
Game Creation 
using OGRE – 

Object-Oriented 
Graphics Rendering 

Engine

Tom Dawson



Introduction

The Open-Oriented Graphics Rendering Engine, henceforth referred to as 

OGRE, is an open-source graphics rendering engine that allows programmers 

to work in both OpenGL and Direct3D through a straight forward and generic 

series of interfaces. It is fully extensible, and has been wrapped into many 

languages; in its pure form, however, it is written in C++. It is relatively easy 

to modify the underlying engine, and indeed a plugin system exists to allow 

users to modify or swap many areas of the codebase. The open source nature 

of the code allows for it to be changed on a per-project basis, if various 

modifications to the original source are required. In short, it is a viable 

platform for development upon.

The following paper discusses an attempt to use this underlying engine 

as the basis for a game engine; OGRE itself is purely a means of displaying and 

managing graphics, though like many rendering engines of its type the steps 

needed to apply it as a game engine are well defined. The paper will cover 

both the development stages of a simple demonstration-type game, and the 

various techniques that can be implemented throughout OGRE to achieve 

similar results.

In terms of the game to develop, inspiration was drawn from WipE'out 

(Psygnosis, 1995), a Playstation game (now also updated to Playstation 3 as 

Wipeout HD (SCEE, 2008)) featuring “hovercraft” of a type racing around a 



futuristic track. The high speed and strange track arrangements of the game 

would provide an interesting number of technical challenges to replicate, 

especially as it was decided to not use static tracks – that is, that the tracks 

used within the demo game would be variable, and editable within the game 

engine.

Initial design ideas based the art style and track generation style around 

the manipulation of vectors. As such, and as part homage to the capitalisation 

of WipE'out's title, the demo game was tentatively named VecTRacer.



Previous Work

In making a game inspired by a previous piece, the first and most 

obvious area to examine is the previous piece itself. Besides the obvious parts 

involved in any racing game (a number of laps, timing, and the like), a number 

of assumptions can be made when looking at Wipeout HD; the vehicles are 

constrained to the track in some way, allowing them to cling to it even when 

the track is perpendicular to the ground, or even inverted. Similarly, the 

vehicles do not come into contact with the track in a normal situation. This 

suggests that there is some sort of spring-like force acting between the track 

and the vehicle, much like the suspension between a vehicle and the ground 

(assuming gravity is always downwards relative to the vehicle).

An option exists to allow for automatic steering away from the edge of 

the track, suggesting that either a series of rays are cast from the vehicles to 

detect obstacle distance, or the edges are stored in some other way. The AI is 

able to navigate the track smoothly, and to cope with corners. This suggests 

that some information about the track is stored in the form of a spline, which 

when interpolated along can be used to pull out important details – such as the 

width, the speed that is required at that particular moment, and other such 

data. Indeed, the curvature of a spline can generally be used to dictate the 

required speed at any particular time, though some look-ahead calculations 

would be required in a simulation that uses real braking. This is rather 

dependent on whether the spline is nonuniform or equalised (see Lowe, 



2004) . Such a spline could be treated slightly differently by each vehicle using 

it, allowing for smooth and non-repetitive AI behaviour. The possibility also 

exits, of course, that multiple splines are used on a single track to provide the 

AI with a choice on a per-corner basis. These are more than likely generated 

by the level design team rather than on the fly, although the presence of a 

“ghost” craft flying the player's old route suggests that the ability is there to 

create spline content at run time.

Another contemporary game that appears to use a spline to provide a 

track is Audiosurf, a game also featuring procedurally generated tracks, in this 

case generated from an input audio track. The spline following behaviour is 

more profound in Audiosurf  (Fitterer, 2008) than as in WipE'out, as the player 

is constrained to only moving on the XY axis relative to the spline (the axes 

used throughout this paper will be talked about in terms of OGRE; OGRE uses 

the negative Z axis as “into the screen”). The idea of procedurally generated 

tracks being created along a spline is interesting, and led to further exploration 

in that area in the course of the project. The aim of VecTRacer was not, 

however, to utilise music generated tracks, with the focus instead being on 

player creation.

WipE'out has many thematic descendants. The indie game Aftershock 

(Liquid Rock Games, 2010) is of particular note, as it also utilises OGRE as a 

graphical engine. The developers update their development log frequently, with 

many of their findings being similar to those discussed in this paper.



Technical Background

On Splines:

OGRE itself boasts an implementation of a Catmull-Rom (See: Twigg, 

2003) spline, a form of Hermite spline. Catmull-Rom splines are often used in 

graphics engines, and are particularly favoured due to the fact that the spline 

will pass through every control point – compare this to a bezier spline, which 

will generally not. Catmull-Rom splines are uniform splines, however, which in 

certain regards can be a disadvantage. In a uniform spline, the velocity 

between each control point is the same, regardless of the distance between the 

two points. This means that interpolating between two control points will 

produce a large disparity in distance and curve velocity when comparing two 

close together control points, and two that are far apart; this is not ideal for 

calculating a smoothly flowing track.

To counteract this, it is possible to equalise the spline. In an equalised 

spline, each control point is the same distance away from its neighbours. This 

minimises the effects of velocity changes in the corners, and thus smooths the 

corners of the curve. In very loose pseudocode:



for each (point in spline as X):
check distance from X to next point
if distance is less than required then get next point and check again.
if distance is greater than required then store checked point as Y

interpolate halfway between Y and its own next point (Z).

check distance from X to interpolated point (A)
if distance is less than required, interpolate halfway from A to Z as new A
if distance is greater than required, interpolate from Y to A as new A
if distance is within tolerance, insert A as a new point in the new spline

continue from A as X

This results in an equalised spline with equidistant points along its 

length.

On Physics:

OGRE, being a rendering engine, does not have any native physics 

support built in. Indeed, it only has very limited collision detection, with 

additional plugins usually required to do more than very basic ray queries. 

Fortunately, due to the presence of open source coders this is easily rectifiable 

through a few plugin systems. One such plugin is OgreBullet, a wrapper 

between the open source physics library Bullet and OGRE. Whilst Bullet can be 

accessed from directly inside any develop environment with the right libraries, 

OgreBullet allows a programmer to use the two libraries together relatively 

seamlessly, as it will convert between OGRE's internal data structures and 

Bullet's, leaving the developer free to deal with other concerns.

Bullet is a very complete physics library, and provides a developer with a 

number of useful interfaces. As mentioned above, there is a requirement in a 

game of this type to model a set of suspension between a vehicle and the 

surface upon which it rides. Bullet itself contains a class designed to represent 



a vehicle (some details of which can be found in Maddock, 2010). Whilst the 

documentation on Bullet is relatively sparse compared to OGRE's, the available 

resources more than outweigh the disadvantage.

On the Engine:

OGRE is very well suited to game development, with only a minimal 

amount of start up time actually needed to be invested to provide a workable 

test game framework. “Out of the box”, it comes with a powerful resource 

manager, scene manager and frame listener functionality, which is of course 

completely customisable. OGRE scenes are typically formed of a hierarchy of 

scene nodes underneath a single root node inside the manager. The advantage 

of this hierarchy is that not only will transformation and orientation details will 

propagate through the tree to each leaf node (if required – this functionality 

can be disabled on a per-node basis), but the tree can also be used to perform 

visual culling operations on areas outside of the current camera's viewport.

OGRE handles actual entities (or moveable objects) separately to scene 

nodes; that is, an entity can exist independently of a scene node. The entity 

will only become visible when attached to a scene node, and can be detached 

and moved to another node at will.



Implementation

The core intent of this project was to highlight the possibility of creating 

a demonstrable racing game running within the OGRE engine, with a track that 

is editable by the player. The track was to resemble as much as possible that 

that would be found in WipE'out.

Obviously, this would require some visual aesthetics to give the 

impression of a fully functional demo, though the functionality and readability 

of the code was valued more than the visual aspect. Readable code is always 

aimed for, though as projects progress and time becomes more pressing this is 

often the first thing to fail. 

Audio analysis was toyed with, but ultimately discarded in favour of 

keeping the core functionality, as was any multiplayer aspect. Such aspects, 

while nice in theory are often best left until later stages of development, when 

the core functionality has already been laid in place. This is especially true in 

the case of any multiplayer, as when the core of the game changes entirely the 

multiplayer must by necessity change with it – not to mention the required 

extra networking code that is required to create anything beyond multiple 

players on a single keyboard.



The following section will be divided into a number of sub-sections, 

dealing with the three main areas that were explored within the actual course 

of the project; the engine itself, the track generation, and the physical aspects 

of the player craft. To a lesser degree, the pipeline of adding content to the 

engine shall be discussed.

On the Engine:

The first step of setting OGRE up as a game engine is much the same as 

setting it up for any other sort of application. A generic Application class is 

created to store the various managers – such as camera (CameraManager.h), 

object (ObjectManager.h), physics managers (PhysicsManager.h), and an input 

handler (InputHandler.h). The Application itself is a singleton, a class which is 

instantiated at the start of the program and provides a static method to return 

a pointer to itself. This allows all the managers to access each other through 

the central “hub” of the Application (Application.h).

Outside the OGRE framework, a hierarchy of GameObjects 

(GameObject.h)was created. A game object in this instance stores both its own 

entity and scene node information, along with various pieces of information to 

deal with moving the actual object. Inheriting from this is the selectable object 

class. This is essentially the same as a game object, with the added methods 

that allow it to be selectable via the InputHandler class. These two classes are 

stored and accessed through the ObjectManager, which every frame attempts 

to call a move() function on these objects. In the most basic use of the move() 



function, the object attempts to move along its own vector if it is not set to 0. 

In some derived classes further down the tree, however, this move() function 

is used to take advantage of the fact that it its called every frame, using it for 

updates. An example of this is the track object using it to update the GUI with 

the current lap timings on a per-frame basis.

TrackPhysicalObject and TrackControlObject are thematically similar 

classes, and share many of the same methods; however, they are kept 

separate to ensure clashes of interest do not occur.

OGRE provides methods on a frame listener to run both before and after 

the rendering of a frame. These are accessed to force the various managers to 

update at the same time – or at least to attempt an update, as all of them are 

given the time since the last frame. This can be seen in 

FrameListener::frameRenderingQueued, which handles input, camera 

movement, object movement and the physics step.

The GUI is drawn in a second viewport, and blended over the top of the 



full 3D viewport. The input handler is configured to switch between interacting 

with the two, depending on the current application state – starting up, running, 

or shutting down – and the current game state. OGRE does not allow ray 

checking on billboard objects, which form the text of the GUI. It is a simple 

matter to add a 3D cube scaled to the appropriate size behind the text object, 

though, which if linked correctly allows for mouse interaction with the menu.

The InputHandler uses OGRE's ability to store an OGRE::Any pointer on 

many of its internal objects. This pointer, as the name suggests, may point to 

any other data type. It is used in conjunction with a ray scene query (provided 

by OGRE) from the mouse position into viewport space to select an object. 

With dynamic recasting, the object can then be interacted with, by calling 

various methods on the GUI handler in the case of a GUI element, or by 

directly accessing methods on the selectable object, as in when interacting 

with the player's craft.

Due to the use of the OGRE::Any pointer type, some cast sanity checking 

takes place. This is a simple check of the m_type variable present on all 

GameObjects. In most cases, OGRE's casting does not fail. However, the player 

Craft (Craft.h) object – for collision detection purposes – uses Bullet's own 

internal pointer storage and recasting. Whilst a more elegant solution could no 

doubt be found, checking types like this is always a sensible precaution.



On the track generation:

Generating the track was perhaps one of the most in depth parts of the 

project, as the track would have to undergo the spline normalisation discussed 

above, have geometry generated from the spline, and ultimately be set to the 

physics engine as a mesh.

The track generation process begins with the construction of a spline. For 

ease of use, the first points of a spline always form a straight line. This 

provides a natural “home straight” for the finish line to lie upon, and prevents 

issues with geometry clipping in this area. The next points of the spline are 

arranged in a set order, and the player is able to manipulate them to a certain 

degree. The player is not able to manipulate the straight line points 

immediately surrounding the finish line, for the same reason mentioned above. 

Once the player is happy with the spline, it must go through the generation 

phase.

This phase is the step that consumes the most time. When the track is 

equalised, a number of  trackPhysicalObjects are created, that coincide with 

the interpolation points that are created. These physical objects are used as 

markers for each geometry section. The geometry itself is further broken down 

into a series of vertices by interpolating between these markers. Each 

interpolation provides a directional vector, alongside which is the presence of 

the overall directional vector from each physical object. The cross product of 

these vectors with the world up vector (Ogre::Vector3::UNIT_Y) would then 



produce a line parallel with the ground at each interpolation step. Whilst this 

would be sufficient in many cases, an entirely flat track is not visually 

interesting, nor does it conform to the WipE'out style.

The next stage, therefore, is to generate some sort of banking to the 

corners, using the positions of the nodes being checked. This was done by 

taking the incoming direction vector of the first node and finding the angle to 

the outgoing direction vector of the second. With constraint to a maximum 

banking angle (to prevent banking of over 90 degrees and a completely 

sideways track), this angle could be used as an average up vector for the track 

section. In fact, the angle is constrained to around five degrees, as even this is 

a large banking angle when seen from the point of view of a vehicle.

The previous cross product calculation could then be modified to use this 

average up vector instead – or, as ultimately resulted, an interpolated up 

vector to match the interpolated position along the track spline. With some 

careful checking to ensure the banking was sane (based on the world position 

of the respective nodes), a generally smooth curve was created.

A problem still lies in this method of banking generation. The cross 

product on a banking corner is used to extend the track both directions from 

the spline's location, which results in part of the track lying in the negative Y 

direction. In an attempt to remedy this, and ensure the track never loses 

height in  a bank and only gains it, the whole segment was shifted up in Y until 

the lowest point lies upon the XZ plane, at 0 Y. This did not have the desired 



result, however, as it would exacerbate minor changes in the geometry and 

create large shifts of track angle. After much deliberation, the track was left as 

is, and allowed to dip into negative Y.

As it may have become apparent, all of this geometry drawn on the fly. 

For minor changes such geometry creation is no problem, however when 

generating an entire track the calculations rapidly become rather expensive. 

Alongside that, when the player is actually racing on the track there is no 

longer any requirement for the track to be editable. The class used by OGRE to 

manually edit objects in this manner is the ManualObject class. Fortunately, 

this class provides a method to convert the ManualObject to a mesh, which can 

then be used by a standard entity. At this point, the ManualObject can be 

deleted to save memory.

As a further optimisation, which became required on larger tracks, these 

individual meshes can be lumped into their own StaticGeometry bins. 

StaticGeometry is an optimised class of OGRE's, which is meant to deal with 

(as the name suggests) static geometry, which is not expected to move during 

its lifetime. It also aids the scene manager in culling unseen geometry.

Before the meshes are deleted (to remain only in the StaticGeometry 

bin), they are also passed to Bullet to create a collision mesh from, allowing 

the player vehicle to interact with them.

One important thing to note at this stage is the Visitor class. This class, 



derived from Ogre's Renderable::visitor, is called upon occasion to “visit” the 

static geometry bin, via the visitRenderables method. The Visitor class has its 

own visit() method, which the visitRenderables method calls on every 

renderable in the bin. Whilst this does not sound essential, it allows for the 

updating of custom variables on the renderables – which are in turn used by 

the shaders. This was put to use to pipe the player position to the fragment 

shader used in the track walls, and many of the track objects.

Currently, no sanity checking is performed on the tracks. It's very 

possible to create a track that is impossible to race upon, which is a fairly 

major issue.

On the player craft:

Initially, the player craft was designed explicitly to not use the 

Bullet::raycastVehicle class, as the raycastVehicle did not seem like the ideal 

solution. The initial idea was to place a spring constraint between the vehicle 

object and the track plane, and to use the inverse up vector (derived from the 

geometry as above, and accessible to the craft) as a gravity force rather than 

Bullet's standard gravity. Bullet operates entirely in forces, and as such gravity 

is simply a downward force in the world Y; applying this same force in positive 

Y rather than negative serves to negate it entirely. The up vector from the 

track would also be applied as a constraint to the craft's own rotation, keeping 

it upright relative to the track rather than the world. However, in tests the 

differing gravity force would still cause the craft to slide in a certain direction 



when sitting on relatively “flat” terrain, regardless of the world orientation. 

Additionally, the upright constraint did not give pleasing results when coupled 

with only one spring.

As such, investigations were made into the raycastVehicle. A raycast 

vehicle, as the name suggests, uses a number of rays to simulate the 

suspension of a vehicle, much like the spring constraint used on the simpler 

model would. Alongside this, however, a “wheel” is modelled at one end of the 

suspension, with accompanying friction values. It is possible too to apply 

differing torques and steering values to each wheel independently, although 

this was ignored in favour of directly applying force to the vehicle.

Initial tests with the vehicle found it to be unstable in corners, even with 

a roll influence modifier applied (a modifier which essentially cheats the 

physics system, and makes the vehicle less likely to roll). There were a number 

of causes of this; the vehicle had a high centre of gravity, as by virtue of being 

a hovercraft it had a very long set of suspension to give the “floating” feel. 

Bullet does not directly allow for the centre of mass to be manipulated, but 

uses the origin of the model instead. By editing the model directly and shifting 

the origin into a more useful location, the centre of mass can be “altered”.

The upright constraint that was previously used with the spring based 

model was also implemented on the vehicle model. The vehicle model, 

however, does not respond well to being constrained in such a way; if the free 

angles of rotation in X and Z are too low, the physics solver will encounter 



errors and behave in an unexpected way, often catapulting the vehicle large 

distances. As a side note, bullet does not allow completely free rotation about 

the Y axis, in an effort to avoid gimbal lock. To circumvent this, the reference 

frames can be altered to use X as the local Y axis; this is generally only a 

problem when creating constraints of this type, although gimbal lock is 

certainly never desirable.

Another assumption that caused problems with the bullet vehicle model 

is that the ray cast suspension of a rigid body would not collide with the same 

rigid body that it is meant to act upon; this is not, however, the case. If the 

suspension begins above the rigid body itself, it may collide with it and 

promptly exact a force upon its connection point, often sending the vehicle up 

into the air with no visible cause. If the suspension is within the rigid body or 

below it, however, the problem obviously does not occur.

To give the feel of a hovercraft, force isn't directly applied to the vehicle 

via the wheels, nor is any steering influence. Instead, a large amount of thrust 

(a force) is applied at the rear of the vehicle, and turning is achieved by a 

much smaller amount being applied to the front of the vehicle in the relevant 

direction. The wheels are also set to have a low amount of friction. A damping 

amount is added to the rigid body to act as air friction, and a force is also 

applied against the vehicle's linear velocity when the back button is pressed to 

act as a braking force. To prevent the vehicle flying, thrust is only allowed to 

apply when within a certain distance of the track.



For pure visual effect, a grid is projected downwards from the craft. This 

takes the form of an orthographic projection frustum, which does not inherit 

the orientation of the craft. OGRE allows decals to be projected in this way 

onto any texture required, as part of a dynamic render pass.

As can be seen from the demo files, the physics solver still encounters a 

number of collision issues. On particularly complex tracks it is possible for the 

“wheels” to fall through the geometry, or become lodged. At this time, it is 

unclear whether this is due to the construction of the geometry itself or 

because of a setting within the raycast vehicle's suspension.

On the pipeline:

For those considering using OGRE for a graphics project, it should be 

noted that the .mesh format it uses is unique to the program. Exporters have 

been written for many major 3D applications, but not all are perfect. At the 

time of writing, attempts to compile an exporter for any 64 bit version of Maya 

have been met with failure. As such, the pipeline for adding models to this 

project consisted of creation in Maya, exporting to an .obj, and opening again 

in a program for which a working exporter could be found – such as Blender. 

Of course, if learning time or resources are not an issue a compatible program 

can be used from the start.



Conclusion

The project seems to be an fairly adequate representation of how swiftly 

a working game engine can be implemented in OGRE. Due to the extensible 

nature of the engine, it is very easy to plug in extra components as time goes 

on, and the object oriented build makes understanding the majority of the 

components of the engine simple, even when encountering them for the first 

time. In terms of the original idea, that of creating a user editable WipE'out 

style game, the project is well on track. The actual playability of the game is in 

question, however, due to the presence of a number of limiting bugs.

Bugs, areas of concern, and solutions

As mentioned above, the track is a major area of concern. Due to the 

high velocity displayed in the spline, some corners are able to double back on 

themselves and create an impossible corner; even a corner of 90 degrees 

causes major visual artefacts and is hard to navigate. Any series of corners 

where the track's planes intersect with each other also cause problems, as the 

track side barriers will appear where the player would not expect them to. 

An obvious first step would be to implement a different type of spline for 

the corners; Barrera (2005) describes a Hermite curve that seeks the minimal 

amount of acceleration and thus turn rate for a corner, whilst Lowe (2004) 

describes how rounded nonuniform splines can be used to smooth a track. 



Either implementation would aid the problem, though likely not solve it 

entirely.

Increasing the amount of geometry present in each track segment would 

provide a smoother visual look to the segment as well as aiding the physics 

engine, albeit with a trade off against speed.

Most importantly, intersection checking both within and between 

individual track segments would allow for the prevention of impossible 

segments; again, the trade off here comes at the cost of generation speed, 

although it can be seen that the current implementation is still sufficiently fast.

Finally, as it currently stands it is entirely possible to create a looping 

section of track that intersects with and entirely crosses itself. This will create a 

barrier extending across the entire width of the track, rendering it impassable. 

An initial idea to limit this was with the implementation of a vertical element to 

the track. If a track can loop above or underneath another track, the problem 

is instantly nullified. Of course, this involves yet more pre-processing on the 

track during the building phase. As such, the building phase would necessitate 

being split into a series of discrete loading chunks. Whilst this would not 

improve speed in any way, it would provide the player with some visual input 

as to what is actually occuring at each stage of the process, rather than simply 

waiting with a blank or stalled screen.



The physics solvers on the player craft too cause issues. Whether this is 

due to unfamiliarity with Bullet's physics solvers or an artefact from the 

generation of the track remains to be seen. In an ideal situation, the vehicle 

solver would not be needed and the simple spring idea described above would 

be sufficient. To fully implement the simple spring idea a greater deal of 

interaction would be required between Bullet and the application itself. For 

example, instead of attempting to pull out the pre-calculated up vector on each 

intersection of ray and track, the normal vector of the intersected plane could 

be used instead. This would not only give an aesthetically pleasing result, but 

would be more accurate in cases of extreme track banking. With only one 

contact point between vehicle and track there would also be less calculations 

required per frame.

Further development

For further development, it is obvious that the issues with both craft and 

track are priorities. Once these problems are dealt with and the core 

functionality is enabled, development is free to expand in any direction. An 

obvious first choice is to extend the track generation process by allowing the 

saving and loading of tracks once edited, allowing the same track to be raced 

upon multiple times. This too would give the presence of lap timers some 

meaning, as with unique (or nearly unique) tracks being generated each time 

comparing times is meaningless.

An initial idea for the project at its inception was for the track to be 



editable by multiple users at once, or even in real time. A recent game, Split 

Second, allows the players to interact with the track on a per-race basis. In the 

case of Split Second this interaction comes from scripted events that 

permanently alter the track; in the case of VecTRacer, the intent was to allow 

players to alter the track in a “pre-game” state, possibly as an alternative to 

upgrading their craft.

Further extensions would be to expand the way tracks are generated. 

Already mentioned was the idea that tracks involve some sort of vertical 

movement; if tracks were able to split and rejoin, or interact with pregenerated 

geometry interesting styles of play and interaction may occur.

Finally, the actual aesthetics of the game are in need of improvement. 

Whilst this was not a major aim of the project at the time of writing, graphical 

and audio improvements always serve to make a product more appealing to 

the end user.



References
Papers

Barrera, T. 2005. Minimal Acceleration Hermite Curves. In: Pallister, K., 
ed. Game Programming Gems 5. Hingham, MA: Charles River Media, Inc., 225-
231

Lowe, T. 2004. Nonuniform Splines. In: Kirmse, A., ed. Game 
Programming Gems 4. Hingham, MA: Charles River Media, Inc., 171-181

Twigg, C., 2003. Catmull-Rom Splines. Available from: 
http://www.cs.cmu.edu/~fp/courses/graphics/asst5/catmullRom.pdf [Accessed 
20 August 2010]

Maddock, K., 2010. Vehicle Simulation With Bullet. Available from: 
https://docs.google.com/Doc?
docid=0AXVUZ5xw6XpKZGNuZG56a3FfMzU0Z2NyZnF4Zmo&hl=en

Libraries

Coumans, E., 2010. Bullet (2.76) [library]. Available from: 
www.bulletphysics.com [Accessed 20 August 2010]

The Ogre Team. OGRE (1.7.1 [Cthugha]) [library]. Available from: 
www.ogre3d.org [Accessed 20 August 2010]

Kuranes, T., 2010. OgreBullet [library]. Available from: 
http://www.ogre3d.org/developers/addons [Accessed 20 August 2010]

Games

Liquid Rock Games, 2010. Aftershock [computer game]. Not yet 
published. Available from: http://www.liquidrockgames.com/

Fitterer, D. 2008. Audiosurf [computer game]. Online: Steam.

Black Rock Studio, 2010. Split Second: Velocity [computer game]. CA: 
Disney Interactive Studios

Psygnosis, 1995. Wipeout (WipE'out) [computer game]. Liverpool: 
Psygnosis.

SCE Studio Liverpool, 2008. Wipeout HD [computer game]. London: 
SCEE

http://www.liquidrockgames.com/

