick-up and item or open a door, simply by reaching out in front of their torso.

 Page 27 of 53

Figure 13: An image illustrating the object identification function. Note, the object's name
printed to the HUD in the lower-left hand corner.

All inventory items within the game inherit common properties from the InventoryItem

class. Thus, simple items that do not have extra behaviour (for instance a secret/Easter

egg item) can instantiate from this class. Additionally, creating new inventory items is

an easy process due to the extendibility of the design, which is achieved via inheritance

(see Figure 14, above).

The player's inventory consists of a dictionary collection, as each item is unique, and

thus a player should not be able duplicate and collect more than one of the exact same

inventory item. However, a player can collect a variant of a type of item (i.e. “Red

Keycard” and “Green Keycard”).

 Page 28 of 53

Figure 15: This image illustrates the gun inventory item being added to the player's inventory. The
player can toggle the inventory GUI window on and off, by pressing a button on the control-pad.

Figure 14: A diagram illustrating the inheritance structure of the inventory items
used within the game.

Player's can also lift objects that are marked as “lift object” (as shown in Figure 16,

below). Players lift objects within puzzle rooms to gain access to keycards (i.e. stack

boxes to reach a platform), or to defend themselves against enemies (by using the object

as a shield, blocking enemy fire). Items are lifted by simply setting their position to a

specified length down the ray being cast (the ray which the player class casts). The

object's velocity of it's rigid body component is set to 0, to ensure the universal gravity

vector does not take effect (causing the object to fall back to the ground).

Non-inventory items (i.e. pick-ups) consist of ammunition, health and batteries (as

shown in Figure 17). Ammunition and batteries can only be picked up if the player has

a gun or flash light in their inventory respectively.

 Page 29 of 53

Figure 16: An image illustrating a “light crate” being lifted within the game.

Player Damage and Death:

The player takes damage via enemy gunshot hits or meele attacks. The player takes

different amounts of damage dependant on which area of their body they are hit. This is

achieved through a number of collision boxes or “hit areas” positioned in a human body

shape (see Figure 18, below). Thus, when a player is hit the method “takeDamage” is

invoked, which consists of a switch statement, which in turn, decrements the player's

health dependant on which body part was hit.

 Page 30 of 53

Figure 17: An image illustrating the 3 different types of pick-up within the game (battery,
ammunition and health).

Figure 18: An image illustrating the
player's different hit areas. Each hit area

is a box collider, and detect hits from
enemy attacks.

When a player dies they are transported back to the previous checkpoint (which is the

last room completed. Note, rooms shall be discussed later in this thesis).

4.4.2 Flash Light:

The flash light can be collected at the start of the game, and serves as a tool to

illuminate a room, when the lights within the level are turned off. The flash light

consists of a spotlight, which can be toggled on and off throughout the game. This game

mechanic increases atmospheric tension within the game, by affectively limiting the

player's field of view (to the cone of the spotlight). The flash light itself has a power

level, which drains, while the flash light is turned on. Batteries can be picked up to

replenish the power level of the flash light. Once the flash light is collected, it's power

level is made visible in the player's heads-up display.

4.4.3 Gun and Bullet Effects:

The player collects the gun at the start of the game, and uses it to defeat enemies and

solve various puzzles within the game. The gun can be holstered and drawn by pressing

a button on the game-pad (note, that objects cannot be lifted when the gun is drawn).

The gun uses a ray cast system (the same methodology found within the player class for

identifying and collecting items) to fire a ray (the bullet) and provides hit information

 Page 31 of 53

Figure 19: An image illustrating the flash light turned on, within an area of the game where the
lights are turned off. Note, the flash light power level displayed on the left-hand side of the screen.

on any object the the ray collides with (i.e. any object the bullet hits). Thus, behavioural

response from a bullet collision (the ray hitting an object) is dependant upon what ray

hits. If the bullet (the ray cast) hits the surrounding environment (excluding objects that

have been placed on a non-shootable layer, which include inventory items) a bullet hole

and bullet spark are instantiated at the point the ray hit. Whereas, if a bullet hits an

enemy, a blood splatter (from the exit wound) of the bullet is created. These, effects are

known as “bullet effects” within the game, and reside in a separate class, so that the

bullet effects can be used by both the player and enemies (that possess guns) throughout

the game. If a player hits an enemy with a fired bullet within the game, the hit enemy

will take damage (dependant on where they hit the enemy). Additionally, objects hit by

a bullet will have a velocity force applied to them relative to the normal of the the point

struck on the object (see Figure 20, below).

As previously mentioned, there are three different types of bullet effects, the bullet hole,

bullet spark and blood splatter. The bullet hole is essentially a textured plane that uses a

transparency shader to ensure the correct alpha levels are displayed (i.e. only the bullet

hole is visible and not the rest of the plane). Upon the gun's ray hitting the surrounding

environment, a bullet hole is instantiated, position and rotated dependant on the object

or segment of the environment hit. A bullet spark object (which was created using

Unity's in-built particle effects system) is then instantiated in the same manner as the

bullet hole (and at same time).

 Page 32 of 53

Figure 20: An image illustrating the addForce method, adding a velocity vector to the rigid-body
of an object, from the bullet that struck it.

The blood splatter effect is created from the exit wound of a bullet passing through a

enemy within the game. Upon the bullet (the ray) hitting the enemy, a new ray is

created from the point of impact, which follows the same path as the initial ray cast

from the gun to the enemy. The newly created ray passes through the enemy (and exits

from the other side) eventually hitting the surrounding environment; at which point a

blood splatter object is instantiated (at the point where the ray hit the environment).

 Page 33 of 53

Figure 21: An image illustrating a bullet striking the surrounding environment, and instantiating a
bullet hole and sparks.

Figure 22: An image illustrating a behaviour of a bullet striking an
enemy.

All three types of bullet effects are destroyed after a pre-defined period of time, in order

to efficiently use memory. Additionally, sounds effects of the gun firing (simply an

audio played back when the gun is fired) and gun reloading (when the player presses

the reload button) were also incorporated.

4.4.4 Enemy Behaviour:

Throughout the game the player will encounter enemies, which they will have to

destroy in order to progress through the game. Enemies within the game are state-

driven, dependant on several factors (i.e. health, ammunition etc.) and also share several

common attributes (i.e. health, berserk and death functions). Thus, the a base class

“Enemy” was created, acting a template class, for types of enemies (subclasses) to

inherit from. Virtual methods were also interoperated, so that subclasses could override

shared methods and implement their own alternatives. This ensures the enemy system

remains flexible, while providing common functionality that a typical enemy would

possess (see Appendix A: Class Diagram for Enemy and Orc classes).

Enemies (using the same methodology of how the player takes damage) take damage

dependant on where they are hit (see Figure 23, below).

 Page 34 of 53

Figure 23: An image illustrating the orc's box collision
hit areas. The hit areas determine where the player's
bullet hit, and deals damage to the orc accordingly.

As previously mentioned enemies are state driven dependant on health or ammunition.

Enemies will wait in an idle state until they detect a player (if a player is within a pre-

defined range). Upon detecting a player, enemies will enter an attack state, in which

they will attack the player. If the enemy reaches a pre-defined health level (below 30

percentage of it's maximum) it shall enter a berserk state, in which it charges the player

to perform a meele attack. Once the enemies health reaches 0, it dies, and it's object is

destroyed from the game (in order to use memory efficiently). Each state has it's own

accompanying animation, using Unity's animation system and sound effect. Note,

enemy animations were sourced from a third party (Dexsoft-Games, 2011).

Orc Enemy:

The orc enemy is currently the only enemy within the game (due to time constraints)

but illustrates the enemy architecture's flexibility and extendible design. The “Orc”

subclass extends the Enemy base class, utilising it's shared attributes whilst also using

extended behaviours (implemented for uniquely for it's own use, such as firing it's gun).

Using the enemy base class orc's also pass their own animations and sounds for each

inherited method, enabling setting up enemy's behaviour easily accessible and quick.

The orc enemy uses a line casting system, when firing at a player (when it enters it's

attack state), this is a special implementation of a ray casting system within Unity. A

line casting system, takes two parameters the origin of the line to be cast, and it's

destination. The line then returns any objects it intersects between it's pre-defined origin

and destination points. Thus, the origin of a line cast emitted (when an orc fires it's gun)

is from the orc's gun, to it's destination the player (once the player is within firing range,

which is a pre-defined distance). Firing accuracy was added to ensure an orc does not

hit the player every single time (thus realistically representing real world phenomena).

The orc's firing accuracy works by taking the destination of the line cast (the player's

torso) and adding a random number (defined between a random range) and adding to

it's Cartesian co-ordinates (see Figure 24, below).

 Page 35 of 53

Friendly fire between orc's is disabled by choice (thus adding difficulty to the game, i.e.

the player must use skill to destroy all enemies, and not rely on fortune). Additionally,

orc's have a rate at which they can fire, once their ammunition in the current gun

magazine is depleted they must reload their weapon. This is achieved by an orc

crouching down and reloading it's gun with a new full magazine (the time taken to

reload, is pre-defined by a local variable).

4.4.5 Door and Key System:

The door and key system is a common game mechanic, found within the many games

across the gaming genres. Each door within the game requires a specific key-card in

order to gain access (i.e. to open it). The key-card required is stored within a member

variable within each door (i.e. the door's corresponding class, Door). The

“m_keycardReq” variable itself is set via the name of the door. For instance, if the

door's name is “Red Door” then the key-card required would be the “Red Keycard”, or

alternatively instead of using a colour system, “Section 1 Door” would require “Section

1 Keycard”. The door checks if the player has access, by checking the player's

inventory for it's required card. If the player's inventory does not contain the required

 Page 36 of 53

Figure 24: A diagram illustrating the orc's firing
system, showing the original line cast destination, and

the ultimate destination (with the random numbers
added to the destination’s Cartesian co-ordinates).

key-card, access to the door is denied (in which feedback is given, via a printed string

in the player's HUD and a “access denied” sound effect). Additionally, a key-card's

material (it's diffuse colour) within the game is set via it's name (i.e. a key-card with the

name “Red Keycard” is shaded red). This method was simply implemented for quick

deployment of a new key-card (without having to manual set it's diffuse colour each

time) thus speeding up development of the game.

4.4.6 Room Event System:

Room events are a common game mechanic which have been present among

generations of developed games. Room events are game-driven events that feature

within a pre-specified room, where a goal must be met, in order to progress within the

game. Each room has an entrance door and an exit door. Once access has been granted

to the entrance door, the room event begins. Once the goal of a room event is

completed, a key-card will spawn (at a pre-defined point) which will enable the player

to open the exit door of the room. Note, once room events are completed, the event

itself is destroyed (there are two reasons for this, firstly as it is now redundant, and

secondly in order for it not to be re-activated). Key-cards are spawned on tables

(attached to the wall) this choice was made to ensure player's became familiar to where

the key-card would spawned, once the goal was met. As opposed, to spending time

aimlessly walking around the room, trying to find where it spawned. This method was

suggested by a play tester, as part of qualitative research undertaken during usability

testing, thus it was implemented (with the rest of the group members approving the

idea).

 Page 37 of 53

Figure 25: A image illustrating a key-card and door within the game.

There are two types of room events within the game, enemy rooms and puzzle rooms.

Within an enemy room, a random number (using a pre-defined random range) of

enemies are spawned. The goal of an enemy room event, is to destroy all the enemies in

that room. Once the enemies are destroyed, the goal is met and the key-card is spawned.

Within a puzzle room the key-card is spawned once the player opens the entrance door.

Key-cards in puzzle rooms are spawned on platforms, in difficult to reach areas of the

room. Thus, players must logically calculate how to reach the platform, where the key-

card has spawned. Reaching the key-card typically involves lifting and stacking boxes,

in order to jump on, to reach the platform. One room in the game also features a puzzle,

where players must shoot barrels and crates off high platforms, in order to stack them to

reach the key-card platform. Utilising a contrast (two differing types) of goal-orientated

gameplay (i.e. shooting enemies and logically solving puzzles) provides the player with

a more diverse and richer set of objectives to complete, within the game.

4.4.7 Audio Events:

Audio events trigger sounds to be played within the game. These events are trigged,

when a player collides with an audio event's box collider (a box which if the player

enters, invokes the event). There are two types of audio event, a music event and a

sound effect event. Music events are events which consist of a melodic (i.e. backing

music) audio clip, which set the mood and atmosphere of the current scene within the

game. Sound effect events trigger a sound effect to be played, which are typically short

audio clips (i.e. an explosion or scream sound effect). Once these events are triggered,

 Page 38 of 53

Figure 26: An image illustrating a puzzle room (left) and an enemy room (right).

the event's corresponding audio clip (the actual audio file) is sent to the player's

“AudioReceiver” for playback. The AudioReceiver class simply plays an audio clip sent

to it. Thus, using two different types of audio events, both music and sound effects can

be mixed over each other, to create a richer audio experience for the player. Once an

audio event has been played (i.e. the event has finished), it destroys itself (as it has

performed it's task and is now obsolete). Note, that the audio event only sends

information to the audio receiver and does not play the audio itself (the audio receiver

performs this function). This approach was modelled after the model-view-controller

model (the view being the trigger/box collider – i.e. the input, the controller being the

audio event and the model being the AudioReceiver class).

4.4.8 Light Events:

Light events are trigged in the same manner as audio events (see Section 4.4.7 - Audio

Events), through the use of box colliders. There are two types of light event, the first

type is an on/off interval event, where the lights are temporarily disabled and then re-

enabled, after a pre-specified length of time (a member variable defines the duration of

the light event). The second type of light event is a “flicker” event, in which the lights

flicker on and off (at a pre-defined flicker rate) for a specified length of time. The light

events themselves do not control the lights directly, this is conducted by the

LightsControl class. Thus, the light events send the LightsControl class information,

that an event has been trigged and the LightsControl class invokes the events

behaviours, by modifying the actual lights within the game. This approach (using the

same methodology as the audio events) was modelled after the model-view-controller

model (the controller being the light event, and the model being the LightsControl

class) to ensure low coupling and high encapsulation.

4.4.9 Heads-up Display:

The player's heads-up display is another common game mechanic which was

implemented as a part of the game. The HUD itself went through several iterations in

response to play tester's feedback (as part of the usability tests). The HUD indicates

necessary information the player must know throughout the game (such as current

ammunition, health etc.) and no more. This is to ensure the player's viewpoint is not

 Page 39 of 53

overcrowded with any useless information and graphics, which would provide poor

HCI and usability for the user.

4.4.10 Re-playability Factor:

A recent game evaluation study (Bernhaupt, Eckschlager, Tscheligi) states that

“playability, namely that of repeated playability, especially after completion, can be

seen as the key factor in a game's success”. Thus, the “re-playability” factor within any

game is always a desirable aspect for game developers to maximise. This is to ensure

players continually replay their game, even after the player has completed it. Common

mechanisms to achieve this, include recording and feeding back statistics to the player

and secret elements (also known as, “Easter eggs”, which are difficult to find when

following the typical path of gameplay). Both of these mechanisms were implemented

within the game. The game keeps a number of statistics throughout, such as: the number

of times the player died, the time it took to complete the game and the number of secret

items they collected. These statistics are presented to the player at the end of the game

(see Figure 28, below). Thus, the player can replay the game to try and beat their

personal best performances. Additionally, secret items have been hidden throughout the

game, which can be collected by the player and added to their inventory (the secret

items, within the game can be seen in Figure 29, below). These secret items again serve

to ensure the player replays the game, in order to find all them, throughout the game.

The “Easter egg” mechanism is a common re-playability mechanism found across all

genre of games.

 Page 40 of 53

Figure 27: An image illustrating the player's HUD, in which the three HUD elements (flash light,
ammo and health statistics) have been highlighted.

4.4.11 Game Settings and Main Menu

To complete the implementation an additional class (named GameSettings) was created,

which enables easy modification of all the settings in the game. Furthermore, a main

menu GUI was developed, which consists of an several buttons, two of which are a

controls screen and an options menu. The control screen displays an image of the Xbox

control-pad and informs the user of the control configuration (i.e. what actions, each

button is mapped to). The options menu, consists of several GUI sliders and toggles,

and serves as a GUI to the modify the variables of the GameSettings class (i.e. it

enables the player to set/modify all the settings in the game – see Figure 30, below).

Thus, the user can change the difficulty level of the game, by changing the difficulty of

the enemies (i.e. their health) and also can change their own player settings (i.e. their

maximum health, and starting ammo). Additionally, players can also change the Kinect

settings, such as look sensitivity, enable camera roll and change hand orientation (i.e.

the hand the player wishes to control the Kinect look functionality with).

 Page 41 of 53

Figure 28: An image illustrating the end of game statistics screen, informing the player of their
performance throughout the game.

Figure 29: An image to illustrate the secret collectable items which are hidden throughout the
game.

Once the game mechanics had been completed and tested, the surrounding environment

(the level itself needed to be implemented). The level consists of a pre-built template

package of corridors and rooms (Dex-soft Games, 2011). However, the entire level had

to be arranged (from the pre-built corridors and rooms) and also lit, using Unity's

lighting system. Audio, light and room events were then placed within the level, to

create a deeper sense of immersion within the game (this was iteratively tested within

the usability tests). Each room was then “set-dressed” with models appropriate to each

room (i.e. puzzle rooms, monster rooms and rooms which narrate the storyline of the

game).

 Page 42 of 53

Figure 31: An image illustrating the options GUI (a sub-menu of the main menu). The player can
use the GUI elements (sliders and a toggle) to modify the game's settings.

Figure 30: An image illustrating the main menu of the game. The image shows the different sub-
menus the player can open, and explore.

All the code implemented adheres to NCCA coding standards and is also fully-

documented using Doxygen. Furthermore, following industry standards, all

implemented image files (with exception of those, sourced from Dex-Games Soft) are

in TGA format, and all sound files are in WAV format.

The methodology when implementing the game was to ensure code was easy extendible

and maintainable for any future development. Thus, designing several individual

common game mechanics and collating them to create a game, has enabled the series of

game mechanics to effectively become a framework. Thus, developers will be able to

re-use the existing framework of code, to develop other games. This was achieved by

creating code which embodies high encapsulation and low coupling, through use of

design patterns (such as singleton classes) and inheritance.

 Page 43 of 53

5. Results of Usability Tests

As previously mentioned usability tests were conducted regularly throughout the

development of the game, in the form of play testing. In addition to recording

qualitative data (via player feedback and observation), quantitative data was also

recorded. The quantitative data recorded, was in the form of game statistics (see, Figure

28). Upon the game being fully implemented, each play tester was asked to play both

versions of the game (the Xbox 360 control-pad only version and hybrid control system

version). Their statistics were then recorded, and are presented in graphical form (see

Figures 32 and 33, below).

 Page 44 of 53

Figure 32: A graph illustrating the number of times a player died, within both versions of the
game.

Player 8
Player 7
Player 6
Player 5
Player 4
Player 3
Player 2
Player 1

0 1 2 3 4 5 6

Number of Deaths During the Game

Xbox Control-Pad Only
Hybrid Control System
(Xbox Control-Pad and
Kinect)

Number of Deaths

P
la

ye
r

Figure 33: A graph illustrating the time taken by a player to complete the game (times for both
versions of the game, have been recorded).

Player 8
Player 7
Player 6
Player 5
Player 4
Player 3
Player 2
Player 1

0 2 4 6 8 10 12

Time Taken To Complete the Game

Xbox Control-Pad
Hybrid Control System
(Xbox Control-Pad and
Kinect)

Time in Minutes

P
la

ye
r

The reasoning behind both types of data (qualitative and quantitative) being recorded,

was to gather insight into how the differing control systems compared to each other. In

terms of qualitative data, experienced players were typically sceptical at first, of using

the hybrid control system. However, once they started to become accustomed to the

control system, they expressed they found it both enjoyable and intuitive. The

quantitative data states that players performed better with the Xbox control-pad only.

However, players (especially experienced players) expressed that they generally felt

they performed better, due to their previous familiarity with the Xbox control-pad itself.

Inexperienced players expressed their enjoyment using the hybrid control system

equally, in relation to their more experienced counterparts. Players within the group also

expressed that they would now prefer to use the hybrid control system over the

traditional Xbox game-pad, due to the extra variety of controls and enjoyment the

control system provides.

 Page 45 of 53

6. Conclusion:

The projects' objectives, to critically analyse and compare the two control systems

through usability testing via a developed game, was successfully met. The developed

game proved an ideal testing bed (and reflected the functionality found within that of a

typical mature game), for usability tests to be conducted, within a small group of play

testers. Through, the results of usability tests, insights were drawn, into how the two

control systems compared, within a developed game. The usability results, illustrated

that both inexperienced and experienced players found the hybrid control system both

intuitive and enjoyable to use. However, the key limitation to the control system is that

players have become widely accustomed to using only the traditional Xbox game-pad.

Therefore, whilst the hybrid control system proved enjoyable amongst players, the

biggest challenge it faces, is to persuade players to adopt it over only using the

traditional Xbox game-pad. Although, the usability tests also reflected, that players

would adopt the new system, in favour of the only using the traditional Xbox game-pad,

due to the added depth and enjoyability, the hybrid control system brought. Thus, it can

be concluded that, the hybrid control system does have a reputable chance of becoming

an established control system on the Xbox 360 platform.

A key limitation of the study, was the limited number of participants within the usability

testing group. Thus, it can be drawn, that provided with a larger number of participants,

the results would have proved more accurate, and provided a greater insight into the

comparison of the control systems. Furthermore, a larger number of participants would

have provided further clarity, with regards to whether the hybrid control system, would

have been adopted by the mature gaming community (either in conjunction, or in

favour, to it's traditional counterpart, of only using Xbox 360 control-pad).

In terms of expanding the project, enabling multiple players to use the hybrid control

system simultaneously, would be the next logical step. Players would be able to play

with each other locally or via a network. The network itself would be Microsoft's Xbox

Live (Microsoft, 2002) service, which would enable players to play the game (using the

hybrid control system) over the network. The game itself could be deployed via

Microsoft's Live Arcade (Microsoft, 2004) enabling player's to download it to their

Xbox 360 games console. Enabling the game to be readily downloaded by the entire

 Page 46 of 53

Xbox gaming community, would provide a large test sample of players, to test the

hybrid control system (and would ultimately give a true reflection, by the gaming

community, of how it compares, to only using the traditional Xbox 360 game-pad).

The multi-player functionality itself would be implemented using the Unity engine's in-

built network framework. Methodology, such as state synchronization and remote

procedure calls would be required, to be implemented between the sever and client

machines. The server typically would be an allocated player's Xbox 360 game console,

where client's (other player's Xbox 360 consoles) would connect, via the Xbox Live

service.

 Page 47 of 53

7. References:

Microsoft, 2010., Kinect Operation Manual. Available from:

http://support.xbox.com/en-gb/pages/xbox-360/get-started/manuals-specs.aspx

[Accessed 28 July 2011].

Rubin, J. and Chisnell, D., 2008. Handbook of Usability Testing: How to Plan, Design

and Conduct Effective Tests. 2nd Edition. John Wiley and Sons.

Bernhaupt, R. Eckschlager, M. and Tscheligi, M. 2007. Methods for Evaluating

Games: How to Measure Usability and User Experience in Games. Available from:

http://dl.acm.org/citation.cfm?id=1255142 [Accessed 4 August 2011].

Muich, N., 2006. Xbox 360 Controller. Flicker. Available from:

http://www.flickr.com/photos/not-so-much/3696020923/ [Accessed 18 July 2011].

Henry, B., 2011. Kinect Adventures Rally Ball. Sitsam. Available from:

http://www.sitsam.com/wordpress/wp-content/uploads/2010/11/Kinect-Rally-Ball.jpg

[Accessed 18 July 2011].

Brutal Gamer, 2010. Player using the Kinect. Brutal Gamer. Available from:

http://brutalgamer.com/wp-content/uploads/2010/11/player-considerations.gif

[Accessed 21 July 2011].

IGN, 2011. Harry Potter and the Deathly Hallows game (Kinect Side-Mission).

Available from: http://360.mmgn.com/Lib/Images/News/Normal/Kinect-compatibility-

for-latest-Harry-Potter-adventure-1049385.jpg [Accessed 23 July 2011].

VaroLogic Blog, 2008. Player holding Wii Remote and Nunchuk. Available from:

http://www.varologic.com/blog/Images/Wii-remote-and-nunchuk.jpg [Accessed 24 July

2011].

 Page 48 of 53

http://support.xbox.com/en-gb/pages/xbox-360/get-started/manuals-specs.aspx
http://www.varologic.com/blog/Images/Wii-remote-and-nunchuk.jpg
http://360.mmgn.com/Lib/Images/News/Normal/Kinect-compatibility-for-latest-Harry-Potter-adventure-1049385.jpg
http://360.mmgn.com/Lib/Images/News/Normal/Kinect-compatibility-for-latest-Harry-Potter-adventure-1049385.jpg
http://brutalgamer.com/wp-content/uploads/2010/11/player-considerations.gif
http://www.sitsam.com/wordpress/wp-content/uploads/2010/11/Kinect-Rally-Ball.jpg
http://www.flickr.com/photos/not-so-much/3696020923/
http://dl.acm.org/citation.cfm?id=1255142

Kotaku, 2011. Player holding PlayStation Move and navigation controller. Available

from: http://cache.gawkerassets.com/assets/images/9/2010/03/move3_01.jpg [Accessed

24 July 2011].

Syfan Media, 2011. Red Steel Wii game box art. Available from:

http://www.syfanmedia.com/images/boxshoredsteelrge.jpg [Accessed 26 July 2011].

IGN, 2011. Killzone 3 PlayStation 3 box art. Available from:

http://ps3media.ign.com/ps3/image/article/109/1099404/killzone-3-

20100616055042869.jpg [Accessed 28 July 2011].

Tribal Labs, 2011. OpenNI skeletal tracking points diagram. Available from:

http://www.triballabs.net/wp-content/uploads/2011/06/Kinect-skeleton-tracking.png

[Accessed 29 July 2011].

Microsoft Studios, 2010. Kinect Adventures. [video game]. Microsoft Studios.

Sega, 2011. Virtua Tennis 4. [video game]. Sega.

EA Bright Light, 2010. Harry Potter and the Deathly Hallows - Part 1. [video game].

Electronic Arts.

Rockstar North, 2008. Grand Theft Auto IV. [video game]. Rockstar Games.

Ubisoft Paris, 2006. Red Steel. [video game]. Ubisoft.

Guerrilla Games, 2011. Killzone 3. [video game]. Sony Computer Entertainment.

All models, animations and art work, used within the game are sourced from:

Dex-Soft Games. 2011. Models, animations and art work [game art assets]. Dex-Soft

Games. Available from: http://www.dexsoft-games.com/ [Accessed 29 July 2011].

 Page 49 of 53

http://www.dexsoft-games.com/
http://www.triballabs.net/wp-content/uploads/2011/06/Kinect-skeleton-tracking.png
http://ps3media.ign.com/ps3/image/article/109/1099404/killzone-3-20100616055042869.jpg
http://ps3media.ign.com/ps3/image/article/109/1099404/killzone-3-20100616055042869.jpg
http://www.syfanmedia.com/images/boxshoredsteelrge.jpg
http://cache.gawkerassets.com/assets/images/9/2010/03/move3_01.jpg

All sounds used within the game are sourced from:

Free Sound. 2011. Sound effects and music [sound assets]. Free Sound. Available from:

http://www.freesound.org/ [Accessed 1 August 2011].

Unity. 2011. Unity Game Engine [computer programme]. Unity Technologies. Available

from: http://unity3d.com/ [Accessed 18 June 2011].

OpenNI. 2011. OpenNI Framework and NITE [framework and middleware]. OpenNI.

Available from: http://www.openni.org/ [Accessed 20 June 2011].

 Page 50 of 53

http://www.openni.org/
http://unity3d.com/
http://www.freesound.org/

8. Bibliography:

Dix, A., Finlay, J., Abword, G. and Beale, R., 2003. Human Computer Interaction. 3rd

Edition. Prentice Hall.

Rubin, J. Chisnell, D., 2008. Handbook of Usability Testing: How to Plan, Design and

Conduct Effective Tests. 2nd Edition. John Wiley and Sons.

Gold, R., Skelly, T. and Theil, D. 1994. What HCI Designers Can Learn From Video

Game Designers. CHI '94 Conference Companion on Human Factors in Computer

Systems. Available from: http://dl.acm.org/citation.cfm?id=260220&bnc=1 [Accessed 2

August 2011].

Barr, P. Noble, J. and Biddle, R. 2006. Video Game Values: Human-Computer

Interaction and Games, Interacting with Computers. Volume 19 (2), 180 – 195.

Available from: http://www.sciencedirect.com/science/article/pii/S0953543806001159

[Accessed 5 August 2011]

Jorgenson, A. 2004. Marrying HCI/Usability and Computer Games: A Preliminary

Look. Available from: http://dl.acm.org/citation.cfm?id=1028078 [Accessed 4 August

2011].

 Page 51 of 53

http://dl.acm.org/citation.cfm?id=1028078
http://www.sciencedirect.com/science/article/pii/S0953543806001159
http://dl.acm.org/citation.cfm?id=260220&bnc=1

APPENDICES

 Page 52 of 53

Appendix A - Class Diagram:

 Page 53 of 53

