Mr Cool Ice Shader Help File

Vanessa Salas Castillo i7832424

i. Summary

"mr_cool_ice.sl" is a Renderman shader that renders deep blue ice material using raytracing.

"mr_cool_ice" replicates the main characteristics of blue ice: scattering of light through the volume, reflections, refractions, fresnel effect, specularity.

The shader is completely procedural, it does not use painted textures. I offers you the possibility of using noises to control its patterns.

Ray tracing is used, however if the settings are optimised, it is a very efficient shader.

ii. Pieces

As "**mr_cool_ice**" uses subsurface scattering, a previous pass is needed. This pass bakes the radiance of your model and creates an albedo noise to simulate the lack of uniformity of blue ice.

Two options are offered:

1. Baking the albedo, diffuse mean free path, radiance and the area of every micropolygon on a point cloud with "**bake_radiance_noise.sl**", and then ecified in Renderman Application Notes for Translucency and Subsurface Scattering [PX]. This process has been automatised with a python script named that does the call for all these steps. This script can render more than one frame as well.using *ptfilter* and *brickmake* as sp

After this, "**mr_cool_ice**" is called with the resulting brickmap as a parameter. As the diffuse simulation (see Renderman Application Notes for Translucency and Subsurface Scattering [PX]) has been done, the shader just reads the result from the brickmap.

2. Baking the area and transmitted direct illumination at each point on a point cloud with "**bake_info.sl**". Though not essential, it is recommended to generate an organised point cloud out of the resultant point cloud. This point cloud is a parameter for "**mr_cool_ice_info.sl**".

ATTENTION: for both of the prepasses, it is important to remember to set the attributes "cull" "hidden" and "cull" "backfacing" to 0 in the rib file.

iii."mr_cool_ice"

1. Parameters

Coefficients to modulate the effect of each of the components of the shader

Name	Туре	Function
Ко	float	Opacity coefficient
Ksss	float	Subsurface scattering coefficient
Ks	float	Specularity coefficient
Kwet	float	Specularity coefficient for wet effect
Kr	float	Reflection coefficient
Kt	float	Refraction coefficient
Kibl	float	Image based lighting coefficient. Env. Diffuse
Kd	float	Diffuse coefficient (for frost)
Kb	float	Displacement coefficient (for frost)

Global parameters

Name	Туре	Function
env_map	string	Environment map for the image based lighting calculations.
diffuse_map	string	Blurred map for the image based lighting calculations.
coord_system	string	Coordinate system to do the environment look ups.
premult	float	If its value is one, layers are multiplied by the opacity

Specularity parameters

This parameters control the behaviour of a Cook Torrance function to model the specularity of ice.

Name	Туре	Function
spec_flag	float	1: Compute specularity
cook_roughness	float	Roughness of the surface
cook_specular_col our	color	Colour of the specular
gaussConstant	float	Gauss constant

Wet effect parameters

This parameters control a wet effect produced with a Blinn specularity.

Name	Туре	Function
wet_flag	float	1: Add wet effect
wet_eccentricity	float	
wet_rolloff	float	
wet_reflectivity	float	
spec_colour	color	Colour of the specular

Fresnel effect parameters

Parameters to activate and control the Fresnel effect. When active, automatically affects the reflections and refractions calculated in the shader.

Name	Туре	Function
fresnel_flag	float	1: do fresnel effect
ior	float	Index of refraction. The actual index of refraction of ice is 1.31

Reflection oclussion parameters

This is an image based lighting pass. It uses the environment map provided under "env_map". This is the most expensive pass. Set carefully the settings of the samples. Using values that are multiples of 4 is more efficient.

Name	Туре	Function
rocc_flag	float	1: Compute reflection occlusion pass.
reflectionocc_sam ples	float	Number of samples. Acts as a quality knob.
reflectionocc_blur	float	This value is later transformed to radians an used in the gather call as the cone angle.

Refraction parameters

If computed uses a trace call and Fresnel if it has been activated.

Name	Туре	Function
t_flag	float	1: Compute refraction.

Subsurface Scattering parameters

The subsurface scattering pass gives translucency and most of its colour to ice. A brickmap with the result of the diffuse approximation done with *ptfilter* must be provided.

Name	Туре	Function
sss_flag	float	1: Read subsurface scattering
sss_bkm	string	Name of the brickmap.

Frost parameters

These are parameters to add frost to the superior part of the ice.

Name	Туре	Function
snow_flag	float	1: Add frost to the ice
snow_height	float	Defines how low can the snow spread on the volume. This value exists, because icebergs are 80% underwater. It doensn't make sense that icebergs are covered of snow underwater.
snow_over	float	How horizontal should the surface be to be covered by snow.
spark_eccentrici ty	float	Blinn eccentricity parameter
spark_rolloff	float	Blinn falloff parameter

Diffuse IBL and Ambient occlusion parameters

These parameter is used to modulate the result of the snow, not for the ice.

Name	Туре	Function
ibldiff_flag	float	1: Do image based diffuse
ibldiff_samples	float	Defines how low can the snow spread on the volume. This value exists, because icebergs are 80% underwater. It doensn't make sense that icebergs are covered of snow underwater.
occ_sample	float	Samples quantity to create the ambient occlusion pass.
occ_maxvar	float	

2. Outputs

The pre pass shader and the actual shader, both produce "arbitrary output values" or AOVs. There is an AOV acting as a secondary channel for every different pass. Each of these secondary channels has to be made available in the RIB file first. By using this strategy, even though a single shader does all the calculations, it is still possible to have access to the different passes. Afterwards manipulate them inside a compositing tool as desired and achieve different results is quite easy. These secondary outputs are saved as 'tif' images. The final image is saved as a 'tif' as well.

Туре	Name
output varying color	_diffuse_colour
output varying color	_diffuse_ibl
output varying color	_opacity
output varying color	_occlusion
output varying color	_reflection_occlusion
output varying color	_refraction
output varying color	_snow_mask
output varying color	_sparkles
output varying color	_specularity
output varying color	_specularity_blinn
output varying color	_subsurface

iv. "mr_cool_ice_info"

1. Parameters

Coefficients to modulate the effect of each of the components of the shader

Name	Туре	Function
Ко	float	Opacity coefficient
Ksss	float	Subsurface scattering coefficient
Ks	float	Specularity coefficient
Kwet	float	Specularity coefficient for wet effect
Kr	float	Reflection coefficient
Kt	float	Refraction coefficient

Kibl	float	Image based lighting coefficient. Env. Diffuse
Kd	float	Diffuse coefficient (for frost)
Kb	float	Displacement coefficient (for frost)

Global parameters

Name	Туре	Function
env_map	string	Environment map for the image based lighting calculations.
diffuse_map	string	Blurred map for the image based lighting calculations.
coord_system	string	Coordinate system to do the environment look ups.
premult	float	If its value is one, layers are multiplied by the opacity

Subsurface Scattering parameters

The subsurface scattering pass gives translucency and most of its colour to ice. A brickmap with the result of the diffuse approximation done with *ptfilter* must be provided.

Name	Туре	Function
sss_flag	float	1: Read subsurface scattering
sss_pointcloud	string	Name of the point cloud.
sss_ior	string	Index of refraction
albedo_value	color	A colour to multiply the value of the albedo
dmfp_value	color	The value of the diffuse mean free path
sss_smooth	float	Activate smooth results for subsurface scattering
sss_unitlength	float	The unit length by default is mm
sss_maxsolidang le	float	The accuracy of the subsurface diffusion simulation.

Albedo parameters

Through a varying albedo there are many visually interesting options. Marble noise is used alter it

Name	Туре	Function
veining	float	1: Read subsurface scattering
ice_tint	string	Name of the point cloud.
vein_colour	string	Index of refraction
albedo_value	color	A colour to multiply the value of the albedo

dmfp_value	color	The value of the diffuse mean free path
sss_smooth	float	Activate smooth results for subsurface scattering
sss_unitlength	float	The unit length by default is mm
sss_maxsolidang le	float	The accuracy of the subsurface diffusion simulation.

Specularity parameters

This parameters control the behaviour of a Cook Torrance function to model the specularity of ice.

Name	Туре	Function
spec_flag	float	1: Compute specularity
cook_roughness	float	Roughness of the surface
cook_specular_col our	color	Colour of the specular
gaussConstant	float	Gauss constant

Wet effect parameters

This parameters control a wet effect produced with a Blinn specularity.

Name	Туре	Function
wet_flag	float	1: Add wet effect
wet_eccentricity	float	
wet_rolloff	float	
wet_reflectivity	float	
spec_colour	color	Colour of the specular

Fresnel effect parameters

Parameters to activate and control the Fresnel effect. When active, automatically affects the reflections and refractions calculated in the shader.

Name	Туре	Function
fresnel_flag	float	1: do fresnel effect
ior	float	Index of refraction. The actual index of refraction of ice is 1.31

Reflection oclussion parameters

This is an image based lighting pass. It uses the environment map provided under "env_map". This is the most expensive pass. Set carefully the settings of the samples. Using values that are multiples of 4 is more efficient.

Name	Туре	Function
rocc_flag	float	1: Compute reflection occlusion pass.
reflectionocc_sam ples	float	Number of samples. Acts as a quality knob.
reflectionocc_blur	float	This value is later transformed to radians an used in the gather call as the cone angle.

Refraction parameters

If computed uses a trace call and Fresnel if it has been activated.

Name	Туре	Function
t_flag	float	1: Compute refraction.

Frost parameters

These are parameters to add frost to the superior part of the ice.

Name	Туре	Function
snow_flag	float	1: Add frost to the ice
snow_height	float	Defines how low can the snow spread on the volume. This value exists, because icebergs are 80% underwater. It doensn't make sense that icebergs are covered of snow underwater.
snow_over	float	How horizontal should the surface be to be covered by snow.
spark_eccentrici ty	float	Blinn eccentricity parameter
spark_rolloff	float	Blinn falloff parameter

Diffuse IBL and Ambient occlusion parameters

These parameter is used to modulate the result of the snow, not for the ice.

Name	Туре	Function
ibldiff_flag	float	1: Do image based diffuse
ibldiff_samples	float	Defines how low can the snow spread on the volume. This value exists, because icebergs are

		80% underwater. It doensn't make sense that icebergs are covered of snow underwater.
occ_sample	float	Samples quantity to create the ambient occlusion pass.
occ_maxvar	float	

2. Outputs

The pre pass shader and the actual shader, both produce "arbitrary output values" or AOVs. There is an AOV acting as a secondary channel for every different pass. Each of these secondary channels has to be made available in the RIB file first. By using this strategy, even though a single shader does all the calculations, it is still possible to have access to the different passes. Afterwards manipulate them inside a compositing tool as desired and achieve different results is quite easy. These secondary outputs are saved as 'tif' images. The final image is saved as a 'tif' as well.

Туре	Name
output varying color	_albedo_noise
output varying color	_diffuse_colour
output varying color	_diffuse_ibl
output varying color	_opacity
output varying color	_occlusion
output varying color	_reflection_occlusion
output varying color	_refraction
output varying color	_snow_mask
output varying color	_sparkles
output varying color	_specularity
output varying color	_specularity_blinn
output varying color	_subsurface

v. Dependencies

To be able to compile the shaders, the following files are necessary:

vsl.utils: A library with utility functions is used with the purpose of storing a variety of noise functions, conversions, and any other method that provides reusable functionalities. Some of the noises and other functions were taken and slightly modified from the ones implemented by Slim.

The **"noises.h"** library from Advanced Renderman [AP] is also included.

"vsl_pass.h": This library contains the functions that create the passes needed by each shader.

blinn.h filterwidth.h patterns.h

vi.References

[PX] Pixar Animation Studios. 2009. *Pixar's Renderman User's Manual*. Available from:

http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/prmandocs/RPS_14.0/ (Accessed 12 May 2009).