
Audio Driven Games

Masters Thesis

Ashley Morrison (i7861963@bournemouth.ac.uk)
Msc Computer Animation & Visual Effects

N.C.C.A Bournemouth University
18th August 2009

1

mailto:i7861963@bournemouth.ac.uk

Abstract
Two of the most key human senses are vision and hearing. Based on many shared
features of these two phenomena as well as the powerful effects they can often elicit,
this paper will demonstrate the author’s attempts to link the two together in a
synchronised fashion within a games context. This will also bring into play a third
element, that of interaction. An overview of areas such as digital signal processing,
mathematical art and synaesthesia will form the basis of the thesis and the
programming language, Processing, used for the implementation, will be considered
against the original design goals and final outcome.

2

Contents
1. Introduction 5

2. Background 5
1. Audio 6

1. Digital Signal Processing 6
2. Beat Detection Algorithms 16

2. Visual 20
1. Mathematical Art 20
2. Music Games Survey 23

3. Design 27
1. Game-Music Links, ‘Flow’ & Synaesthesia 27

1. Music Game Principles 27
2. Flow 28

2. Game Design Notes 28
1. Specific Game Elements 28
2. Key Focus 29
3. Early Game Ideas & Tests 29
4. Final Game Design Notes 32

4. Tools Overview 33

5. Implementation 33
1. Classes Overview & Diagram 33
2. Sequence Diagrams & Explanation 35

1. Menu Movement 35
2. Main Loop 36
3. Asteroids 37
4. Item Drops 38

3. Key Components & Pseudo-code 39
1. Finding Maximums & Averages in a Frequency Spectrum 40
2. Updating the Contractors 40
3. Asteroid Shape Distortion 41
4. Contractor Creation 41
5. Rose Creation 42
6. Wormhole Draw 42
7. Particle Gravitate 43
8. Menu Visualisation 43
9. Missile-Asteroid Collision & Asteroid Split 44
10. Radar Draw 44
11. Updating Asteroids 45
12. Updating Item Drops 46
13. Explosions 47
14. Asteroid & Item Drop Steering 48

4. Efficiency & Bugs 48
1. Efficiency 48

3

2. Bugs & Usability 49
5. General Issues of Implementation 51

6. Conclusions 52
1. Objectives Comparison 52

1. Music Game Influences 52
2. Standard Game Influences 53
3. Audio, Visual & Game Relationships 54
4. Approach to Audio Analysis 54
5. Specific Design/Implementation Goals 55

2. Improvements & Future Work 56

7. Bibliography 57

8. Appendix 62
1. Tools Overview 62

1. Processing 62
2. Minim 62
3. ControlP5 63

2. Beat Induction/Tracking Extra 63
1. Beat Induction 63
2. Beat Tracking 64

3. Code Usage 67
4. Development Notes 68

1. Overview of Progress 68
5. Code Listing 71

4

1. Introduction

This paper revolves around three general areas, namely: audio analysis, audio
visualisation and finally user interaction between the two. The production of a game
to explore the relationships between these areas will also cover phenomena such as
synaesthesia or synchronisations between the senses and interaction produced through
immersion. The feeling of losing oneself is common in both music and games as a
harmony between medium and participant occurs, sometimes referred to as, “flow”
[Csikszentmihalyi90].

This paper will attempt to outlines some of these areas and discussions to encourage
interest and also to use them as a basis upon which to develop a game which itself
exemplifies said interactions. More specifically this will be accomplished by studying
the balance needed between audio, visuals and interaction to immerse a player in a
game.

Music will be considered both from a technical as well as artistic point of view, i.e.,
what can be extracted and what needs to be to best support the sound visually. The
visuals themselves will initially be considered from a non interactive, procedural
based approach through areas such as mathematical art and later more specifically
through a games context. Lastly the links between these two areas will also be
examined in different types of games, pro-active/re-active and what synaesthesia
might tell us regarding game immersion for example.

Chapter two is the background and history of the areas noted above that will form the
basis of this project. Audio centres around digital signal processing and beat detection.
The visual element looks at mathematical art and procedural animation. Last of all is a
music games overview.

Chapter three covers the design. This will include a consideration of synaesthesia and
game immersion. ideas and tests initially considered for the animation/game, then,
final game design choices and inspirations that will serve as the backdrop for review
in the conclusion as to success or failure. Chapter four covers the tools to be used and
how they link in with the background areas, most of which is moved to the appendix.
Next is the implementation itself which will cover more in depth class/method
reviews, sequence diagrams and pseudo code examples of how it all fits together as
well as problems encountered and any bugs etc.

After this is an overview of the final piece, considered from all three areas outlined in
the design. The user guide will most fully cover how to use the system and what it is
capable of with screenshots. Finally, any technical limitations of the outcome,
problems encountered, general conclusions and lessons learned will be covered and
ideas/expectations for future work/development. An appendix with extra audio
analysis research and development details as well as a bibliography is attached also.

2. Background
5

2.1 Audio

2.1.1 Digital Signal Processing (DSP)

This section is devoted to giving an overview of the key concepts of DSP and beat
tracking as they apply to the project as a whole and also as they are specifically
applicable to the audio library used for implementation, “minim” [Minim].

a.Signal Domains

Continuous signals are a varying quantity expressed as a function of a real-valued
domain, typically time or space. This means they are a function of a continuous
argument. Analogue signals are continuous by nature however, in DSP, digital or
discrete signals are used to allow computers to work with an approximation of these
analogue values. Discrete signals are usually obtained via two methods, sampling and
quantization of a continuous signal. As such, it is a function over a domain of discrete
integers with each value in a sequence being a “sample”. Being an approximation of a
continuous signal, discrete signals in this sense can be thought of as a compressed
continuous signal, restricting how much information a digital signal can contain.
[Rocchesso03]

b.Conversion

The process of conversion typically involves two distinct elements, firstly, “sampling”
and secondly, “quantization”. These two processes degrade the continuous signal to an
approximate form but in different ways. First we have an analogue signal to be
digitized, like a voltage over time. Then following this are two sections of the process
that correspond to sampling and quantization, sample-and-hold (S/H) and analog-to-
digital converter (ADC) respectively. S/H is as it sounds, a sampling of a continuous
value at periodic intervals, the value is held until the next period. Quantization
through the ADC process is a conversion of these sampled voltages to a nearest
integer number.

6

Figure 1.1 – Conversion Diagram. [Smith07]

Therefore sampling can be thought of as converting the “independent variable (time
in this example) from continuous to discrete”. Quantization on the other hand,
“converts the dependent variable (voltage in this example) from continuous to

7

discrete”. The nearest integer value that is chosen to most closely correspond will
effectively give us the maximum error swing through, ±? Least Significant Bit (LSB).
[Smith07]

c.Proper Sampling & The Sampling Theorem

The idea of proper sampling can be easily summed up through the question, “can I
exactly reconstruct the analog signal from these digitized samples?” If this can be
done, it will mean at least the key information has successfully been captured through
the processes outlined above. This is apart from whether the digital markers “look” as
if they correspond to the continuous wave.

The examples below show some different examples of analog signals that have been
sampled at different rates. It may seem as if only the first two most accurately capture
the analog signal but in fact (a), (b) and (c) all do, making them examples of proper
sampling. This is because they are all a unique representation of the analog signal.
However, (d) quite clearly represents a different wave than the one contained in the
original signal. More specifically, “the original sine wave of 0.95 frequency
misrepresents itself as a sine wave of 0.05 frequency in the digital signal.” The
phenomenon of a wave changing frequency during sampling is known as, “aliasing”,
from the word, “alias”, meaning an identity not your own. When there is nothing in
the digitzed samples to unambiguously reconstruct the analog signal, we have
“improper” sampling.

8

Figure 1.2 – Sampling. [Smith07]

This problem is what lead to the “Sampling Theorem” or the “Nyquist/Shannon
Sampling Theorem”, after the original authors themselves. “The sampling theorem
indicates that a continuous signal can be properly sampled, only if it does not contain
frequency components above one-half of the sampling rate.” An example given in
[Smith07] is with a sampling rate of 2000 samples per second, this will require the
analog signal to be composed of frequencies below 1000 cycles per second. The terms
“Nyquist frequency” or “rate” are often used interchangeably and are not
standardised, however the most common usage seems to be that they both refer to
one-half the sampling rate. [Smith07]

d.Convolution

Convolution is the process of combining two signals to produce a third signal.
Convolution relates the input signal, output signal and something called the “impulse
response” and makes up a key element of DSP so a brief outline is given below.
Essentially, signals can be decomposed into groups of components called, “impulses”,
were impulses are a signal composed of all zeros except for one non-zero point. This
means impulse decomposition allows for signal analysis one sample at a time. The

9

two main types of decomposition are “Fourier” and “Impulse”. Convolution is a
mathematical operation that describes the process of impulse decomposition.

Two key terms are the “delta function” which is a normalized impulse, meaning
sample zero is 1 and all other samples are 0. Second is, “Impulse response” which is
the signal you get exiting a system when the input is a delta function. In other words
the impulse response is what is applied to an input signal to produce an output, given
the specific input itself.

Figure 1.3 – Convolution Diagram. [Smith07]

The two signals combined in convolution in this context are the input delta function
and the impulse response. In the audio library used for this implementation [Minim],
the impulse response is referred to as the, “kernel”. The process of convolution comes
under the class, “Convolver” which combines the input signal with the impulse
response. Some examples of convolution in DSP are shown below which demonstrate
how particular elements of the input signal are separated out using specifically chosen
impulse responses or “kernels”. In the example convolution is used with respect to
low and high pass filters, a common technique used in audio processing. Both
effectively have a cut-off frequencies that allow frequencies above/below these values
to pass but reduce the amplitude of those not meeting the requirement. [Smith07]

10

Figure 1.4 – Filter Passes Diagram. [Smith07]

e.Digital Filters

A digital filter can be thought of as, “any linear, time-invariant system operating on
(a) discrete-time signal.” These systems are completely described in the impulse
responses and how they’re applied to the input signals. In DSP, it is a question of what
impulse response can be applied to return a satisfactory signal. There are two broad
types, those that are essentially a “linear combination of a finite number of
samples of the input signal”, also known as Finite Impulse Response (FIR) filters.
Then there are those that “admit only recursive realizations, thus meaning that the
output signal is always computed by using previous samples of itself.”, which are
called, “Infinite Impulse Response (IIR) filters.

The audio library minim [Minim] uses IIR filtering and has options for setting cut off
frequencies and specific signals to process the filter with. IIR filters stand against FIR
filters given the previous points in so far as FIR are done via convolution noted above
while IIR filters are “composed of sinusoids that exponentially decay in amplitude”
meaning that without round off noise values, they could go on infinitely.
[Rocchesso03]

f.Discrete Fourier Transform (DFT)

“Fourier analysis is a family of mathematical techniques, all based on decomposing
signals into sinusoids.” Therefore the discrete variety is concerned with digitized

11

signals. This section will cover three key areas within this family of mathematical
techniques, the real DFT which uses real numbers, the complex DFT which uses
complex numbers and lastly the Fast Fourier Transform (FFT) which is a highly
efficient way of calculating the complex DFT that minim [Minim] makes use of in the
FFT class. Essentially, a Fourier transform takes a signal in the time domain like a
sample buffer and transforms it into a signal in the frequency domain, typically
referred to as the spectrum.

In this section, the Fourier transform family is laid out, next real and complex
varieties are noted, then the three main methods of DFT calculation, one of which is
the FFT which covers the last part. [Smith07]

1)Family of Fourier Transforms

Jean Baptiste Joseph Fourier who was a French mathematician and physicist
presented a paper in 1807 with the claim “that any continuous periodic signal could be
represented as the sum of properly chosen sinusoidal waves.” An objection was made
that this was not possible as far as mathematical exactitude goes, for continuous
signals. This has proven to be true, however, you can get so close as for the difference
between the two to have “zero energy”, which is close enough.

An example of this break down would be a 16 point signal being decomposed into 9
cosine waves and 9 sine waves with the frequency of the sinusoid fixed, the amplitude
is changed depending on the waveform being dealt with. This leads to the four
categories of Fourier Transform, composed between the two features of
continuous/discrete and periodic/aperiodic giving the following:

•Aperiodic – Continuous
oFourier Transform

•Periodic – Continuous
oFourier Series

•Aperiodic – Discrete
oDiscrete Time Fourier Transform

•Periodic – Discrete
oDiscrete Fourier Transform

How these categories of Fourier Transform apply to DSP and computers is connected
with another problem to do with sin/cosine waves being defined as extending to
infinity in both positive and negative directions while only having a discrete set of
samples. This is solved by making the finite data “look like an infinite length signal.”
This is accomplished with the idea of “imaginary samples” that do extend infinitely
positive/negative but these values are all zero making it effectively discrete.

Finally, for the synthesis of an aperiodic signal, an infinite number of sinusoids are
required which “makes it impossible to calculate the Discrete Time Fourier Transform
in a computer algorithm.” This leaves the periodic, discrete category of the Discrete
Fourier Transform (DFT). [Smith07]

12

Figure 1.5 – Fourier Transform Types. [Smith07]

2) Real and Complex

As noted in (1) of this section, there are real and complex number varieties which
means the four categories above can be further divided which gives us the two type of
DFT. The Real version, “is the simplest, using ordinary numbers and algebra for the
synthesis and decomposition.” The complex variety using complex numbers
“comprising a “real number” part and an “imaginary number” part; is normally
written in the form a + bi, where a and b are real numbers, and i is the square root of
minus one.”

To sum up the basic elements of the DFT and why/how it does what it does we can
say, “the discrete Fourier transform changes an N point input signal into two point
output signals.” The “input signal contains the signal being decomposed, while the
two output signals contain the amplitudes of the component sine and cosine waves.”
The input signal is typically in the time domain.

The output is in the “frequency domain (which) is used to describe the amplitudes of
the sine and cosine waves. The frequency domain contains exactly the same
information as the time domain, just in a different form. If you know one domain, you
can calculate the other. Given the time domain signal, the process of calculating the
frequency domain is called decomposition, analysis, the forward DFT, or simply, the

13

DFT. If you know the frequency domain, calculation of the time domain is called
synthesis, or the inverse DFT. Both synthesis and analysis can be represented in
equation form and computer algorithms.” [Smith07]

Figure 1.6 – Domain Comparison. [Smith07]

It is felt the finer details of the notation for the real DFT and the mathematical details
of the complex DFT are beyond the scope of this overview so instead the next section
will cover the three ways DFT’s are calculated and how the FFT applies.

3) Methods of DFT calculation
a.By Simultaneous Equation

This method is described as getting N values from the time domain and calculating N
values in the frequency domain using basic algebra through solving for N values via
N linearly independent equations. The equations are derived by summing relative
samples from each sinusoid to get the N equations and using simultaneous equation
solving methods to retrieve the answer. This method requires a lot of calculations and
as such is almost never used practically. [Smith07]

b.By Correlation

In the correlation method, “to detect a known waveform contained in another signal,
multiply the two and add the points in the resulting product. The single number that
results from this procedure is a measure of how similar the two signals are.”
Extending this, “each sample in the frequency domain is found by multiplying the
time domain signal by the sine or cosine wave being looked for, and adding the
resulting points.” If two signals are checked against a sin wave that makes three

14

cycles in a given range and one signal matches while another doesn’t, the algorithm
should return the “amplitude of the sine wave present in the signal”. [Smith07]

c.FFT

Put simply this method “decomposes a DFT with N points, into N DFTs each with a
single point.” The major benefit the FFT method has that makes it so practically
popular is a reduction of several orders of magnitude in computation time by avoiding
the direct evaluation of the DFT formula as below:

“Evaluating this definition directly requires O(N2) operations: there are N outputs Xk,
and each output requires a sum of N terms.”

“The FFT operates by decomposing an N point time domain signal into N time
domain signals each composed of a single point. The second step is to calculate the N
frequency spectra corresponding to these N time domain signals. Lastly, the N spectra
are synthesized into a single frequency spectrum.”

Diagram 1.7 – FFT Decomposition. [Smith07]

The first step essentially amounts to a re-ordering of the samples in a signal. Finding
the frequency spectra of the 1 point time domain signals is elementary because “the
frequency spectrum of a 1 point signal is equal to itself”. However now it has to be
noted that the data is understood differently in the frequency domain. Lastly we have
to “combine the N frequency spectra in the exact reverse order that the time domain

15

decomposition took place.” The “frequency spectra are combined in the FFT by
duplicating them, and then adding the duplicated spectra together.” [Smith07]

2.1.2 Beat Detection Algorithms

See the appendix for a much larger summary of the beat induction/detection
approaches.

This following section describes the overview and analysis of beat detection that the
audio library minim [Minim] makes use of. It is a summary of Frederic Patin's paper
[Patin]. Two main methods are outlined, connected with simple “sound energy” and a
more specific frequency based analysis of sound energy. The first distinction that is
made is between the idea of “loudness” and a beat itself. So signals intercepted by the
brain will be associated with an energy and the higher that energy the louder the
sound. However, a beat will only be detected “if his energy is largely superior to the
sound's energy history, that is to say if the brain detects a brutal variation in sound
energy.”

Meaning a constant high energy signal will not allow for beats while lower energy
signals with sudden peaks will most clearly be associated with beats. This gives us an
instant sound energy reading to compare against an average over a set period to
correspond to a history. For the instant it is suggested to take an energy reading from
approx 1024 samples which represents about 500th’s of a second or an “instant”. With
the average restricted to a set of samples that he chooses arbitrarily as representing
about 1 second, or 44032 samples. This value is a compromise and minim allows for a
“dampening” of the history selection to better suit specific needs.

i.Simple Sound Energy

The algorithm can be summarised as this:

1)Compute the instant sound energy 'e' on the 1024 new samples taken in (an) and
(bn) using:

2)Compute the average local energy <E> with (E) sound energy history buffer
using:

16

3)Compute the variance 'V' of the energies in (E) using the following formula:

4)Compute the 'C' constant using a linear degression of 'C' with 'V', using a linear
regression with values (We can choose a linear decrease of 'C' with 'V' (the
variance) and for example when V → 200, C → 1.0):

5)Shift the sound energy history buffer (E) of 1 index to the right. We make room
for the new energy value and flush the oldest.

6)Pile in the new energy value 'e' at E[0].

7)Compare 'e' to 'C*<E>', if superior we have a beat!

Several points to note about this algorithm are:

1)The energy values taken from the 1024 samples are held in history rather than
with the samples themselves. This buffer will correspond to the 1 second time
frame noted earlier and means not having to compare a full 44100 sample
buffer. The buffer is <E> in this equation, with <E>[0] representing the latest
1024 instant history and <E>[42] the oldest giving the overall 44032 samples
that corresponds to the 1 second.

2)The constant C determines the algorithms sensitivity to beats. At point (4)
above, C is calculated by computing the variance within the energy history
buffer. For precise beats in say, techno music, C should be quite high while for
more mixed/noisy beats in rock music C should be lower. So for a high
variation in the history buffer, C is made higher while for a low variation, the
opposite.

3)V corresponds to this variance calculation which is made at point (3) and this
value is passed in to calculate C at (4).

The essential problem of this approach which is highlighted is that it is effectively
colour blind. That is to say, the algorithm deals purely in terms of energy peaks and
will detect only the most powerful beat amongst possibly a selection at any given
moment. Therefore it’s like a colour blind person seeing colours against a space but
no variation within the colours themselves. This means we end up with drum beats
that are sank among other noises that the listener picks up on (due to variance in pitch
amongst different instruments for instance) but which is not recognised by the

17

algorithm. This being common amongst rock/punk type music it is important to deal
with it to allow for the broadest ranges of application.

i.Frequency Selected Sound Energy

This extension of the above approach works essentially by identifying on which
frequency subband the beat was detected thereby checking different subbands in
isolation meaning different pitches, for instance, that can be accounted for. The more
the frequency spectrum is divided up into subbands the more sensitive the detection
can become but also the more specific its adaptation will be to songs/styles. [Patin]
lists the basic algorithm as this:

For every 1024 samples:

•Compute the FFT on the 1024 new samples taken in (an) and (bn). The FFT
inputs a complex numeric signal. We will say (an) is the real part of the signal
and (bn) the imaginary part. Thus the FFT will be made on the 1024 complex
values of:

•From the FFT we obtain 1024 complex numbers. We compute the square of their
module and store it into a new 1024 buffer. This buffer (B) contains the 1024
frequency amplitudes of our signal.

•Divide the buffer into 32 subbands, compute the energy on each of these
subbands and store it at (Es). Thus (Es) will be 32 sized and Es[i] will contain
the energy of subband 'i':

•Now, to each subband 'i' corresponds an energy history buffer called (Ei). This
buffer contains the last 43 energy computations for the 'i' subband. We
compute the average energy <Ei> for the 'i' subband simply by using:

•Shift the sound energy history buffers (Ei) of 1 index to the right. We make room
for the new energy value of the subband 'i' and flush the oldest.

•Pile in the new energy value of subband 'i' : Es[i] at Ei[0].

18

•For each subband 'i' if Es[i] > (C*<Ei>) we have a beat!

The major extension of this algorithm to really take into account the availability of the
frequency spectrum analysis is the use of the human ear itself. Patin states:

“The second way to develop the accuracy of the algorithm uses the defaults of human
ears. (The) human hearing system is not perfect; in fact its transfer function is more
like a low pass filter. We hear more easily and more clearly low pitched noises than
high pitch noises. This is why it is preferable to make a logarithmic repartition of the
subbands. That is to say that subband 0 will contain only say 2 frequencies whereas
the last subband, will contain say 20.”

The algorithm is noted as:

•Linear increase of the width of the subband with its index:

•We can choose for example the width of the first subband:

•The sum of all the widths must not exceed 1024 ((B)'s size):

This feature is a part of the minim [Minim] library under the linAverages and
logAverages functions within the FFT class. logAverages takes a minimum bandwidth
for an octave and the number of bands per octave. This splitting of the bands between
octaves will increase like the example above as the octaves increase meaning the later
bands will be larger in width.

In minim both of these beat detection algorithms are available depending on what
level of granularity is needed. A more specific outline of the pseudo code and method
calls for using minim and these techniques is shown in the Implementation section (5).
For the original paper, see [Patin].

19

2.2 Visual

2.2.1 Mathematical art

Mathematical art in the broadest sense could be considered as “physical models that
vividly demonstrate mathematical concepts, formulas and theorems”. With one of the
great attractions being that they are either interaction oriented and encourage viewers
to experiment with them to gain an intuitive understanding or they’re based on a pre-
existing subject that is already understood and thus helps to build links to new and
existing ideas. [Ruiz]

Lastly an example exhibition notes that mathematics, “as it is traditionally taught”,
“fails to elicit wonder” or “foster creativity”. A key aim is “to restore some of this
wonderment”, with models attempting to “demonstrate the power and beauty of
mathematics”.[Ruiz]

Lorenz Attractor

An example of mathematical art could be the Lorenz attractor as the following image
illustrates:

Figure 1.7 - 3d Lorenz Attractor example. [MathArt]

This developing pattern is governed by [MathArt]:

20

σ (Prandtl Number), ρ (Rayleigh Number)

Another example:

Figure 1.8 - 3d Lorenz Attractor Example 2. [Wikipedia1]

It’s also well known that “Music theorists often use mathematics to understand
musical structure and communicate new ways of hearing music. This has led to
musical applications of set theory, abstract algebra, and number theory. Music
scholars have also used mathematics to understand musical scales, and some
composers have incorporated the Golden ratio and Fibonacci numbers into their
work.” [Wikipedia2]

With procedural animation being automatically generated in real time and having a
basis in the development of algorithms over time, these areas and links will form the
crux for the visualisation investigation. Particular emphasis will be placed on visuals
that are both striking and that re-enforce and emphasise musical elements. In a
broader games context the link between audio and a visual will need to be considered
against player input as well.

The Rose Equation

Figure 1.9 - Rose Example patterns 1 [Weisstein]

An example of math art is the rose equation. This is a curve which “has the shape of a
petalled flower”, hence the name. The equation is:

 [Weisstein]

21

It has the property that if n is odd, the number of petals is odd, while if even, the
number of petals becomes 2n.

Figure 2.1 - Rose Example Patterns 2 [Weisstein]

There are many different variations of this theme producing different styles of
patterns. Using a combination of cos and sin functions in a complementary manner
produces the kinds of effects that are both striking and easily manipulated in real time
based on another parameter like a frequency analysis of music. In this manner it’s
easy to see how a developing an ever changing visual pattern can re-enforce musical
beats and changes in tempo etc. This is especially true if specific patterns become
repeated following corresponding musical sequences.

The Mandala Pattern

“In common use, mandala has become a generic term for any plan, chart or geometric
pattern that represents the cosmos metaphysically or symbolically, a microcosm of the
Universe from the human perspective.” [Wikipedia3] They sometimes also exhibit a
tendency to be both divisible in terms of discernible patterns within the whole but that
these patterns themselves also form part of a connected structure. This clash between
discernible components that also link together to form a coherent whole could easily
be seen to correspond with music in so far as where the attention at any given moment
is drawn or between the listener becoming alert to something or losing themselves in
the piece.

22

Figure 2.2- Mandala Design Example. [Wikipedia3]

2.2.2 Music Games Survey

The following summary of music games is based upon a Wikipedia article
[Wikipedia4].

Game Types
a.Music Memory

Music memory based games come in two main forms, sight-reading and eidetic,
testing simple short term memory and more complex and demanding memory recall
respectively.

i.Sight-reading music games

These games primarily focus upon one or more of rhythm, pitch and volume were
“the goal of the player is to provide a direct injective response to each prompt (linked
to an element of the music) from the game”. The prompt and reaction periods for
these games mean they focus around short term memory and a “Simon says” type
format.

1.Rhythm – Guitar Hero

23

Figure 2.3 - Guitar Hero Example. [IGN09]

An example of a rhythm based, sight-reading game would be “Guitar Hero”. Here
“the player must press specific buttons, or activate controls on a specialized game
controller, in sync with the game's music. The control scheme is usually fairly
simplistic, and the moves required are usually predetermined rather than randomized.”

2.Pitch – Karaoke Revolution

Figure 2.4 - Karaoke Revolution Example. [Geek09]

Pitch based games, like “Karaoke Revolution”, “test the player's ability to match the
pitch of a piece of music provided by the game.” Linked to rhythm, instead the focus
is for players to use their voice and they’re then ranked based on tonal accuracy.

3.Volume – Wii Music

Volume games seem to be much rarer and the link is simply the ability of the player to
alter the volume through a gameplay action or button.

ii.Eidetic music games – Space Channel 5, Myst puzzle

Eidetic memory is often used as another term for photographic memory and relates to
the recall of sounds/images etc through a brief time span for memorisation but with
very high accuracy. These games are differentiated from the simpler short term
memory requirement by the fact the goal of recall is continually extended to require
more and more for recall. “Each successive prompt and response contains the entirety
of the prior prompt or response as well as additional material determined by the

24

round.” This style of music game has also become a recurring puzzle as for instance
found early on in the original Myst game within the spaceship.

b.Freeform – SimTunes

Freeform music based games are typically the equivalent of sand box games in a
music environment. Like sandbox games, there often aren’t any discernible goals
except experimentation. Often the music creation is the focus and takes precedence
over anything else. This is more of a sliding scale as well with games that focus more
and less on the music, some are really just music synthesizers pure and simple. Some
examples include Fluid and Elektroplankton.

Figure 2.5- Electroplankton Example. [Synth]

i.Music art games – Moondust, tranquillity

An extension or cousin of the freeform music game is the music art game whereby the
“emphasis lies on the artistic aspects of musical gameplay rather than the ludological
aspects”. They’re typically quite abstract and lacking in any plot, focusing instead on
visual/audible creativity and expression without lives or scores etc.

c.Hybrid

Lastly the Hybrid music video game is so called due to it containing meaningful and
often complex interactions between the music and player while being part of a non
music genre. For instance, shooters that are linked in or driven by the music in some
way like the generation of enemies being based on the beat etc.

i.Generative – Rez

25

Figure 2.6- Rez Example. [Armchair]

“Generative”, hybrid music games tend to be a source of music/sound based on player
input. To integrate the non music genre with sound in this way, the dynamics of the
game in question will typically be quite simplistic. “Rez” is a famous example of such
a game which is a shooter that combines “sound effects created by the actions of the
player (as he completes the normal tasks of rail-shooting) with the soundtrack as a
whole, the game is intended to permit the player's direct interaction with the
soundtrack and to encourage the creation of a synaesthetic experience”.

ii.Reactive – Audiosurf

Figure 2.7 - Audiosurf Example. [Next09]

On the other hand “reactive” hybrid music games are based around the concept of
players using the music and anticipation of its evolving nature through time to build
and execute gameplay strategies. In other words “they employ music to determine
gameplay”. A good example of such a reactive music game is “Audiosurf” which
requires the player to catch certain coloured blocks amongst damaging ones with the
placement and movements needed based on an analysis of the music played. Another
example is the old playstation game “Vib-Ribbon”.

d.Mixed Genre – party games

26

Lastly mixed genre games tend to be party based games that mix a number of mini
games into one “frame story”, i.e. an overall story leading to lots of mini self
contained ones.

3. Design

3.1 Game-Music Links, ‘Flow’ & Synaesthesia

3.1.1 Music Game Principles

Through a qualitative analysis of music video games [Pichlmair07] found a number
of typical features listed as “active scores, rhythm action, quantisation, synaesthesia,
play as performance, free-form play, and sound agents.”

Differentiating between “action” and “rhythm” games, “Rez” of the former type, is
described as “an easy and straightforward shooter game. The challenge is not to hit
the beat but to create a steady flow of sound. The game cannot be played as an
instrument in the default arcade mode, but an experienced player navigates through
the musical capabilities of the game while still successfully playing the shooter
presented as the surface of the game. The player acts on two levels: she plays a
shooter and she reacts to the beat of the music game behind the shooter. Rez provides
an immersive environment by tightly coupling visual and acoustic sensations.”

In [Mizuguchi07] inspirations for Rez are mentioned as also involving “rave culture.
When I first saw a rave party in about 1993 there were many people dancing, and it
was like they were jumping in time to the music. I had a big, big flash, and suddenly I
just remembered about the concept of synaesthesia.”

While this synchronisation between onscreen events and audio samples is said to be a
key part which “contributes to the pleasure of immersion by reliably providing
feedback to the player, Rez offers an engaging but looser association between the on-
screen action and the players interactivity. [Douglas01] describe the principles of
immersion and engagement as the key factors of player involvement, ultimately
leading to a flow experience introduced by Csikszentmihalyi. [Csikszentmihalyi90]”

[Pichlmair07] also gives another key example for the interest of this investigation
which is that of Vib Ribbon, mentioned previously under the Reactive, Hybird music
games. The object of the game is noted as “to guide a female rabbit called Vibri along
a line, a ribbon populated with obstacles the rabbit can pass by by pressing the correct
button at the right time.”

Furthermore “the player can eject the game CD-ROM and insert an audio CD. The
audio CD is analysed and the level is built on base of a track. While the player plays,
she hears her own music. This way, Vib Ribbon fosters the attachment between a
player and her music collection. The experience of playing Vib Ribbon is very
personal. Interestingly, the mickey mousing sound effects of Vibri jumping and

27

walking over the obstacles can be turned off, turning the game into a visual
performance tool.”

Audiosurf is an example of a music game which will serve as a key inspiration in this
regard as well. Specifically, the obstacles presented are done so in such a way as to
demand greater levels of concentration and reaction times depending on the tempo of
the sound being played. This interplay between the nature of the interaction and a
player’s relationship with the music will be a focus of the design and implementation.

Lastly [Pichlmair07] notes some interesting elements of free-form play in both Rez
and Electroplankton. Both games support a mode whereby “damage” is turned off,
leaving what they call “a journey through sound”.

3.1.2 Flow

The experience of flow noted above is expanded upon in [Pace08] as involving “clear
goals and timely feedback; a balance between the challenges of an activity and the
skills required to meet those challenges; concentration on the task at hand; a sense of
control; a merging of action and awareness; a loss of self consciousness; a distorted
sense of time; and the autotelic experience. The term autotelic refers to an activity that
is done without the expectation of some future benefit; the activity itself is the
reward.”

It is also important to note that flow is an experience investigated in many different
areas, cultures and over a considerable period of time and also that a substantial
number of the elements above form a key part of many musical experiences. Moving
beyond the passive activity of listening to music, given that games are interactive, a
further suggestion might be that the process of learning to play a song is quite
analogous to learning to play a level or game. The fine tuning of both these processes
involves an intimacy between expectation and reaction that seems to be key to flow
and is an area that this project will attempt in some manner to replicate or encourage.

Specific approaches regarding how this will be done and a summary of what existing
games and features will be used follows in the design section.

3.2 Game Design Notes

3.2.1 Specific Game Elements

Of the general types listed it is the hybrid generative/reactive and the music art games
that will be the main inspiration/focus of the game design.

Specifically, the abstract style of Rez, the musically driven pace and futuristic theme
of Audiosurf and lastly the personalising aspect of Vib Ribbon will be the main
aspects to emulate. Expanding on this list, the following non musical games will also
provide inspiration:

28

a)Asteroids
a.Basic concept – destroying on-collision objects to remain alive etc.

b)Mono
a.Notion of something visually developing over time through player

interaction – painting the background.

Figure 2.8 - Mono Screenshot example. [Binary05]

c)Arx Fatalis
a.Spell casting is done through specific movements of the mouse on

screen, different spells, different patterns.

Figure 2.9 - Arx Fatalis Screenshot example. [Gametap09]

d)Polynomial
a.Visual space style.

Figure 3.1 - Polynomial Screenshot example. [Indie]

29

3.2.2 Key Focus

The main issue will be the relationship between the player, the audio and the
visualisation. If the visualisations are presented too frequently, it will be too hard and
the player will lose connection with the visualisation. However, if too infrequent, the
visualisation will lose connection with the audio and it will become too easy or less
moving. The balance between these things will be the key to the gameplay.

The idea will not be to categorise the music as a whole as being one thing or another
(based on emotion/feeling etc) and then transplant that onto a visual. Rather it will be
to take the music, break it down into different elements that make up the whole and to
apply these isolated elements to separate elements of the visual.

As a simple example, a song may have three types of beat, a kick, bass and snare
drum. A sphere could have a size, position and colour. When a kick drum is onset, the
size changes and likewise for the other elements. In this way, in a games context, the
goal could be encouraging the user to concentrate and move between different
elements of the piece and to synchronise this process with their manipulation of the
visual element.

3.2.3 Early Game Ideas & Tests

The two main programs initially made in 2D were a pattern matching type game and
something loosely based on a ‘Geometry wars’ style gameplay.

Figure 3.2 - Extended from: [Bumgardner]

The pattern matching game used the rose equation to draw a series of rose like
patterns to the screen using points that the player would collect in a limited amount of
time before the next pattern was generated. The patterns were influenced by the music
being played through calculating the maximum peak value in the frequency spectrum
and using this as the value for n, remembering that n primarily determines the number
of curves and thus the complexity of the patterns.

30

The rate at which the patterns were generated was also determined by a rough
estimate for fluctuations in beats per minute. This resulted in i) repeated patterns
following repeated sequences of sound and ii) a tempo or pace of gameplay that was
synchronised with the music as well.

Secondly, the geometry wars style game was very basic in design and implementation
but extended on some of the points above by using the same rose patterns as the
image drawn to screen for enemies chasing the player. This along with a shield or
health and again, a moveable avatar in 2D for the player resulted in a link between the
complexity of the patterns and the possible damage to be dealt. Greater complexity in
pattern resulted in more damage.

The spawning of these enemies was done using a basic sound energy onset detection
which worked quite well in also linking the tempo of sound with the flow of the
gameplay. More beats, more enemies to evade or destroy. This combined with a
greater chance of the game ending in defeat but also gives the player a greater
potential for reward in the form of a higher points total.

Figure 3.3 - Screenshot of simple top down game test.

Lastly the other small test done concerned patterns, shapes or images developing on
screen in a manner also connected with the sound. This was done using the boid class
taken from [Shiffman] which was used in the geometry wars style example above.
Extending this, extra influences are applied to the movement connected with beat
onsets etc and not re-drawing the background. This results in interesting pseudo 3d
line patterns that are linked with the beats as a viewer observes in real time and also
result in something unique by the end after the song has finished.

31

Figure 3.4 - Screenshot of the boid pattern making test.

3.2.4 Final Game Design Notes

By this point the decision was made to start working fully on 3D examples, because
the end result offered greater possibilities both in terms of game mechanics and visual
impact.

The development of the 3D work and the final game will be discussed in greater detail
in the implementation section. Based on all the preceding notes in the background and
design sections as well as the findings of [Pace08], the following were decided upon
as being key game mechanic aims:

1)Clear goals and timely feedback
a.Clear objects (asteroids etc) moving towards the player with an aimer

and scores clearly indicating a course of action
b.Clear gui updates

2)Balance between challenge and skill
a.Real time difficulty settings like beat sensitivity and object max velocity

to allow the user to tailor the experience to the music and their skill.
3)Focused attention

a.Mix between radar/3d view - “a centering of attention on a limited
stimulus field”[Pace08]

b.Shoot objects to remain alive, capture item drops to boost scores.
4)Reduced awareness

a.Simplistic game goals/scenario to more easily transport the player into
the game world, however abstract.

5)Presence
a.“All of the study participants’ descriptions of presence involved games

that featured three-dimensional (3D) virtual environments. Although
3D graphics are not necessary for experiencing flow during game play,
they appear to be very influential—and possibly a prerequisite—for

32

experiencing presence (i.e. situated immersion as opposed to diegetic
immersion).”[Pace08]

b.Player to be attacked from all sides, therefore demanding the need to
rotate around “in-game” demands greater attention of action. Feel more
in the game when action is “all around” and not just in a linear
direction in front of you.

4. Tools Overview
The main tools used were 'Processing'[Fry], 'minim' [Minim], 'controlP5' [Schlegel]
and 'Traer' [Bernstein], for the main language, audio, gui and physics needs
respectively. See the Appendix for an expansion on the tools and why they were
chosen.

5. Implementation

5.1 Classes Overview & Diagram

The key classes are:

1)Main – This is the main class of the program containing the setup, draw and
key/mouse methods. It contains instances of GUI, MinimAudio for a menu song and
MainGame.

2) Background - This class represents the state of the main menu visualisation. It
contains lists of SpiralGalaxy objects and points representing stars.

3)GUI – This class contains the collection of widegts and control panels for the three
main GUI's of the program, the main menu, the in-game player data and the in-game
settings data. All three are shown/hidden at different times depending on the mode
and user input.

4)MinimAudio – Contains all the audio related classes included a minim[Minim]
object used to create a song object, play it and a FFT object used to analyse it amongst
others.
1.FFTSample – This is a custom class created in MinimAudio that contains the
instance to the minim FFT class[Minim]. It is used to provide further custom analysis
if needed.

5)MainGame – This is the main game class which is created and destroyed
depending on the mode the program is in. It contains an instance of MinimAudio for
in-game audio analysis as well as instances of Missile, the Traer Physics
Library[Bernstein] classes ParticleSystem and Particle, Asteroid, ItemDrop,
Contractor, Wormhole, Rose[Bumgardner] as well as references to the Main and
GUI classes for updating some globals.

33

6)Asteroid – This is based on Daniel Shiffman's Boid [Shiffman] class mainly
extended into 3D using the 'steer' method to direct itself at the player. A collection of
Asteroid objects is in MainGame.

7)Pulser – This class has been modified from Claudio Gonzales' [Gonzales] Gravity
Swarm example on OpenProcessing. It is a visual effect of a pulsing-like phenomenon
that is linked to the beats of the song.
1.PulserParticle – This is the particle class Pulser uses, it has also been modified to
distribute the particles around a 2D circle initially amongst other changes.

8)Explosion – Each Asteroid object has an Explosion object which uses 'Particles on
a Sphere' by 'Starkes' [Starkes] on OpenProcessing as it's basis. The radius of the
sphere is adjusted over time from a point to give the effect of an explosion which is
merged with the disappearance of the Asteroid object itself before both are removed.
1.ExplosionParticle – The particle class used with the above example.

9)ItemDrop – This class is also based upon Daniel Shiffman's boid class [Shiffman]
again using a 2D steering method given a target point. It is extended into 3D to allow
the object to move from a spawn point to either the player or a pre-determined point
on the wormhole object.

10)Missile – This class is instantiated each time the user fire the weapon. The pattern
of ellipses that make up the design is based upon the Rose class below. It also uses the
Traer Physics [Bernstein] classes to direct the object towards a target the player is
facing. The number of points generated is reflected in the amount of damage caused to
an asteroid upon impact.

11)Rose – This class is based upon Jim Bumgardner's 'Rose Display' [Bumgardner]
sketch on OpenProcessing which uses the Rose equation outlined in the
background/design. The audio analysis of the MinimAudio object is passed in to the
equation to link the pattern generation with the sound.

12)Wormhole – This class uses the trigonometry of the Philippe Guglielmetti
[Guglielmetti] sketch on OpenProcessing which in turn is based upon the work of Dr.
Goulu at www.goulu.net regarding the principles of a spiral galaxy sequence. The
central point is the target for ItemDrop objects.

13) SpiralGalaxy – This class is a different modification of Philippe Guglielmetti's
[Guglielmetti] sketch like Wormhole that is used for the menu visualisations.

34

Figure 3.5 - Class Diagram of the System.

The examples used from elsewhere to base and extend these classes on are explicitly
stated in the code and reference list.

5.2 Sequence Diagrams & Explanations

5.2.1 Menu Movement

The following diagram gives a basic impression of the movement that takes place in
the program, from main menu to in-game and finally a game over screen. From the in-
game point the user can also move both backward and forward to the menu and game
over screens respectively. Boolean flags are used to determine exactly where the
player is and what should be happening. In this way game objects are created and
destroyed and gui's are hidden and displayed appropriately.

35

Figure 3.6 – Menu Movement Sequence Diagram.

5.2.2 Main Loop

Next is the main loop sequence diagram which is pretty simple and linear in
execution. The relevant GUI is displayed depending on whether the player has pressed
a button to change the settings in which case the main loop is paused or whether the
game is running normally in which case all the current objects are updated and re-
drawn. Lastly it shows that based on this information, the MainGame class updates
the basic radar system to inform the player of relative object locations. The ItemDrop,
Laser and Asteroid classes all check for collisions in varying ways too shown in more
detail below.

36

Figure 3.7 – Main Game Loop Sequence Diagram.

5.2.3 Asteroids

This is the basic setup for Asteroid object generation and updating. If a beat is
detected, a point around a sphere is calculated given radius X, an asteroid object is
placed at that position and told to steer towards the player position.

Different in this process is what happens when the asteroid is detected as having
collided with a laser object. Not shown is the fact that if the asteroid is a 'parent', a
splitAsteroid() method is called and two new asteroids are spawned, initially heading
in opposing directions before steering at the player. This is akin to the Asteroid arcade
game upon which this is based, breaking larger asteroids into smaller ones.

However this only happens if the user chooses 'hard' mode over 'normal' difficulty.
Otherwise the asteroid object has a boolean flag 'removing' set to true. When this
happens, the update and draw methods start to reduce an integer which represents the
alpha value for the render which gives the impression of it slowly disappearing. On
top of this an Explosion object is created from the centre of the asteroid. When the
alpha value is zero, both objects are removed.

37

Figure 3.8 – Asteroid Generation and Updating Sequence Diagram.

5.2.4 Item Drops

Lastly is the similar process for item drops. ItemDrop objects use the Wormhole
object as a default target position to move towards. They are generated if there is one
of three types of frequency onset detected corresponding with a particular Contractor
object currently being updated. Each Contractor object has one of three frequency
beat detections, each of which are checked for per update. If Contractor.type =
beat.type, spawn an item drop object of this type at the Contractor.centre.

38

Figure 3.9 – Item Drop Generation and Updating Sequence Diagram.

The other difference is these item directions can be influenced by the player to head
towards them. A boolean flag is used to determine this based on player direction,
mouse input and the steer method from the [45] boid class is used to re-direct it. When
items reach either the player or the centre of the wormhole, they're removed. If the
former, it results in a bonus for the player.

5.3 Key Components & Pseudo-code

This section will be split between the audio analysis, visualisation and game mechanic
related code structures, beginning with audio.

Audio Code

The audio analysis for this project has been done almost exclusively by the minim
audio library that's been used in conjunction with Processing [40]. The two main
classes as part of minim that have been used are the FFT and BeatDetect classes
respectively, both of which have been covered in the background section as far as
theory and implementation go.

For a broader description of the Discrete Fourier Transform see the section 2.1.2 (f) of
this document. For the FFT part in particular, see section 3.c further on from this. For

39

the beat detection description that the author of minim references, see section 2.1.4
(v).

5.3.1 Finding Maximums & Averages in a Frequency Spectrum

currentMaximum=0;
average=0;

FFTSample.findMaxAvg() {
// find the highest value and total up all values
for(each fft band) {

temp=fft(i);
tempTotal+=temp;
if(temp>currentMax) {

currentMax=temp;
}

}
// find local average of this loop
localAvg=tempTotal/fft.size();
average*=counter;
counter++;

// update global average over life time of song + local maximum
average=(average+localAvg) / counter;
currentMaximum=currentMax;

}

5.3.2 Updating the Contractors

MainGame.for(NoGalaxies) {
// add new Pulser object to list, pass in random number to be the type
pulsers.add(new Pulser(random(0,3)));

}

MainGame.updatePulsers() {
Pulser = pulsers.get(index);
for(Pulser.ParticleList) {

if((beat.kick&&Pulser.type==0) || (beat.hat&&Pulser.type==1) ||
(beat.snare&&Pulser.type==2) {
Pulser.gravitate();
Pulser.ParticleList.display();

if(canAddItems) {
items.add(ItemDrop());

}
}

}
}

40

5.3.3 Asteroid Shape Distortion

Asteroid.render() {
fftSize=fft.avgSize();
// set end and increment values
difference=start-end+increment;
//set radius based on difference value + quad size variable
incrementSize=fftSize/difference;

for(dimensions of cube) {
// depending on side, pass in x,y,z values with one of those values
being based on the fft.avgSize() call.

// front passes in x, y, a+fft.getAvg(); because the front panels should
move in the z direction
drawSide(front);
drawSide(back);
drawSide(bottom);
drawSide(top);
drawSide(right);
drawSide(left);

}
}

Asteroid.drawSide() {
switch(side) {

// 4 vertex calls, different values for different sides
}

}

Visualisation Code
5.3.4 Contractor Creation

PulserParticle() {
if(startup) {

// distribute around circle
x = radius*cos(theta)*sqrt(1-(u*u));
y = radius*sin(theta)*sqrt(1-(u*u));

}
}

5.3.5 Rose Creation

Rose.setPoints() {
for(i=0; i<noDots; i++) {

theta = i*PI/2 / noDots;

41

offset = sin(fft.avg*theta);
point.radius = rose.radius * (offset);

offset = cos(theta)*point.radius;
point.x = centre.x + (offset);
point.y = centre.y + (offset);
ellipse(point.x, point.y, 2,2);

}
}

5.3.6 Wormhole Draw

Wormhole.colourInc() {
if(colour increasing) {

colour+=random();
}
else {

colour-=random();
}

difference=colour-(max);
if(difference >max && decreasing) { switch flags }
else if(difference < min && increasing) { switch flags }

}

Wormhole.render() {
 colourInc();
if(beat) {

// increment twist and ratio values
}

for(i=0; i<stars; i++) {
pos.x = offsetFromCentre*sin(angle);
pos.y = offsetFromCentre*ellipseRatio*cos(angle);

tmp=radius*TwistingFactor;
tmp2=sin(tmp);
tmp3=cos(tmp);

xx=centreX+(tmp2*pos.x)+(tmp3*pos.y);
yy=centreY+(tmp3*pos.x)-(tmp2*pos.y);

point(xx,yy,-radius/2);
}

}

42

5.3.7 Particle Gravitate

PulserParticle.gravitate() {
if(Particle.pos != newParticle.pos) {

force = Particle.mass * newParticle.mass;
mX = (mass * x + Z.mass * Z.x) / (mass + Z.mass);

 mY = (mass * y + Z.mass * Z.y) / (mass + Z.mass);
 tmpAngle = findAngle(mX - x, mY - y)

mX = force * path;
mY = force * path;

mX += magnitude * path;
mY += magnitude * path;

magnitude = sqrt(sq(mX) + sq(mY));
angle = findAngle(mX, mY);

}
}

PulserParticle.display() {
// decrement magnitude, particles slowly stop

x += magnitude * path;
 y += magnitude * path;

line(px, py, x, y);
px=x;
py=y;

}

5.3.8 Menu Visualisation

Background() {
for(noStars) {

stars.add(position(random(width), random(height)));
}

for(noGalaxies) {
// param=random radius size
spirals.add(SpiralGalaxy(random(300));

}
}

Background.update() {
if(beat) {

SpiralGalaxy = spirals.get(random);
SpiralGalaxy.beat=true;

43

SpiralGalaxy.colourChange=true;
SpiralGalaxy.twist+=random();

if(SpiralGalaxy.stars<max) {
for(amountOfStarsToAdd) {

// add extra points to angle/radius array lists to be used
in render() to calculate x/y positions

}
SpiralGalaxy.stars+= amountOfStarsToAdd;

}
}

}

SpiralGalaxy.render() {
for(SpiralGalaxy.stars) {

// calculate new x/y positions
}

}

Game Mechanics Code
5.3.9 Missile-Asteroid Collision & Asteroid Split

Missile.render() {
if(hasCollided) {

asteroid.health-=missile.damage;
if(asteroid.health<=0) {

if(asteroid.parent && (game.difficulty=hard) {
asteroid.splitAsteroid();
asteroid.removing;

}
}

}
}

Asteroid.splitAsteroid() {
lives--;
if(lives>0) {

asteroids.add(Asteroid(collisionOffset));
asteroids.add(Asteroid(-collisionOffset*2));

}
}

5.4 Radar Draw

//asteroid, itemDrop, wormhole
drawRadarPoint() {

if(movingRight) {
//state=how points currently being rotated to match player.rotation

44

if(state==increasing&¤tRotationValue>=180) {
// set flags for what to do when mouse is central
// increment rotational values specific to state

}
else if(otherStates) {

// set flags accordingly
// increment and rotate in specific direction/amount

}
else {

// mouse central
// don't increment rotate value, use last value according to
which flag set above.

}
}
else {

// moving left
// opposite rotation changes to above

}

// centre on x, offset by an amount equivalent to distance calculated between
real position in 3d
ellipse(0, distance, 2,2);

}

5.4.1 Updating Asteroids

MainGame.Asteroids() {
if(beat detect) {

// calculate point on sphere + offset
p = random(-PI, PI);

 t = asin(random(-1, 1));

// set x + z to offset asteroids from player in width/depth
if(game.difficulty=hard) {

// also offset the start positions by height, to make it harder
y = sphere.point + offset

}
// no god mode for asteroids generated by the music, can be destroyed
instantly
asteroids.add(Asteroid(x,y,z), god=false);

}

for(closeAsteroids) {
// those close enough to be drawn on the radar
if(distance > 2000) {

remove.asteroid;
}

}

45

for(asteroids) {
// full list
distance=thisAsteroid.position.Sub(player.position);
theta = distance.angleBetween(player.direction);

if(theta < x) {
// player directly lined up with asteroid
onTarget=true;

}

if(distance < 2000) {
closeAsteroids.add(asteroid);

}

if(asteroid.dead || asteroid.hitPlayer()) {
if(not already removing) {

if(sfx) { play.soundEffect; }
if(gameMode) { playerHealth-=20; }

}

asteroids.remove(asteroid);
}

}
}

5.4.2 Updating Item Drops

MainGame.Items() {
for(items) {

distance=thisItem.position.Sub(player.position);
theta = distance.angleBetween(player.direction);

if(theta < x) {
// player directly lined up with item
onTarget=true;

}

if(onAttract && playerWeaponEnergy >=10) {
//if trying to attract an item and has enough energy
item.attract=true;

}

if(item.dead) {
items.remove(item);

}

item.update();

46

item.render();
// to force continual use of weapon energy to attract item
item.attraction=false;

}
}

5.4.3 Explosions

Asteroid.render() {
translate(asteroid.pos);
if(asteroid.removing) {

asteroid.explosion.update(asteroid.alpha);
}

}

Explosion() {
for(noParticles) {

// used for points around sphere
float theta = random(0,TWO_PI);

 float u = random(-1,1);

myParticleList.add(ExplosionParticle(theta, u));
}

}

Explosion.update(alpha) {
for(myParticleList) {

 myParticleList[i].update(alpha);
 myParticleList[i].render();

}
}

ExplosionParticle.update(alpha) {
alphaValue=alpha;
// slow down expansion
expansionIncrement -=0.1;
radius+=expansionIncrement;
tmpx=x;
tmpy=y;
tmpz=z;

x = radius*cos(theta)*sqrt(1-(u*u));
 y = radius*sin(theta)*sqrt(1-(u*u));
 z = u*radius;
}

ExplosionParticle.render() {
stroke(colour, alpha);

47

line(tmpx, tmpy, tmpz, x,y,z);
}

5.4.4 Asteroid & Item Drop Steering

Vector steer() {
locationTargetDir = Target.Sub(location);
distance= locationTargetDir.magnitude();

if(distance > 0) {
// still need to adjust further to move it to target
// dampening process based on boolean flag for target to slow down
when approaching
 locationTargetDir.mult(maxspeed);

steer=velocity.sub(locationTargetDir);
return steer;

}
}

5.5 Efficiency & Bugs

5.5.1 Efficiency

On the default settings the game is very playable which for real time interaction was a
major priority beyond graphical quality. Adjustable settings and the option to just play
the system as a visualisation with no input necessary was added as an alternative
method for visualising music.

Due to the gameplay being relatively basic and actions being repeated to different
levels of accuracy, the performance of the game is able to drop a bit without an
equivalent drop in the game anyway. Increasing the number of particles per Pulser
object, the number of Pulser objects themselves as well as the number of stars in the
background is the best way to upgrade the visual quality but the first two do degrade
performance more significantly as values are increased due to the number of
comparisons.

For collisions between asteroids and missiles, a tree structure as part of cutting down
on comparisons was considered. However, given the issue of a dynamic set of objects
(the asteroids are moving about) and the need for an updated tree, as well as the fact
that there are never too many asteroids for comparison anyway, the decision was
made that implementing and updating a tree would not be worth the benefit and would
in fact degrade performance overall.

48

Figure 4.1 - An Example screenshot of an Asteroid splitting.

Both from a performance and a game point of view, various measures where taken to
ensure that there was never too much happening at once anyway. For instance a limit
of weapon energy means only so many missiles can be fired at a time, also missiles
have a finite life span to ensure that they die quickly if they've missed the target. Item
drops are based upon specific types of beat being recognised, this spawning was
dampened both by adjusting a fixed beat sensitivity value and by ensuring that item
drops are only spawned in accordance with a beat at a specific rate.

Asteroids move towards and are destroyed upon impact with the player meaning the
continual creation of them is not slowly reducing performance either. Likewise item
drops have a finite life span regardless of player interaction, this latter aspect with
item drops forms a game purpose as well of forcing decision making up under
pressure.

To take the system forward and really develop on it, multi-threading would need to be
implemented because the game loop is simply a linear set of loops which results in
periodic slow downs that while not hampering the gameplay significantly do impair
somewhat on the level of fun and also arbitrarily limit the potential for expansion.

5.5.2 Bugs & Usability

Without a dedicated testing period it is difficult to say how bug free the system is but
overall it seems to function as expected pretty consistently. The basic flow of the
system, moving between main menu, game and game over screens to adjust settings,
play and restart is fine. Using the default methods/shortcuts with the ControlP5
[Schlegel] GUI library sometimes left items on screen that made no sense in context
but this was re-worked and custom shortcuts were added to allow the user more
flexibility anyway.

The game itself seems to run exactly as expected. Sometimes expected beats are
missed but this is a core issue of using audio in this way and to be expected. Settings

49

to adjust how the game flows in this regard give the user the ability to fine tune
anyway. The game mechanics outlined in the user guide all function well and the
system reacts as expected except for a few issues noted below:

1) Radar

The radar function on the GUI was implemented relatively early in development as an
intuitive aspect of what would help the player and add an extra dimension to the
gameplay. It is therefore something which, after a working version was done, has been
left and in the future should be re-analysed for better solutions. On the whole it works
fine and seems a real help to the player.

Figure 4.2 - Firing several missiles at an asteroid.

However the way in which angular differences are calculated and returned and how
this should be updated on a 2d representation meant the system had to use this idea of
states that the radar was in. This means that the display of the radar flicks between
different states when the player is not rotating and this can be a little confusing. Also
radar itself was not researched on exactly what it should offer and how it works but
was implemented through a basic notion of what it should give you so a better
understanding may lead to a better implementation.

Using it also takes some practice, as if an object is at an offset both in the X and Y in
particular, to find the object requires a little trial and error. It becomes a mini game in
itself of moving in some direction, seeing how this affects the position relative to the
player, and adjusting the movement accordingly with the goal of trying to move the
point to directly above the central red one representing the player. With a little
practice this becomes quite easy but how it should work and whether it is a fun
mechanic requires more research than is now possible.

2) Missile-Asteroid Collisions

This is only a slight issue but these collisions are not hugely accurate. Sometimes
shots that seem to have missed will connect. This isn't really a bug as such because

50

this has been deliberately left in due to trying to encourage a certain style of play. The
emphasis is less on the concentration of one shot and more on a broader picture of
maintaining the player's overall safety which means a faster pace and less time for
ensuring an asteroid has been removed before moving on to another.

Also, even if an asteroid is in the process of being removed with the alpha almost at
zero, while it is still there, it will collide with a missile in exactly the same fashion as
it always would. This can lead to some unintuitive moments when trying to blast
through several asteroids, one behind the other. The one furthest back is completely
protected until the nearest one is completely removed.

Despite some of these minor issues, the system itself reacts and runs exactly as it
should do and based on the continued testing throughout later development, it works
quite nicely and as expected.

See Appendix for more in-detail, documented code and development notes.

5.6 General Issues of Implementation

Some of the general issues throughout design and implementation were:

1) Switching in consideration from 2d to 3d in the game design. It needed some
thought and a lot of ideas were thrown out/considered before starting to finally
settle down on something.

2) Tending to favour audio-game related points over audio-visual ones that were
more aesthetic based. The aspect of flow and immersion could be said to be
largely connected with visuals and this lack of consideration possibly hampers
the effectiveness of the final solution but it was a balancing act.

3) The environment that was not connected with game mechanics became very
secondary and was not developed hardly at all which affected the final game in
a substantial way.

4) Lack of more customisation and higher level analysis of the audio beyond the
framework of minim rendered the solution somewhat restricted and narrower
in scope but again this was a balancing act between using what was on offer to
get something concrete done and spending more time on theory.

5) Didn't use as much of the initial research as planned much earlier on.
6) Performance tweaking became more of an issue throughout and needed to

devote more time to it. Also therefore, more time on non performance related
game enhancements rather than visual ones.

51

6. Conclusions

6.1 Objectives Comparison

On review of the design and a comparison with laid out goals, several areas will be
approached:

6.1.1 Music Game Influences

Firstly the two main genres of music games to investigate, music art and hybrid types.
The implemented system is essentially a hybrid music game so the latter has become
the major focus of the approach and in this sense is a relative success depending on
how fun the game is judged to be. It's a hybrid because it mixes a non musical game
mechanic of this 3D asteroid modification with musical influences on the gameplay
itself through driving enemy spawns with beat detection.

On the other hand, music art has not really been approached, mostly because the
hybrid type is more concrete and well understood and in actually implementing a
game, something simple and coherent took precedence over experimentation in this
regard.

Next the specific games listed and why. Firstly, Rez based on it's abstract style. This
was an interest due to wanting to remove much inherent meaning/complexity that
might make up a more traditional setting because limiting the player focus on a
narrower range is one way hoped to attune the player to a flow like experience in
combination with an audibly up-lifting/heightening experience of the music. This aim
has been kept to throughout, partly due to necessity of not using more complex,
detailed, life like shapes in the system but also for the above reasons and the shape-
like theme.

Audiosurf was noted for its use of audio to drive the pace of a game. This idea has
been modified to spawn enemy objects that the player must deal with in a limited time
range to successfully use audio to drive game pace.

Lastly, Vib-Ribbon was noted for allowing users to play it their own music collection
and how in this way “Vib Ribbon fosters the attachment between a player and her
music collection. The experience of playing Vib Ribbon is very personal”. This
influence has also been heavy and corresponds strongly to the Audiosurf reference
above because the system allows players to play their own songs and because the beat
is such a fundamental and easily identifiable aspect of a song and because this varies
the gameplay significantly, it is felt that a personalising aspect has also been achieved.

52

Figure 4.3 - Pulser object gravitate method call example.

6.1.2 Standard Game Influences

In terms of non musical games, obviously Asteroids was a major design influence and
what has emerged is really a 3d modification which extends the action in terms of
goals. While it lacks the spaceship enemy that periodically appears in the original, it
instead brings a cognizance to the asteroid like substitutes themselves by having them
target the player instead of just randomly moving about.

This decision was made because in a larger 3d environment, the randomness would
not have created a pace and tension that was desired. Also there is the inclusion of a
broader range of goals from destroying asteroids, to collecting player boosts to the
influence the music has over proceedings by focusing the player on survival up to a
point in time.

Mono, the 2d game that developed a background environment over time through
player interaction was more connected with the music art aspect and as such hasn't
been implemented. Different approaches were considered such as slowly developing
the brightness of stars and galaxies in the background based on where the player fired
to reveal a complex and visually arresting environment by the end of the song but
time has not allowed for this.

Arx Fatalis was noted for its use of mouse motion and understood patterns that lead to
specific game functions like spellcasting. In this sense, the way missiles are fired and
appear on screen was an influence that carries through, however there is no
connection to a game mechanic besides aiming at asteroids to destroy them.

Lastly Polynomial was the major influence on the visual style and quality. The visual
style is somewhat similar in so far as space environment always will be but also in the
high contrast between bright and dark areas as well as strong colours. The way the
music influences this is a positive. The visual quality of the final piece is not
developed enough but is more held back by performance than anything so this is
clearly something to be investigated further.

53

6.1.3 Audio, Visual & Game Relationship

The three main elements of this investigation were the audio analysis, the visual
representation and the interaction aspect. Of this the balance between the audio-visual
relationship and the visual-game relationship was noted in the design as being
particularly important. This definitely turned out to be the case and was the source of
most of the general issues that needed to be considered throughout.

Overall it was found that adding any game component to some visual effect is a non
trivial issue and this aspect of the project ended up dominating most of the time due to
the need to create good gameplay and constantly take the player into account. As
such, and with the more concrete hybrid style being the focus, more experimental
visuals and audio connections became somewhat neglected.

For instance, there is really only the manipulation of the wormhole through a phasing
of its alpha value and a developing of its shape that does not serve some game
purpose as far as visual aspect go. Everything else has some purpose of allowing the
player to more easily comprehend their environment and actually play the game. For
the game element, this is a positive and it seems to add to the consistency and
interaction the player has.

Having said that, this has been at the expense of implementing features from a purely
aesthetic point of view which could be said to hamper how enveloping the game is. So
in conclusion of this aspect, to bring these two issues together probably requires a
further iteration of audio analysis over the base game elements that are now in place
or a re-think at the start of a project as to how the two are going to come together.

6.1.4 Approach to Audio Analysis

The other general approach worth noting is the philosophy of reducing the music to
constituent parts and applying these aspects to isolated parts of the visuals. As
opposed to a broader analysis of the music in terms of categories like emotion. This is
another part of the design that has been kept to and really from a game aspect has paid
off. For instance, interesting dynamics between the general noise of the song at any
moment, how this visually transpires and what this means in a game for the player
have developed out of the implementation.

One example would be the fact that during a quieter period, less or no asteroids are
going to appear but the missile pattern and hence damage is also reduced meaning the
player is safe during these times as long as they took advantage of the rush of beats
earlier etc.

The sphere example in the design section of adjusting size, colour and position based
on different kinds of beats etc is a good demo of the general approach but in reality it
has been more limited and refined to maintain a good coherency and focus of
attention. For example, the item drops are adjusted by size through the audio as they
travel between two points. The position is based on fixed game elements or the

54

interaction of the player. The colour is one of three possibilities based on a beat
detection but also that corresponds to a game related player boost.

Figure 4.4 - Background visualisation screenshot example.

6.1.5 Specific Design/Implementation Goals

Lastly, in [Pace08] a number of key game mechanics/goals were noted for
encouraging immersion and flow. A re-cap of them alongside how they've been
approached in the solution is below:

1) Clear goals and feedback
1. The solution tries to offer a clear space environment/theme with simple

controls and a clear link with the audio and asteroid generation. It
combines this with the heads-up-display that shows stats such as a shield/
weapon energy values and a basic radar that means even if the player isn't
looking at a threat, the asteroid positions will be viewable at all times.

2) Game-skill balance
1. This issue has been approached in two ways, offering a highly adjustable

settings option particularly for difficulty and allowing the possibility of the
player restoring themselves throughout or during ebbs in the flow through
item drops.

3) Focused Attention
1. The mix between the radar representation of the game world and the 3d

view itself and how they relate and can be used interchangeably was
intended to focus the attention on being surrounded and how the play
should be approached. The radar gives a very clear picture of being
surrounded and in danger in a way that a 3d view alone cannot. So they
complement each other and create a more complete environment.

4) Reduced Awareness through simplistic goals

55

1. Asteroids was taken to be a basis for this reason and the item drops are not
absolutely necessary for the completion of the game so the basic game
mechanic is still the same throughout.

5) Feeling of presence in the game world.
1. The pacing of the game along with the fact of quickly being surrounded on

all sides and needing to rotate fast was hoped to engender a feeling of
“being there” in the same way racing games tend to lead people to moving
in the direction their car is adjusted etc.

6.2 Improvements and Future Work

1) Efficiency / Performance tweaking.
2) Visual quality/aesthetics like Asteroid trails and planets etc, more complete

environment.
3) A further audio analysis iteration of development and use of music theory to

add an extra layer of player understanding to the relationship with the audio
4) Incorporate a development of the background with the music/play a la 'Mono'

[Binary05]
5) Player action-audio feedback loop. Player's can create a sound which is fed

back into the audio analysis/becomes part of it.
6) Greater variety of dangerous objects in accordance with broader audio

analysis.
7) Complete physics system of attraction/repulsion/bounce etc between all

objects inheriting from a generic base.

56

7. Bibliography
1) [Bernstein] Bernstein, J., T., “Traer Physics”, Princeton. Accessed on July 5

2009. Available from: <http://www.cs.princeton.edu/~traer/physics/>

2) [Binary05] “Binary Zoo”, “Mono”. Las6 2005. Accessed on July 10 2009.
Available from:
<http://www.binaryzoo.com/games/mono/images/mono_4.jpg>

3) [Brown93] Brown, J. C., “Determination of the meter of musical scores by
autocorrelation” 1993, J. Acoust. Soc. Am. 94, 1953–1957. Accessed on July
10 2009. Available from:
<http://www.wellesley.edu/Physics/brown/pubs/meterACv94P1953-
P1957.pdf>

4) [Bumgardner] Bumgardner, J., “Rose Equation”, OpenProcessing. Accessed
on July 5 2009. Available from: <http://openprocessing.org/visuals/?
visualID=1555>

5) [Csikszentmihalyi90] Csikszentmihalyi, M., 1990. “Flow: the psychology of
optimal experience”. Harper, New York.

6) [Desain99] Desain, P., Honing, H. “Computational Models of Beat Induction:
The Rule-Based Approach. Journal of New Music Research.” 1999. Accessed
on July 10 2009. Available from: <http://www.nici.kun.nl/mmm/papers/dh-
100/dh-100.pdf>

7) [Dixon] Dixon, S., “Automatic Extraction of Tempo and Beat from Expressive
Performances”. Austrian Research Institute for Artificial Intelligence.
Accessed on July 10 2009. Available from: <http://www.ofai.at/cgi-bin/get-tr?
paper=oefai-tr-2001-19.pdf>

8) [Douglas01] Douglas, J. Y. & Hargadon (2001): A. “The pleasures of
immersion and engagement: schemas, scripts and the fifth business”. Digital
Creativity, 2001, Vol. 12, No. 3, pp. 153–166.

9) [Eliasen07] Eliasen, Jedrik., 2007, “Beat Tracking to Control Lighting”,
Jedrik Eliasen. Accessed on July 6 2009. Available from:
<http://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc07/Jed/thesi
s.pdf>

10) [Ellis] Ellis, Daniel P.W. “Beat Tracking with Dynamic Programming.”
Accessed on July 10 2009. Available from:
<http://www.ee.columbia.edu/~dpwe/pubs/Ellis06-beattrack.pdf>

11) [Foote] Foote, J., “Visualizing Music and Audio using Self-Similarity”. FX
Palo Alto Laboratory, Inc. Accessed on July 10 2009. Available from: <http://
www.fxpal.com/publications/FXPAL-PR-99-093.pdf>

57

http://www.fxpal.com/publications/FXPAL-PR-99-093.pdf
http://www.fxpal.com/publications/FXPAL-PR-99-093.pdf
http://www.ee.columbia.edu/~dpwe/pubs/Ellis06-beattrack.pdf
http://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc07/Jed/thesis.pdf
http://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc07/Jed/thesis.pdf
http://www.ofai.at/cgi-bin/get-tr?paper=oefai-tr-2001-19.pdf
http://www.ofai.at/cgi-bin/get-tr?paper=oefai-tr-2001-19.pdf
http://www.nici.kun.nl/mmm/papers/dh-100/dh-100.pdf
http://www.nici.kun.nl/mmm/papers/dh-100/dh-100.pdf
http://openprocessing.org/visuals/?visualID=1555
http://openprocessing.org/visuals/?visualID=1555
http://www.wellesley.edu/Physics/brown/pubs/meterACv94P1953-P1957.pdf
http://www.wellesley.edu/Physics/brown/pubs/meterACv94P1953-P1957.pdf
http://www.binaryzoo.com/games/mono/images/mono_4.jpg
http://www.cs.princeton.edu/~traer/physics/

12) [Flyud] Flyud, Y., “Music Box”, OpenProcessing. Accessed on July 10 2009.
Available from: <http://www.openprocessing.org/visuals/?visualID=2545>

13) [Fry] Fry, B., Reas, C., “Processing”, Accessed on July 1 2009. Available
from: <http://processing.org/>

14) [Gametap09] “GameTap LLC”, “Arx Fatalis”, TM & © 2009 GameTap LLC.
Accessed on July 10 2009. Available from:
<http://assets.gametap.com/repository/ARFA/us/images/screenshots/original/s
creenshot4.jpg>

15) [Geek09] “Geek.com, LLC”, “Karaoke Revolution”, 1996-2009, Accessed on
July 10 2009. Available from: <http://www.geek.com/wp-
content/uploads/2008/03/karaoke_revolution_422x317.jpg>

16) [Gendou] 'gendou', “Nightsky3d”, OpenProcessing. Accessed on July 10
2009. Available from: <http://www.openprocessing.org/visuals/?
visualID=2277>

17) [Gonzales] Gonzales, C., “Gravity Swarm”, OpenProcessing. Accessed on
July 10 2009. Available from: <http://www.openprocessing.org/visuals/?
visualID=2363>

18) [Goto94] Goto, Masataka and Yoichi Muraoska. “ A Beat Tracking System for
Acoustic Signals of Music.” Proceedings of the second ACM international
conference on Multimedia. 1994. Accessed on July 10 2009. Available from:
<http://staff.aist.go.jp/m.goto/PAPER/ACM94goto.pdf>

19) [Gouyan] Gouyan, F., Herrera, P., “A Beat Induction Method for Musical
Audio Signals”, Accessed on July 10 2009. Available from:
<http://www.iua.upf.es/mtg/publications/WIAMIS03-fgouyonbeat.pdf>

20) [Guglielmetti] Guglielmetti, P., “Spiral Galaxy”, OpenProcessing. Accessed
on July 10 2009. Available from: <http://www.openprocessing.org/visuals/?
visualID=699>

21) [IGN09] “IGN Entertainment, Inc”, “Guitar Hero ii”, 1996-2009, Accessed on
July 10 2009. Available from:
<http://ps2media.gamespy.com/ps2/image/article/709/709091/guitar-hero-ii-
20060517053840543.jpg>

22) [Indie] “Indie Games, Think Services.”, “Polynomial”. Think Services.
Accessed on July 10 2009. Available from: <http://www.indiegames.com/blog/
images/timw/polynomi3a.jpg>

58

http://www.indiegames.com/blog/images/timw/polynomi3a.jpg
http://www.indiegames.com/blog/images/timw/polynomi3a.jpg
http://ps2media.gamespy.com/ps2/image/article/709/709091/guitar-hero-ii-20060517053840543.jpg
http://ps2media.gamespy.com/ps2/image/article/709/709091/guitar-hero-ii-20060517053840543.jpg
http://www.openprocessing.org/visuals/?visualID=699
http://www.openprocessing.org/visuals/?visualID=699
http://www.iua.upf.es/mtg/publications/WIAMIS03-fgouyonbeat.pdf
http://staff.aist.go.jp/m.goto/PAPER/ACM94goto.pdf
http://www.openprocessing.org/visuals/?visualID=2363
http://www.openprocessing.org/visuals/?visualID=2363
http://www.openprocessing.org/visuals/?visualID=2277
http://www.openprocessing.org/visuals/?visualID=2277
http://www.geek.com/wp-content/uploads/2008/03/karaoke_revolution_422x317.jpg
http://www.geek.com/wp-content/uploads/2008/03/karaoke_revolution_422x317.jpg
http://assets.gametap.com/repository/ARFA/us/images/screenshots/original/screenshot4.jpg
http://assets.gametap.com/repository/ARFA/us/images/screenshots/original/screenshot4.jpg
http://processing.org/
http://www.openprocessing.org/visuals/?visualID=2545

23) [MathArt] “Math Art”, “Lorenz Attractor – A 3D Render”, Accessed on July
15 2009. Available from: <http://math-art.net/2007/12/02/lorenz-attractor-a-
3d-render/>

24) [Meudic] Meudic, B., “A Causal algorithm for beat-tracking.” Accessed on
July 10, 2009. Available from:
<http://mediatheque.ircam.fr/articles/textes/Meudic02b>

25) [Minim] Unknown, “Minim”, Accessed on July 2 2009. Available from:
<http://code.compartmental.net/tools/minim/>

26) [Mizuguchi07] Mizuguchi, T., “Q&A: Every Extend Extra's Tetsuya
Mizuguchi”. Interview 2007. Accessed on July 10 2009. Available from:
<http://www.gamespot.com/news/6164638.html?sid=6164638>

27) [Next09] “nextmedia Pty Ltd”, “Audiosurf”, 2009, Accessed on July 10 2009.
Available from:
<http://www.pcpowerplay.com.au/content/images/stories/audiosurf.jpg>

28) [Pace08] Pace, S., “Immersion, Flow and the Experiences of Game Players”.
Central Queensland University, SimTecT 2008. Accessed on July 10 2009.
Available from: <www.siaa.asn.au/get/2451314720.pdf>

29) [Patin] Patin, F., “Beat Detection Algorithms”Accessed on July 10 2009.
Available from:
<http://www.flipcode.com/misc/BeatDetectionAlgorithms.pdf>

30) [Pichlmair07] Pichlmair, M., Kayali, “Levels of Sound: On the Principles of
Interactivity in Music Video Games”. Situated Play, Proceedings of DiGRA
2007 Conference. Accessed on July 10 2009. Available from:
<http://www.digra.org/dl/db/07311.14286.pdf>

31) [Ruiz] Ruiz, M., P., “Mathematical Art in Japan”. Ateneo de Manila
University. Accessed on July 15 2009. Available from:
<http://www.eurocg.org/www.us.es/ewcg04/mathlartinjapan.PDF>

32) [Rocchesso03] Rocchesso, Davide, 2003, “Introduction to Sound Processing”,
Davide Rocchesso. Accessed on July 8 2009. Available from:
<http://www.faqs.org/docs/sp/>

33) [Scheirer97] Scheirer, E., D., “Tempo and beat analysis of acoustic musical
signals.” 1997. Machine Listening Group, E15-401D MIT Media Laboratory.
Accessed on July 10 2009. Available from:
<http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/scheirer_jasa.
pdf>

34) [Schlegel] Schlegel, A., “ControlP5”, 2000-2009, Accessed on July 20 2009.
Available from: <http://www.sojamo.de/libraries/controlP5/index.html>

59

http://www.sojamo.de/libraries/controlP5/index.html
http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/scheirer_jasa.pdf
http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/scheirer_jasa.pdf
http://www.faqs.org/docs/sp/
http://www.eurocg.org/www.us.es/ewcg04/mathlartinjapan.PDF
http://www.digra.org/dl/db/07311.14286.pdf
http://www.flipcode.com/misc/BeatDetectionAlgorithms.pdf
http://www.siaa.asn.au/get/2451314720.pdf
http://www.pcpowerplay.com.au/content/images/stories/audiosurf.jpg
http://www.gamespot.com/news/6164638.html?sid=6164638
http://code.compartmental.net/tools/minim/
http://mediatheque.ircam.fr/articles/textes/Meudic02b
http://math-art.net/2007/12/02/lorenz-attractor-a-3d-render/
http://math-art.net/2007/12/02/lorenz-attractor-a-3d-render/

35) [Seppanen01] Seppanen, J., “Computational models of musical meter
recognition”. M.Sc. Thesis, Tampere University of Technology, 2001.
Accessed on July 10 2009. Available from:
<http://www.cs.tut.fi/sgn/arg/music/jams/mscthesis-seppanen2001.pdf>

36) [Shiffman] Shiffman, D., “Seek-Arrive”, Daniel Shiffman. Accessed on July 5
2009. Available from:
<http://www.shiffman.net/itp/classes/nature/week06_s09/seekarrive/Boid.pd>

37) [Smith07] Smith, W. Steven, 1997-2007, “The Scientist and Engineer's Guide
to Digital Signal Processing”, California Technical Publishing. Accessed on
July 8 2009. Available from: <http://www.dspguide.com/pdfbook.htm>

38) [Starkes] 'Starkes', “Particles on a Sphere”, OpenProcessing. Accessed on July
10 2009. Available from: <http://www.openprocessing.org/visuals/?
visualID=861>

39) [Synth] “Synthesis Paradigms”, “Elektroplankton”, Accessed on July 10 2009.
Available from: <http://www.synthesisparadigms.com/articles_datas/memory/
pictures/Elektroplankton_1.jpg>

40) [Armchair] “The Armchair Empire”, “Rez”, Accessed on July 10 2009.
Available from:
<http://www.armchairempire.com/images/Reviews/Playstation2/rez/rez-2.jpg>

41) [Tzanetakis1] Tzanetakis, G., “Tempo Extraction using Beat Histograms.”
University of Victoria. Accessed on July 10 2009. Available from:
<http://www.music-ir.org/evaluation/mirex-
results/articles/tempo/tzanetakis.pdf>

42) [Tzanetakis2] Tzanetakis, G., Essl, Cook. “Audio Analysis using the Discrete
Wavelet Transform”Accessed on July 10 2009. Available from:
<http://soundlab.cs.princeton.edu/publications/2001_amta_aadwt.pdf>

43) [Weisstein] Weisstein, E., “Rose”, Wolfram Research, Eric Weisstein.
Accessed on July 15 2009. Available from:
<http://mathworld.wolfram.com/Rose.html>

44) [Wikipedia1] “Wikipedia”, “Lorenz Attractor”, Accessed on July 15 2009.
Available from: <http://en.wikipedia.org/wiki/Lorenz_attractor>
<http://en.wikipedia.org/wiki/File:Lorenz_Ro28-200px.png>

45) [Wikipedia2] “Wikipedia”, “Music and Mathematics”, Accessed on July 15
2009. Available from: <http://en.wikipedia.org/wiki/Music_and_mathematics>

46) [Wikipedia3] “Wikipedia”, “Mandala”, Accessed on July 15 2009. Available
from: <http://en.wikipedia.org/wiki/Mandala>

60

http://en.wikipedia.org/wiki/Mandala
http://en.wikipedia.org/wiki/File:Lorenz_Ro28-200px.png
http://en.wikipedia.org/wiki/Lorenz_attractor
http://mathworld.wolfram.com/Rose.html
http://soundlab.cs.princeton.edu/publications/2001_amta_aadwt.pdf
http://www.music-ir.org/evaluation/mirex-results/articles/tempo/tzanetakis.pdf
http://www.music-ir.org/evaluation/mirex-results/articles/tempo/tzanetakis.pdf
http://www.armchairempire.com/images/Reviews/Playstation2/rez/rez-2.jpg
http://www.synthesisparadigms.com/articles_datas/memory/pictures/Elektroplankton_1.jpg
http://www.synthesisparadigms.com/articles_datas/memory/pictures/Elektroplankton_1.jpg
http://www.openprocessing.org/visuals/?visualID=861
http://www.openprocessing.org/visuals/?visualID=861
http://www.dspguide.com/pdfbook.htm
http://www.shiffman.net/itp/classes/nature/week06_s09/seekarrive/Boid.pd
http://www.cs.tut.fi/sgn/arg/music/jams/mscthesis-seppanen2001.pdf

<http://en.wikipedia.org/wiki/File:Mandala_gross.jpg>

47) [Wikipedia4] “Wikipedia”, “Music Video Game”, Accessed on July 15 2009.
Available from: <http://en.wikipedia.org/wiki/Music_video_game>

61

http://en.wikipedia.org/wiki/Music_video_game
http://en.wikipedia.org/wiki/File:Mandala_gross.jpg

8. Appendix

8.1 Tools Overview

8.1.1 Processing [Fry]

Processing is “an open project initiated by Ben Fry and Casey Reas. It evolved from
ideas explored in the Aesthetics and Computation Group at the MIT Media Lab.” It’s
described as “an open source programming language and environment for people who
want to program images, animation, and interactions.” Based on a survey of example
programs, mostly found at (OpenProcessing), it hasn’t been used a great deal for
games, especially 3D games.

However, it does contain a basic framework for a game to be built upon in the form of
draw, setup and loop methods as well as input control. It’s also java based of which
the author has some experience with and based upon some early experimentation was
found to be very good at allowing quick and easy implementation of ideas which is
considered to be a particularly important benefit for a more experimental project of
this sort.

Over time through volunteer development it has also become capable of some very
striking visual effects and contains OPENGL support in the form of a wrapper library
called Java OpenGL(JOGL) to deal with the greater processing power this will offer
over the Java2D engine.

Lastly, the core of the Processing library is quite small, efficient and elegant in design
and it’s kept separate from the growing number of varied libraries that can be used to
provide specific support such as GUI’s, physics support and importantly audio
libraries. This will hopefully aid in easier, incremental and component based design of
the final product.

http://processing.org/

8.1.2 Minim audio library [Minim]

‘Minim’ is one of several audio libraries now available for use with Processing. It’s
noted as “an audio library that uses the JavaSound API, a bit of Tritonus, and
Javazoom’s MP3SPI to provide an easy to use audio library for people developing in
the Processing environment.”

http://code.compartmental.net/tools/minim/

The specific details regarding some of the techniques the library uses for audio
analysis that are relevant to this work have already been outlined in the background
but how the classes and methods are used will be expanded upon in the
Implementation section (5).

62

http://code.compartmental.net/tools/minim/
http://processing.org/

It was primarily chosen due to the clear design and also the thorough documentation
listed on the website as well as the example files. These things also helped to tie the
more technical research element with specific implementation examples like the FFT
class.

8.1.3 ControlP5 GUI Library [Schlegel]

The ControlP5 GUI library will be used to provide extra controls, flexibility and
information to the player for both setting up and playing the game. It was made by
Andreas Schlegel and describes on the main page how “controllers can be added to a
processing sketch itself, to separate control windows, and can be organized in tabs.”
The standard look and feel of the widgets also fits in nicely with the futuristic theme
of the game too.

Lastly it provides shortcut support for the GUI to be hidden allowing for more player
customisation and possibly as part of an alternative, free-form/visualisation mode
which is a nice benefit as well. Again, the documentation is well laid out and provides
enough information to get started including example files.

8.2 Beat Induction/Tracking Extra

8.2.1 Beat Induction

There are a variety of different uses of the term “beat tracking” and they often
coincide with another term, “beat induction”. The following sections will give a brief
outline of the literature found regarding these areas in DSP and the relation to this
project. The most common understanding of these terms seems to label beat induction
as identifying the beat rate while beat tracking as finding the beat locations.

Beat induction is typically subsumed or becomes a part of the larger process of beat
tracking. So we can say beat induction is the processing of identifying a sufficient
pulse to categorise it as a possible beat. Beat tracking takes a list of possible events
and analyses them against several criteria for the “best beat”.

Gouyon [Gouyon] describes it this way, “A beat is characterized by a period and a
phase, that is, the distance between two beats and the temporal location of the first
beat. The tempo is inversely proportional to the beat period. If the tempo changes with
time (as it occurs in real-life musical examples), beat period and phase have to be
regularly updated. This is the process of beat tracking. A different process is that of
beat-induction: the determination of one (or possibly several, ranked) candidate(s) as
input for a beat-tracker.”

With this distinction made, the interest of this thesis is really with the (higher level),
“beat tracking” so more attention will be given to that in the next section but below
briefly outlines some of the key authors, papers and methods of beat induction found,
sometimes as part of a larger beat tracking system.

63

Brown [Brown93] uses an auto-correlation method along with typical onset detection.
A paper by [Desain99] describes a rule based approach. Foote [Foote] uses the idea of
self similarity against lag time through a matrix representation of the similarity
between frames with a beat represented by a maximal peak. Scheirer [Schreier97]
uses a comb filter as opposed to auto correlation and argues that “a rhythmic
processing algorithm should treat frequency bands separately, combining results at the
end, rather than attempting to perform beat tracking on the sum of filterbank outputs”.

Tzanetakis et al [Tzanetakis1] propose the “beat histogram”, of which the aim is to
collect statistics about the amplitude envelope periodicities of multiple frequency
bands. Seppanen [Seppanen01] uses tick indexes to answer the question, “is this tick
strong, i.e. a beat or weak, i.e. in between beats?” This summary of techniques was
found in [Gouyan] who essentially uses a technique similar to [Brown93] but without
the onset detection based on it being, “a difficult process without prior information
regarding the sources making up the signal”. Instead they make use of [Foote] and the
idea of low level descriptors instead.

8.2.2 Beat Tracking

i. Beat Tracking with Dynamic Programming [Ellis]

It's stated that “Beat tracking – i.e. deriving from a music audio signal a sequence of
beat instants that might correspond to when a human listener would tap his foot –
involves satisfying two constraints: On the one hand, the selected instants should
generally correspond to moments in the audio where a beat is indicated, for instance
by the onset of a note played by one of the instruments. On the other hand, the set of
beats should reflect a locally-constant inter-beat interval, since it is this regular
spacing between beat times that defines musical rhythm.” [Ellis]

The system is broken down into three main areas: [Ellis]

1)Onset strength signal
a.“The first stage of processing is to convert the audio into a one-

dimensional function of time at a lower sampling rate that reflects the
strength of onsets (beats) at each time.”

2)Tempo Estimation
a.Next the onset strength is auto-correlated with this raw data and scaled

by a window that captures so called, “intrinsic bias of listeners towards
a particular range of tempi” rendering multiple peaks to a single
dominant one.

3)Beat Tracking
a.Finally the best BPM (taken from the tempo estimation) is passed to this

module that “attempts to find a sequence of beat times that all
correspond to large values in the onset waveform”. The usage of a beat
history provides a balancing act between good local matches and ones
that take prior history into more direct account.

64

b.Further, “The advantage of dynamic programming is that it effectively
searches all possible sets of beat instants, since it is guaranteed to find
the best-scoring sequence up to any point. This allows the best global
beat sequence to be found, even if it involves some locally-poor
matching, for instances beats that occur during silence or uninflected
sustained notes.” [Ellis]

ii. A Causal Algorithm for Beat Tracking [Meudic] vs Automatic Extraction of
Tempo and Beat from Expressive Performances [Dixon]

In [Meudic] a comparison is made with [Dixon] to implement something similar but
with real time functionality and making use of markings to “detect salient rhythmic
events”. [Meudic] identifies the three stages that are common to both systems as:

1)Induction
a.Where possible beats are listed from the beginning music sequence

2)Propagation
a.Beats along the analysed sequence are propagated whereby the events in

the sequence which could correspond to beat occurrences are chosen.
3)Extraction

a.Lastly this list is sorted, “according to several criteria (among which a
kind of musical knowledge is used) in order to select the 'best beat'.”

[Dixon] describes the use of an agents for beat tracking whereby “The beat locations
are determined by an agent-based architecture which simultaneously examines
multiple hypotheses about the frequency and phase of the beat throughout the music.
The agents are characterized by their state and history. The state is the agent’s current
hypothesis of the beat frequency and phase, and the history is the sequence of beat
locations selected so far by the agent. Each agent is evaluated on the basis of its
history, with higher scores being awarded for greater regularity in the spacing between
events, greater salience of chosen events, and fewer gaps in the sequence.”

[Meudic] in discussing propagation states “the algorithm selects the event the most
weighted in the tolerance window whereas Dixon duplicates the agents when
ambiguity arises. Doing this, we dramatically reduce the number of possible beats,
which makes our algorithm faster”. It is also noted that “the markings are used not
only in the final beat extraction step, but also in the two other steps : Concerning the
beat induction, the markings filter the events so that the only most weighted ones are
taken as possible positions for the phase value of new beats (whereas Dixon considers
all the positions of all the events contained in a given window).

Lastly in [Meudic] if an event occurs as expected but another event occurs in the
same window that is more weighted, this new event takes precedence which allows
for a finer degree of tempo variance. On the other hand in [Dixon] such an initial
event would be listed definitively.

iii. A Beat Tracking System for Acoustic Signals of Music [Goto/Muraoka]

65

The intent of their system against existing implementations as “Previous systems were
not able to deal with acoustic signals that contained sounds of various instruments,
especially drums. They dealt with either MIDI signals or acoustic signals played on a
few instruments, and in the latter case, did not work in real time. Our system deals
with popular music in which drums maintain the beat. Because our system examines
multiple hypotheses in parallel, it can follow beats without losing track of them, even
if some hypotheses become wrong.” [Goto94]

In discussing issues of signal processing they note that a “musical beat” may not even
correspond to a signal at a given sample point. In describing the beat tracking system
they state they do so by “managing multiple evidence such as onset times in several
different frequency ranges, onset times of two different kinds of drum-sounds (a bass
drum and a snare drum)”. [Goto94]

This is something that minim easily allows for and of which will be a key part of the
implementation of this project. The frequency analysis and its relation to actual
musical instruments will be key but in a games/music context, such analysis must be
broadly successful over as wide a range of music as possible to encourage as much
diversity in a player base as possible while maintaining the music/visual/interaction
synchronisation at the heart of the experience. A diagram listing the basic setup which
also summarises how several of the topics covered link in is given in their paper and
represented again below:

66

Here, A/D is acoustic/digital conversion and BD/SD corresponds to base and snare
drums respectively.

“First, Frequency Analysis finds notes’ onset times in an input acoustic signal
digitized by A/D Conversion and also detects BD and SD. Second, multiple agents in
Beat Prediction interpret the onset times found previously and make parallel
hypotheses: each agent first calculates the IBI (inter-beat-interval); it then predicts the
next beat time, and infers its beat type, and finally evaluates its own reliability. BI
Generation assembles BI (beat information) on the basis of the most reliable
hypothesis. Finally, BI Transmission transmits the BI to other application programs
via a computer network.” [Goto94]

As you can see it is using a similar general idea of multiple agents/hypothesis as other
implementations in combination with musical knowledge in terms of beat relations
etc.

iv. Audio Analysis using Discrete Wavelet Transform (DWT) [Tzanetakis2]

The WT is described as “a technique for analyzing signals. It was developed as an
alternative to the short time Fourier Transform (STFT) to overcome problems related
to its frequency and time resolution properties.” With the DWT more specifically
noted as “a special case of the WT that provides a compact representation of a signal
in time and frequency that can be computed efficiently.” [Tzanetakis2]

In terms of the feature extraction and classification the following features are present:
•“The mean of the absolute value of the coefficients in each subband. These

features provide information about the frequency distribution of the audio
signal.

•The standard deviation of the coefficients in each subband. These features
provide information about the amount of change of the frequency distribution

•Ratios of the mean values between adjacent subbands. These features also
provide information about the frequency distribution.” [Tzanetakis2]

The beat detection itself is comprised of the following steps:

1)Low pass Filter
2)Full wave Rectification
3)Downsampling
4)Normalization
5)Auto-correlation

8.3 Code Usage

1)Wormhole + SpiralGalaxy
1.Philippe Guglielmetti – Spiral Galaxy - http://www.openprocessing.org/visuals/?
visualID=699

67

http://www.openprocessing.org/visuals/?visualID=699
http://www.openprocessing.org/visuals/?visualID=699

2)Camera rotation
1.'gendou' – Nightsky3d - http://www.openprocessing.org/visuals/?visualID=2277

3)Pulser
1.Claudio Gonzales – Gravity Swarm - http://www.openprocessing.org/visuals/?
visualID=2363

4)Asteroid
1.Yurko Flyud – Music Box - http://www.openprocessing.org/visuals/?visualID=2545

5)Steer and Collision Methods
1.Daniel Shiffman - Boid class -
http://www.shiffman.net/itp/classes/nature/week06_s09/seekarrive/Boid.pde

6)Particle Spherical distribution
1.stars/galaxies/asteroids
1.'gendou' – Nightsky3d - http://www.openprocessing.org/visuals/?visualID=2277

2.Explosion
1.'Starkes' – Particles on a Sphere - http://www.openprocessing.org/visuals/?
visualID=861

7)Rose
8)Jim Bumgardner – Rose Equation - http://openprocessing.org/visuals/?
visualID=1555

8.4 Development Notes

8.4.1 Overview of Progress

1.Extended Particle Swarm example to be distributed around a circle and located at
points around a sphere surrounding the player. Named 'Contractor'.

2.Added an audio link to the attract() method call of each contractor object to “pulse”
when there was a beat onset.

3.Modified the 'cubus', beating cube example to take the place of asteroids in this
space environment. Made up of outer sides only rather than full cubes. Distributed
them all initially around randomly chosen points around the same sphere dimensions
as above. Random direction.

4.Re-implemented the 'Rose' example, changing pattern based on the maximum peak
value in a frequency spectrum reading. Displayed as part of the GUI.

68

http://openprocessing.org/visuals/?visualID=1555
http://openprocessing.org/visuals/?visualID=1555
http://www.openprocessing.org/visuals/?visualID=861
http://www.openprocessing.org/visuals/?visualID=861
http://www.openprocessing.org/visuals/?visualID=2277
http://www.shiffman.net/itp/classes/nature/week06_s09/seekarrive/Boid.pde
http://www.openprocessing.org/visuals/?visualID=2545
http://www.openprocessing.org/visuals/?visualID=2363
http://www.openprocessing.org/visuals/?visualID=2363
http://www.openprocessing.org/visuals/?visualID=2277

5.Implemented and associated a 'Laser' class with the Rose class to fire objects in the
direction the player is facing. Display of the laser object is the current rose pattern in
larger form.

6.Added collision detection between laser objects and asteroids.

7.Added a radar like system to the main in-game interface to display asteroid
positions relative to the player. Player position at the centre, all other asteroids plotted
around centre depending on the dot product value between player direction and vector
facing asteroid. Also takes into account distance.

8.Extended the asteroid class to use Boid steer() method to aim all asteroids at the
player.

9.Added collision detection between asteroid and player.

10.Added player stats like a 'shield' value to form the basic gameplay for testing
purposes. Experimented with different asteroid velocities, beat sensitivities and some
different songs.

11.Implemented the galaxy method from the relevant sketch and distributed it
randomly at some point around the player. Adjusted and modified it to look more like
a wormhole type structure. Also made other changes visually to improve the
appearance.

12.Created an item drop class that would serve as boosters for the player stats. Basic
idea of items being pulled to the wormhole at which point they are destroyed. The
player has the ability to interrupt this pull and attract items to him/herself and upon
“collision” with the player, depending on an item type variable would receive one of
several types of boost like shield increase.

13.Spawned item drops from centre of some contractor.

14.Added more player stats: shield, weapon energy, weapon modifier and score.

15.Correlated types of items with types of Contractor's and associated them with the
player stats. Attracting items to player decreases weapon energy but adds extra level
of consideration depending on gameplay situation.

16.Added item drop positions to radar as well as wormhole.

17.Added explosion class, one instance per asteroid.

18.Implemented all GUI's and menu systems and movement between different
screens. Player stats now visually available for player during the game. Menu allows
for initial tweaking of system, varying complexity and visual quality. In-game settings
more connected with real time variables that affect gameplay and difficulty. Final
scores upon song end or player death are displayed and player returns to main menu.

69

19.Made new main class and split all game relevant code into separate class with
menu system and gui stuff as well as a game object all being handled in new main
class.

20.New class for containing all of the audio analysis objects, one for main program
and menu music, another for game music analysis.

70

8.5 Code Listing
/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: Main/ObjectSpace
 brief: Main program file containing setup,loop and input functions.
 Contains game, menu and audio objects and flags to move user between screens.
*/

import processing.opengl.*;
import javax.media.opengl.*;
import traer.physics.*;
import ddf.minim.*;
import ddf.minim.analysis.*;
import controlP5.*;
import javax.swing.*;

/* OpenGL graphics objects used for extra effects, i.e. blending. */
PGraphicsOpenGL pgl;
GL gl;

/* main - class containing text outputs for the start and game over screens */
MainMenu main;

/* game - class of the game object containing all game related methods/items. */
MainGame game;

/* newGUI - class that uses the ControlP5 library for loading in and displaying the relavant user
interface.
 Includes main menu, in-game settings and in-game player stats panels. */
GUI newGUI;

/* titleSong - class containing all the related minim audio library objects and calls for playing and
 analysing the audio for the main menu and in-game song as well. This object is for the main
menu.*/
MinimAudio titleSong;

/* laser - minim library class item for loading in and accessing the laser sound effect played when the
user fires the weapon */
AudioSnippet laser;

/* explosion - minim library class item for loading in and accessing the explosion sound effect played
when the player collides with an asteroid */
AudioSnippet explosion;

/* newBackground - class containing the Spiral Galaxy objects used for the main menu visualisation */
Background newBackground;

/* R - default radius used for the sphere around which most items are distributed. */
final static int R = 1000;

/* NoStars, NoGalaxies - Default values displayed for the menu gui for how many stars and galaxies
will be drawn in game. */
int NoStars = 1000, NoGalaxies = 5;//, NoAsteroids = 10;//, NoStars2 = 10000;

71

/* wormholeNoStars - Default value displayed in the menu gui for how many points to be used to draw
the wormhole object. */
int wormholeNoStars=10000;

/* wormholeRmax - Default value for the radius of the wormhole used in the render method for
distributing the points. */
int wormholeRmax=500;

/* galaxyParticleNo - Default value for the number of lines used to render the Pulser objects to screen.
*/
int galaxyParticleNo=500;

/* galaxyRadius - Default value for the radius of the Pulser object particles to be distributed around. */
int galaxyRadius=750;

/* beatSensitivity - Default value for the beat detection dampening amount. Larger value means more
dampening, less beats detected, less asteroids generated */
int beatSensitivity = 5000;

/* filename - Empty string value for the filename of the song to use for the game. If left empty, a
default song is set in the game.minimObj object, otherwise, gets set
 in the fileButton() method in this file. */
String filename = "";

/* filename2 - Default string for the titleSong object, the song played on the menu screen */
String filename2 = "prodigy.mp3";

/* mainMenu, inGame, gameOver,win - Boolean flags used to determine what state the system is in and
what actions should be taken. 3 main states, menu screen, in-game and game
 over screens. */
boolean mainMenu=true,inGame=false,gameOver=false;

/* setup - Setup method, each processing sketch contains one. Used to set the size, graphics API to use
and also creates the Background, MainMenu, newGUI and titleSong objects needed to start the game in
the menu screen state for options to pick and start a new game */
void setup() {

 try {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
}
catch (Exception e) {
 e.printStackTrace();
}

 size(1024, 768, OPENGL);
 //hint(ENABLE_OPENGL_4X_SMOOTH);
 perspective(PI/3.0, width/height, 0.1, 50000);

 newBackground = new Background();
 main = new MainMenu();
 newGUI = new GUI(this);
 titleSong = new MinimAudio(this, true);
}

72

/* draw - Draw method, also used once by a processing sketch, this is the main loop method. Sets up
options for the graphics blending and determines the state of the system and what actions to take. If
inGame, render the current state of the game object. If gameOver, render the MainMenu object in this
state and if MainMenu,
 update the background visualisation, the gui controls and render relavant text to the screen (title).
*/
void draw() {
 background(0);

 /* OPENGL FUNCTIONS */
 pgl = (PGraphicsOpenGL) g;
 gl = pgl.gl;

 gl.glDisable(GL.GL_DEPTH_TEST);
 gl.glEnable(GL.GL_BLEND);
 gl.glBlendFunc(GL.GL_SRC_ALPHA,GL.GL_ONE);
 /* OPENGL FUNCTIONS */

 /* If not in-game and game object has been set, also check if the game music is playing and stop it, if
it is. */
 if(!inGame && game!=null) { if(game.minimObj.song.isPlaying()) { game.minimObj.song.pause(); }
}

 /* If in game over state, render the MainMenu object which has it's own state check and renders
differently depending on state. */
 if(gameOver) { main.render(); }

 /* if main menu state, update the background vis, the menu gui and ensure the in-game player data is
hidden just in case and lastly render the MainMenu object. */
 if(mainMenu) {
 newBackground.update();
 newBackground.render();
 newGUI.update2();
 if(newGUI.gameData!=null) { newGUI.gameData.hide(); }
 main.render();
 }

 /* if in-game and game object is not null, ensure the meny gui is hidden and render the game object
with it's current status. */
 if(inGame && game!=null && newGUI.gameData!=null) { newGUI.mainmenu.hide();
game.render(); }

}

/* stop - Stop method, third main processing method, called when the system is exited. Uses relavant
state to determine exactly which objects to close etc */
void stop() {
 if(game!= null) {

 /* if leaving system and in menu, end the menu song */
 if(mainMenu) { titleSong.song.close(); titleSong.minim.stop(); }

 /* If leaving system and game object music is playing, stop and close it */
 if(game.minimObj.song.isPlaying()) {
 game.minimObj.song.close();
 game.minimObj.minim.stop();

73

 }

 /* If sfx on and laser is currently set, close it */
 if(laser!=null) { laser.close(); }
 }
 super.stop();
}

/* playButton - Play Button method, called when the play button on the menu gui is called. Launches
the game constructor after stopping the current song being played and updating the gui values also
editable in-game. Lastly, loads in sfx objects if that option has been chosen and changes the state flags.
*/
void playButton(float theValue) {

 /* Going to game, so close title song. */
 titleSong.song.close();
 titleSong.minim.stop();

 /* Update the gui variables for the game to use such as NoStars and beatSensitivity based on what the
menu gui has them at. */
 newGUI.update2();
 /* Create a new game item */
 game = new MainGame(this);
 /* Create the game item related gui objects which are the player data HUD and in-game settings
accessed through TAB */
 newGUI.createGameGUI(this);

 /* If sfx on, create the sfx objects. */
 if(newGUI.sfx.value()==0) {
 explosion = game.minimObj.minim.loadSnippet("explosion.wav");
 laser = game.minimObj.minim.loadSnippet("laser.wav");
 }

 /* Change the flags accordingly */
 mainMenu = false;
 inGame = true;
}

/* fileButton - File Button method, called when the user clicks the fileButton and chooses a song to be
played in-game. Sets the filename variable to the name of the file chosen. For safety, filters out all but
mp3 and wav files as usable. Also uses ths swing component JFileChooser and the Runnable class to
avoid conflicts between updating the file chooser and main draw method. */
void fileButton() {
 noLoop();

 // thanks to ---> http://processing.org/discourse/yabb2/YaBB.pl?
board=Integrate;action=display;num=1147684168
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 try
 {
 try
 {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 }
 catch (Exception e) {

74

 e.printStackTrace();
 }

 File file = new File("");
 JFileChooser chooser = new JFileChooser(file);

 try {
 int returnVal = chooser.showOpenDialog(null);
 if (returnVal == JFileChooser.APPROVE_OPTION) {
 file = chooser.getSelectedFile();

 String fileName = file.getName().toLowerCase();
 /* Filter file extensions to just use mp3 and wavs */
 if (fileName.endsWith("mp3") || fileName.endsWith("wav"))
 {
 /* set global filename for game music here based on filename accessed */
 filename = fileName;
 }
 else {
 println("Unsupported file selected by user.");
 }
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 });

 loop();
}

/* mousePressed - Mouse Pressed Event method, used for left and right mouse click in-game. Left fires
the player weapon and plays relavant sound if sfx on,
 also decreases the weapon energy value and sets a boolean value for firing to be true. Right
sets a boolean value for whether the playing
 is pulling an object towards them (item drops) or not. */
void mousePressed() {
 if(game!= null) {
 if (mouseButton == LEFT) {
 if(newGUI.sfx2.value()==1 && (!newGUI.gameSettings.isVisible())) { laser =
game.minimObj.minim.loadSnippet("laser.wav"); laser.play(); }
 game.playerWeaponEnergy--;
 game.isFire = true;
 } else if(mouseButton == RIGHT) {
 game.onAttract = true;
 }
 }
}

75

/* mouseReleased - Mouse Released Event method used in conjunction with right clicking above, if
released, attraction is set to false */
void mouseReleased() {
 if(game!= null) {
 if(mouseButton == RIGHT) {
 game.onAttract = false;
 }
 }
}

/* keyPressed - Key Press Event - Used for moving back to the main menu, and for showing/hiding
settings options and main HUD */
void keyPressed() {

 /*If in-game and enter pressed, return to main menu and set relavant flags. If in gameOver state, also
return to main menu
 and sets flags accordingly. Playing titleSong as well.*/
 if(game!= null) {
 if(keyCode == ENTER && gameOver==true) {
 gameOver=false;
 mainMenu = true;
 newGUI.gameSettings.hide();
 newGUI.mainmenu.show();
 titleSong = new MinimAudio(this, true);
 }
 else if(keyCode == ENTER && inGame==true) {
 inGame=false;
 mainMenu=true;
 newGUI.gameSettings.hide();
 newGUI.mainmenu.show();
 game.minimObj.song.close();
 game.minimObj.minim.stop();
 titleSong = new MinimAudio(this, true);
 }
 }

 /* If the key is TAB, show/hide relavant gui depending on state and what is currently shown/hidden.
Used for gui display. */
 if(keyCode == TAB) {
 if(mainMenu && newGUI.mainmenu.isVisible()) {newGUI.mainmenu.hide();}
 else if(mainMenu && !newGUI.mainmenu.isVisible()){newGUI.mainmenu.show();}

 if(inGame) {
 if(newGUI.gameSettings.isVisible()) { newGUI.gameSettings.hide(); game.setupGame = false;
game.minimObj.song.play();}
 else if(!newGUI.gameSettings.isVisible()) { game.setupGame = true;
game.minimObj.song.pause(); newGUI.gameSettings.show(); }
 }
 }
 /* If the key is SHIFT, show/hide HUD. */
 else if(keyCode == SHIFT) {
 if(inGame) {
 if(newGUI.mode.value()==0) { newGUI.mode.setValue(1); }
 else if(newGUI.mode.value()==1) { newGUI.mode.setValue(0); }
 }
 }
}

76

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: Asteroid
 brief: Class that represents the beating cubes that are the "asteroids" of the game. Contains a
constructor, update, steer, HitPlayer, splitAsteroid, TextureCube, drawSide, render and drawRadarPoint
methods.

This class uses the steer method takenfrom Daniel Shiffman's example boid class :
http://www.shiffman.net/itp/classes/nature/week06_s09/seekarrive/Boid.pde

Asteroid objects are created and added to a list on a beat OnSet. The steering method is used to direct
them towards the player. The objects are made up of a number of mini cube outer edges which move
back and forth depending on the frequency spectrum value. More noise, cube sides move more etc.

The TextureCube, drawSide and the calling of drawSide in render() are all extended from another
example : http://www.openprocessing.org/visuals/?visualID=2545
*/

class Asteroid {

 /* loc - Asteroid location vector. */
 PVector loc;

 /* vel - Asteroid velocity vector */
 PVector vel;

 /* dir - Asteroid direction vector, adjusted by the steer method and applied to vel. */
 PVector dir;

 /* collOffset - Asteroid offset value determined for the splitting of an asteroid into two, smaller
versions. The offset is applied to the steer method direction to send the asteroids in opposite directions
before coming back to the player */
 PVector collOffset;

 /* r - Default value for the radius of the asteroid */
 float r = 20;

 /* maxspeed - Float value used for the limiting speed of an asteroid calculated in the steer method. */
 float maxspeed;

 /* maxforce - Float value used in a similar manner to maxspeed but applied at the end of the steer
method */
 float maxforce;

 /* sizeQuad - Used to determine how large the cubes that make up the asteroid should be spaced apart
*/
 float sizeQuad;

 /* rotx - Rotates the asteroid around the x axis. */
 float rotx = 0;
 /* roty - Rotates the asteroid around the y axis. */
 float roty = 0;

77

 /* prevTheta, theta, rotate, distance - All used for the drawing of the point on the radar corresponding
to asteroid-player location discrepency. prevTheta and theta are the difference in dot products between
the direction of the player and vector from player-asteroid from the last update/current update.
rotateBy, the amount to rotate around the centre point. distance, the distance to offset the point from the
centre corresponding to actual distance calculated.*/
 float prevTheta,theta,rotateBy,distance = 0;

 /* radar1, radar2, radar3, radar4, goRight - Used to determine which of 4 states the radar is in,
between increasing/decreasing past 180 and 0 respectively. The rotation needs to be different
depending on which direction the player is heading in etc. goRight signifies whether the player is
rotating roughly right or left and is also needed to update the radar correctly. */
 boolean radar1,radar2,radar3,radar4, goRight=false;

 /* lives - The number of lives the asteroid has left. */
 int lives;

 /* start - A start value for use in the render method, calls to drawSide() */
 int start = -100;

 /* timer - Used for child asteroids created in hard mode to apply the collOffset value over a period of
x. */
 float timer = 6;

 /* timerDec - Used to decrement the timer value above. */
 float timerDec = 0.6;

 /* spawnTimer - Used to determine how long the asteroid has been in existence and how long to leave
it invulnerable to damage,
 only used for child asteroids. */
 float spawnTimer;

 /* god - Boolean flag used with asteroids spawned due to a parent asteroid being destroyed, for a
period, the child asteroid cannot be damaged. */
 boolean god = true;

 /* parent - Boolean flag for whether this asteroid is a parent, if true & if difficulty=hard,
spawnAsteroid() will be called. */
 boolean parent = true;

 /* removing - Boolean flag to check whether item has been hit and is being removed through creating
an explosion/fading out. */
 boolean removing = false;

 /* isHit - Boolean flag to determine whether this asteroid has simply been hit and not yet reduced to 0
health */
 boolean isHit = false;

 /* colliding - Is this asteroid colliding with a missile object. */
 boolean colliding = false;

 /* isDead - If colliding with player, set flag, it will be auto removed in the game loop */
 boolean isDead = false;

 /* alphaValue - Set to full for the life span of the asteroid except one removing=true, then this value is
decremented to fade it out. */
 float alphaValue = 0.85;

 /* testExp - This asteroids explosion item to be called upon removing=true */

78

 Explosion testExp;

 /* asteroidHealth - The int value of the health, decremented each time it is hit by a missile based on
the number of points of the missile pattern. */
 int asteroidHealth = 100;

 /* Asteroid Ctr - Sets all major variables up, parent, sizeQuad, Start will all be based upon whether
asteroid is a child or not etc. */
 Asteroid(PVector l, PVector v, float ms, float mf, float sizequad, int Lives, int Start, int SpawnTimer,
boolean Parent) {
 loc = l;
 vel = new PVector(0,0,0);
 dir = new PVector(0,0,0);
 collOffset = new PVector(0,0,0);
 maxspeed = ms;
 maxforce = mf;
 sizeQuad = sizequad;
 lives = Lives;
 start = Start;
 spawnTimer = SpawnTimer;
 testExp = new Explosion(Parent);
 parent=Parent;
 }

 /* update - Used to add the offset & invincibility if relavant, to determine the direction to head in
based on a target. */
 void update(PVector target) {
 timer-=timerDec;
 timerDec+=0.1;
 spawnTimer--;

 /* if child, apply the offset as Vector tmp while the timer is greater/equal to 0. */
 if(!parent) {
 PVector tmp = new PVector(0,0,0);
 if(timer >=0) {
 tmp = collOffset;
 tmp.mult(timer);
 }
 vel.add(tmp);
 }

 /* Calculate direction vector by supplying target position, true indicates whether the calculation
should take into account slowing down as approaching. */
 dir = steer(target, true);
 vel.add(dir);
 loc.add(vel);

 /* if existed for x period, remove god mode. */
 if(spawnTimer<=0) {
 god = false;
 }

 render();
 isHit = false;
 }

79

 /* steer - Creates a direction vector based on current position and target position.
Method directly taken from Daniel Shiffman's example boid class : http://www.shiffman.net/itp/classes/
nature/week06_s09/seekarrive/Boid.pde
 with the addition of a boolean flag when the distance between asteroid-player is not greater than 0. */

 PVector steer(PVector target, boolean slowdown) {
 PVector steer; // The steering vector
 PVector desired = PVector.sub(target,loc); // A vector pointing from the location to the target
 float d = desired.mag(); // Distance from the target is the magnitude of the vector
 // If the distance is greater than 0, calc steering (otherwise return zero vector)
 if (d > 0) {
 // Normalize desired
 desired.normalize();
 // Two options for desired vector magnitude (1 -- based on distance, 2 -- maxspeed)
 if ((slowdown) && (d < 100.0f)) desired.mult(maxspeed*(d/100.0f)); // This damping is somewhat
arbitrary
 else desired.mult(maxspeed);
 // Steering = Desired minus Velocity
 steer = PVector.sub(desired,vel);
 steer.limit(maxforce); // Limit to maximum steering force
 } else {
 steer = new PVector(0,0,0);
 isDead = true;
 }
 return steer;
 }

 /* HitPlayer - Takes the position of the player p and determines whether the asteroid has collided with
the player based on the sum of the radius.

This method has been simplified from Daniel Shiffman's collision example:
http://www.shiffman.net/itp/classes/nature/collisions_s09/ballvsball_equalmass/Thing.pde */

 boolean HitPlayer(PVector p, boolean single) {
 /* distance between player and asteroid location. */
 float d = PVector.dist(loc,p);

 /* Sum of the radius. */
 float sumR = r + 1.0;

 /* If not already colliding and the distance is less than the sum, asteroid boolean flag set to be
checked/removed next iteration.*/
 if (!colliding && d < sumR) {
 isDead = true;
 return true;
 }
 /* else if greater, return false. */
 else if (d > sumR) {
 return false;
 }
 return false;
 }

 /* splitAsteroid - Split Asteroid method called if the asteroid is a parent and if this difficulty is set to
hard. This method removes this object after creating and adding two new asteroid objects to the list to
be iterated through in MainGame. The two new asteroids are set with data based on the parent except

80

with some values like lives and size decremented. The offset is also calculated to ensure the two
asteroids move off in different directions to differentiate them visually for the player. */
 void splitAsteroid() {
 lives--;
 if(lives <= 0) {
 //spawnNew = false;
 }
 else {
 int cLives = lives;
 int cStart = start+100;

 /* 1st asteroid */
 Asteroid newAsteroid = new Asteroid(new PVector(loc.x, loc.y, loc.z), new PVector(random(-
10,10),random(-10,10),random(-10,10)), maxspeed*3, 0.2, 45, cLives, cStart, 10, false);

 /* offset determined for asteroid 1 */
 newAsteroid.collOffset = new PVector(random(-0.005,0.005),random(-0.005,0.005),0);

 /* direction for asteroid 2 set based on (1) */
 PVector tmpDir = new PVector(-newAsteroid.collOffset.x*2, -newAsteroid.collOffset.y*2,
-newAsteroid.collOffset.z*2);
 PVector tmpPos = PVector.add(loc,tmpDir);

 /* 2nd asteroid */
 Asteroid newAsteroid2 = new Asteroid(new PVector(tmpPos.x, tmpPos.y, tmpPos.z), new
PVector(-newAsteroid.loc.x,-newAsteroid.loc.y,-newAsteroid.loc.z), maxspeed*3, 0.2, 45, cLives,
cStart, 10, false);
 newAsteroid2.collOffset = new PVector(tmpDir.x, tmpDir.y, tmpDir.z);

 /* add to list */
 game.asteroidList.add(newAsteroid);
 game.asteroidList.add(newAsteroid2);

 //spawnNew = false;
 }
 }

 /* TextureCube - This method is used to draw the asteroids to screen based on a size value passed in
depending on parent/child.

It is based upon the MusicBox sketch:
http://www.openprocessing.org/visuals/?visualID=2545

The difference being, only certain sides of the cubes are drawn depending on which side of the overall
cube they are a part of. This is determined by the x value passed in. If 1, indicating it is the front face,
draw following vertices.

 Also, no textures are used with this version. */
 void TexturedCube(int x, float sizeQ) {
 beginShape(QUADS);

 switch(x) {
 case 1: // +Z "front" face
 vertex(-sizeQ, -sizeQ, sizeQ);
 vertex(sizeQ, -sizeQ, sizeQ);
 vertex(sizeQ, sizeQ, sizeQ);
 vertex(-sizeQ, sizeQ, sizeQ); break;

81

 case 2: // -Z "back" face
 vertex(sizeQ, -sizeQ, -sizeQ);
 vertex(-sizeQ, -sizeQ, -sizeQ);
 vertex(-sizeQ, sizeQ, -sizeQ);
 vertex(sizeQ, sizeQ, -sizeQ); break;

 case 3: // +Y "bottom" face
 vertex(-sizeQ, sizeQ, sizeQ);
 vertex(sizeQ, sizeQ, sizeQ);
 vertex(sizeQ, sizeQ, -sizeQ);
 vertex(-sizeQ, sizeQ, -sizeQ); break;

 case 4: // -Y "top" face
 vertex(-sizeQ, -sizeQ, -sizeQ);
 vertex(sizeQ, -sizeQ, -sizeQ);
 vertex(sizeQ, -sizeQ, sizeQ);
 vertex(-sizeQ, -sizeQ, sizeQ); break;

 case 5: // +X "right" face
 vertex(sizeQ, -sizeQ, sizeQ);
 vertex(sizeQ, -sizeQ, -sizeQ);
 vertex(sizeQ, sizeQ, -sizeQ);
 vertex(sizeQ, sizeQ, sizeQ); break;

 case 6: // -X "left" face
 vertex(-sizeQ, -sizeQ, -sizeQ);
 vertex(-sizeQ, -sizeQ, sizeQ);
 vertex(-sizeQ, sizeQ, sizeQ);
 vertex(-sizeQ, sizeQ, -sizeQ); break;
 }
 endShape();
 }

 /* drawSide - This method calls the above TextureCube in a translated position based on asteroid.loc

 Based upon:
 http://www.openprocessing.org/visuals/?visualID=2545 */
 void drawSide(int argx,int argy,int argz,int x)
 {
 pushMatrix();
 translate(argx,argy,argz);
 TexturedCube(x, sizeQuad);
 popMatrix();
 }

 /* render - The render method starts the sequence of by calling drawSide in succession 6 times for the
6 faces of a cube. Before this the drawing is translated to the asteroid.loc vector, checks are made to
adjust the drawing if being removed or if child (colour change). The rendering is rotated by
incremented amounts in the x and y axis. Finally the start variable is used to how to access the sub
bands of the frequency spectrum for each face of the cube so the sides move to the sound. This also
depends on the size of the cube as a whole. */
 void render() {
 pushMatrix();

 translate(loc.x, loc.y, loc.z);

82

 /* If removing, adjust the alpha values, update the explosion item and once alpha reaches 0, adjust
scores and set flag. */
 if(removing) {
 testExp.update(alphaValue);
 alphaValue-=0.03;
 if(alphaValue <=0) {
 if(parent) { game.playerScore+=10; }else{ game.playerScore+=100; }
 isDead = true;
 }
 }

 /* Adjust colour depending on parent/child. */
 colorMode(HSB, 1.0);
 if(parent) {
 fill(0.1, pow(1,0.1), 0.9, alphaValue);
 }
 else {
 fill(0.5, pow(1,0.1), 0.9, alphaValue);
 }

 /* if isHit, fill white and full alpha. */
 if(isHit) {
 fill(1.0, 1.0);
 }
 colorMode(RGB, 255);

 /* scale and rotate. */
 scale(0.1);
 rotateX(rotx);
 rotateY(roty);

 /* Calculate increment values based upon start size and fft size, to be used below. */
 int FFTsize = game.minimObj.thisSample.fft.avgSize();
 int end = 100, inc = 100;
 int diff = (Math.abs(start-end)) + inc;
 diff /= 100;
 r = (diff * sizeQuad)/2;
 diff *=diff;
 int incrementSize = FFTsize/diff;

 /* The following is adjusted from : http://www.openprocessing.org/visuals/?visualID=2545 */
 int i=0;
 noStroke();
 for(int x=start;x<=end;x+=inc)
 for(int y=start;y<=end;y+=inc)
 {
 drawSide(x,y,170+(int)game.minimObj.thisSample.fft.getAvg(i), 1);
 drawSide(x,y,-170-(int)game.minimObj.thisSample.fft.getAvg(i), 2);
 drawSide(x,160+(int)game.minimObj.thisSample.fft.getAvg(i),y, 3);
 drawSide(x,-160-(int)game.minimObj.thisSample.fft.getAvg(i),y, 4);
 drawSide(170+(int)game.minimObj.thisSample.fft.getAvg(i),x,y, 5);
 drawSide(-170-(int)game.minimObj.thisSample.fft.getAvg(i),x,y, 6);
 i+=incrementSize;
 }

83

 popMatrix();
 rotx+=PI/600;
 roty+=PI/600;
 /* The following is adjusted from : http://www.openprocessing.org/visuals/?visualID=2545 */

 }

 /* drawRadarPoint - Method called each iteration in MainGame when in-game and not adjusting
settings. Used to plot a point in relation to player to illustrate where the asteroid is in comparison. Due
to the dot product between the player direction and player2asteroid vector returning between 0-180 (in
front/behind), to adjust a point around 360 degrees in the correct manner, need to know the direction
the player is heading in etc.

The radar variables represent this. */
 void drawRadarPoint() {
 //If moving right
 if(goRight) {
 // if increasing & at 180
 if(prevTheta > theta && rotateBy >= radians(180)) {
 radar1 = true; radar2=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(-rotateBy);
 }
 // if decreasing & at 180
 else if(prevTheta < theta && rotateBy >= radians(180)){
 radar2 = true; radar1=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(rotateBy);
 }
 // if decreasing & at 0
 else if(prevTheta < theta && rotateBy <= radians(0)) {
 radar3 = true; radar2=false;radar1=false;radar4=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(rotateBy);
 }
 // if increasing and at 0
 else if(prevTheta > theta && rotateBy <= radians(0)) {
 radar4 = true; radar2=false;radar3=false;radar1=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(-rotateBy);
 }
 // else central, no change
 else {
 if(radar1) {
 rotateZ(-rotateBy);
 }
 else if(radar2) {
 rotateZ(rotateBy);
 }
 else if(radar3) {
 rotateZ(-rotateBy);

84

 }
 else if(radar4) {
 rotateZ(rotateBy);
 }
 }
 }
 // If moving left
 else {
 // if increasing & at 180
 if(prevTheta > theta && rotateBy >= radians(180)) {
 radar1 = true; radar2=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(rotateBy);
 }
 // if decreasing & at 180
 else if(prevTheta < theta && rotateBy >= radians(180)){
 radar2 = true; radar1=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(-rotateBy);
 }
 // if decreasing & at 0
 else if(prevTheta < theta && rotateBy <= radians(0)) {
 radar3 = true; radar2=false;radar1=false;radar4=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(-rotateBy);
 }
 // if increasing & at 0
 else if(prevTheta > theta && rotateBy <= radians(0)) {
 radar4 = true; radar2=false;radar3=false;radar1=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(rotateBy);
 }
 else {
 // else central, no change
 if(radar1) {
 rotateZ(rotateBy);
 }
 else if(radar2) {
 rotateZ(-rotateBy);
 }
 else if(radar3) {
 rotateZ(rotateBy);
 }
 else if(radar4) {
 rotateZ(-rotateBy);
 }
 }
 }

 stroke(0,255,0);
 ellipse(0, -(distance/30), 2,2);
 prevTheta = theta;
 }
}

85

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: Background
 brief: This class represents the state of the main menu visualisation. It contains lists of SpiralGalaxy
objects and points representing stars. The constructor adds a set amount to each list with a random x/y
position on the screen.*/

class Background {

 /* spirals - Array list of SpiralGalaxy objects the background uses. */
 ArrayList spirals;

 /* stars - Array list of points in space to draw stars at for background on menu screen. */
 ArrayList stars;

 /* Background ctr - fills the two array lists with SpiralGalaxy & PVector values respectively. */
 Background() {
 stars = new ArrayList();
 for(int h = 0; h < 200; h++) {
 stars.add(new PVector(random(width), random(height), random(0,255)));
 }

 spirals = new ArrayList();
 for(int i = 0; i < 10; i++) {
 SpiralGalaxy3 newSpiral = new SpiralGalaxy3((int)random(300));
 spirals.add(newSpiral);
 }
 }

 /* update - Used to update the spiral galaxy objects based on whether the menu music beat is Onset. If
it is, increment the colour, set the beat to true to be accessed in the SpiralGalaxy object render method.
Adjust the twist value that determines the pattern of the spiral galaxy and finally if the number of points
making up the galaxy is less than the max(20k), increment this amount by a random value. */
 void update() {
 float randPick = random(0,spirals.size());

 // if beat
 if(titleSong.beat3.isOnset()) {
 SpiralGalaxy3 thisSpiral = (SpiralGalaxy3)spirals.get((int)randPick);

 /* beat being true will adjust the colour in SpiralGalaxy.render() */
 thisSpiral.beat=true;
 thisSpiral.colourChange=true;
 thisSpiral.etwist+=random(0.001,0.005);

 /* if NoStars less than 20k, go through galaxy angle/radius lists and add extra values. These
values will be picked up
 on in the galaxy update and extra points will be drawn. */
 if(thisSpiral.stars <20000) {
 float NoAdd = random(10,200);
 for (int j=0; j< NoAdd; j++){
 thisSpiral.angle.add(random(0,2*PI));
 thisSpiral.radius.add(random(1,thisSpiral.Rmax));

86

 }
 thisSpiral.stars+=NoAdd;
 }
 }
 else {
 SpiralGalaxy3 thisSpiral = (SpiralGalaxy3)spirals.get((int)randPick);
 thisSpiral.beat=false;
 }
 }

 /* render - Draws each SpiralGalaxy and all star points to screen based on the current state of these
values. */
 void render() {
 // stars
 for(int h = 0; h < stars.size(); h++) {
 PVector tmp = (PVector)stars.get(h);
 stroke(255,tmp.z);
 point(tmp.x, tmp.y);
 }

 // SpiralGalaxies
 for(int i = 0; i < spirals.size(); i++) {
 SpiralGalaxy3 thisSpiral = (SpiralGalaxy3)spirals.get(i);
 if(titleSong.beat3.isOnset()) { thisSpiral.drawGalaxy(); }else { thisSpiral.drawGalaxy(); }
 }
 }
}

/* ObjectSpace Game
 13/08/09

 Class Taken exactly from minim audio library examples:
 http://code.compartmental.net/minim/examples/BeatDetect/FrequencyEnergy/BeatListener.pde

 Instantiated in the MinimAudio class for listening to different songs/types of beat.
*/

class BeatListener implements AudioListener
{
 private BeatDetect beat;
 private AudioPlayer source;

 BeatListener(BeatDetect beat, AudioPlayer source)
 {
 this.source = source;
 this.source.addListener(this);
 this.beat = beat;
 }

 void samples(float[] samps)
 {
 beat.detect(source.mix);
 }

 void samples(float[] sampsL, float[] sampsR)

87

 {
 beat.detect(source.mix);
 }
}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: Explosion
 brief: This class is used by each asteroid object upon being destroyed. It is based closely upon a
point-spherical distribution sketch on OpenProcessing by 'Starkes':

http://www.openprocessing.org/visuals/?visualID=861

The explosion class constructor creates an array of Particle objects based on theta/u values which are
passed in to the Particle object ctr to calculate a position around a sphere with them. The update method
cycles through all particles and calls update and render methods on them.
*/

class Explosion
{
 /* numParticles - Number of particles to create around a sphere of radius x. */
 int numParticles = 500;

 /* radius, expansionInc - radius of sphere to distribute points and the increment for how quickly the
set of points should expand in an explosion-like manner. */
 float radius = 2, expansionInc=4;

 /* parent - Boolean value passed in from the asteroid that instantiated it. If true, explosion in 1 colour,
else another. */
 boolean parent=false;

 /* Particles - set of Particle objects to update and render. */
 Explosionparticle[] Particles = new Explosionparticle[numParticles];

 /* Explosion ctr with parent boolean. Cycle through numParticles and create a particle with location
around sphere */
 Explosion(boolean Parent)
 {
 parent=Parent;
 for(int i = 0; i < numParticles; i++)
 {
 float theta = random(0,TWO_PI);
 float u = random(-1,1);
 Particles[i] = new Explosionparticle(theta,u,radius,expansionInc);
 }
 }

 /* update - alpha value passed in from asteroid and further passed on to ExplosionParticle objects to
use in render() */
 void update(float alphaVal)
 {
 for(int i = 0; i < numParticles; i++)
 {

88

 Particles[i].update(alphaVal);
 Particles[i].render(parent);
 }
 }
}

/* author: Ashley Morrison
 class: ExplosionParticle
 brief: This class is instantiated and contained within an arraylist of other ExplosionParticle objects to
represent the explosion of an asteroid.
It is also based on the sketch at OpenProcessing:

http://www.openprocessing.org/visuals/?visualID=861

The explosionparticle class constructor creates sets up the relavant values passed in from Explosion.
The update method updates alphaValue and calculates the latest x,y,z position of this particle. The
expansion effect is done simply by incrementing the radius of the sphere about which the points are
distributed. The expansion increment added to the radius value is itself also decremented meaning the
radius expansion rate decreases over time. */

class Explosionparticle
{
 /* theta, u - Values used to determine the x/y/z points in update() */
 float theta, u;

 /* x,y,z - X/Y/Z values for the position of the particle during the duration of the expansion. */
 float x,y,z;

 /* tmpx,tmpy,tmpz - Previous x/y/z values for using to draw a line between old and current positions.
*/
 float tmpx, tmpy, tmpz;

 /* rad, expansionInc - radius and the expansion increment variable used to expand the set of particles
around a growing radius size. */
 float rad,expansionInc;

 /* alphaValue - Alpha value passed in from Asteroid-Explosion to fade out after x period. */
 float alphaValue = 1.0;

 /* Explosionparticle ctr - theta, u, radius and increment values passed in initially. */
 Explosionparticle(float Theta, float U, float radius, float increment)
 {
 theta = Theta;
 u = U;
 rad = radius;
 expansionInc = increment;
 }

 /* update - Changes the alpha value and recalculates the x,y and z values. */
 void update(float alphaVal)
 {
 alphaValue=alphaVal;
 expansionInc -= 0.1;
 rad+=(expansionInc);

 tmpx = x;

89

 tmpy = y;
 tmpz = z;

 x = rad*cos(theta)*sqrt(1-(u*u));
 y = rad*sin(theta)*sqrt(1-(u*u));
 z = u*rad;

 }

 /* render - Checks whether the particle is a part of a parent asteroid or not, changes colour values
accordingly. */
 void render(boolean parent)
 {
 pushMatrix();
 colorMode(HSB, 1.0);
 if(parent) { stroke(0.1, pow(1,0.1), 0.9,alphaValue); }else { stroke(0.5, pow(1,0.1),
0.9,alphaValue); }
 line(tmpx,tmpy,tmpz,x,y,z);
 colorMode(RGB, 255);
 popMatrix();
 }
}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: FFTSample
 brief: Instantiated in the MinimAudio class. This class creates an FFT object from the minim audio
library to extend the analysis that offers. It updates a current maximum and overall average on the FFT
over the song to be used for the Rose/Missile classes for damage dealt/pattern generated.
*/

class FFTSample {

 /* song - AudioPlayer object from the minim library, used to play a song. */
 AudioPlayer song;

 /* fft - FFT object also taken from the minim audio library for audio analysis. */
 FFT fft;

 /* currentMaximum - the current maximum peak value of the frequency spectrum. */
 float currentMaximum;

 /* average - the average frequency spec value calculated so far over the current duration of the song.
*/
 float average;

 /* counter - the value used to calculate the average in the findMax method below. */
 int counter;

 /* FFTSample - creates an fft object from minim based on the logAverages division of sub bands
noted in the background of the thesis. */
 FFTSample(AudioPlayer song2) {

90

 song = song2;
 if(song != null)
 {
 /* buffer size and sample rate taken from the song object which is passed in from the MinimAudio
object during instantiation. */
 fft = new FFT(song.bufferSize(), song.sampleRate());
 fft.logAverages(22, 3);
 }
 }

 /* update - forwards the fft sample on for analysis of the next frequency spec. */
 void update() {
 fft.forward(song.mix);
 }

 /* findMax - Method used to calculate the current maximum peak and the overall average. */
 void findMax() {
 float currentMax = 0;
 float tempTotal = 0;
 // cycle through all bands and find the highest value, also add each one to a tmp variable.
 for(int i = 0; i < fft.avgSize(); i++)
 {
 float temp = fft.getAvg(i);
 tempTotal += temp;
 if(temp > currentMax)
 {
 currentMax = temp;
 }
 }
 // find the local average by dividing the total by the size
 float localAverage = tempTotal/fft.avgSize();
 average = average * counter;

 counter++;

 // find the overall average by adding the local average to existing global average and then dividing
by the number of times this has been calculated.
 average = (average+localAverage) / counter;
 // set current maximum
 currentMaximum = (int)currentMax;
 }

}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: GUI
 brief: Uses and contains all the gui related objects as well as update methods. Constructor creates
just the menu items first then when the player hits the play button, the rest of the items are added due to

91

being based on in-game values. Two different update methods for the in-game related data and the
menu screen data.
*/

class GUI {

 /* file - File object for choosing a music file to play and retrieving the filename. */
 File file;

 /* fc - file chooser object used with file to create a directory browser. */
 JFileChooser fc;

 /* weaponEnergyBar,scoreBar,healthBar - Three main bar values for the player data. Used in-game to
illustrate the game state from player's perspective. */
 Slider weaponEnergyBar,scoreBar,healthBar; // player stats

 /* gameData - The panel for the player data in-game. */
 ControlP5 gameData;

 /* gameSettings - The panel for the adjustable settings in-game. */
 ControlP5 gameSettings;

 /* mainmenu - The panel for the menu screen settings. */
 ControlP5 mainmenu;

 // game/visualisation settings
 /* beatSensitivityBar, beatSensitivityBar2, noGalaxiesBar, noStarsBar, spaceRadiusBar - sliders to
adjust the beat sensitivity, number of galaxies, stars and the radius of the sphere about which they're
distributed. */
 Slider beatSensitivityBar, beatSensitivityBar2, noGalaxiesBar, noStarsBar, spaceRadiusBar;

 /* wormholeNoStarsBar, wormholeRadius - slider for the number of stars in the wormhole and the
radius of it.*/
 Slider wormholeNoStarsBar, wormholeRadius;

 /* galaxyNoParticlesBar, galaxyRadiusBar, asteroidSpeedBar, itemdropSpeedBar - sliders for the
number of particles per Pulser object, the radius of them, the maxpseed
 value for asteroids and the same for item drops.*/
 Slider galaxyNoParticlesBar, galaxyRadiusBar, asteroidSpeedBar, itemdropSpeedBar;

 /* difficulty,difficulty2,mode,hud,sfx,sfx2 - Radio buttons for the difficulty, game mode, hud being
on/off and sound effects being on/off. */
 Radio difficulty,difficulty2,mode,hud,sfx,sfx2;

 /* vol1, vol2 - Sliders to adjust the volume of the music for the menu and in-game songs. */
 Slider vol1, vol2;

 /* filename - a string variable to be used for holding the filename that is chosen by the user to play in-
game, passed back to Main, then MainGame and finally game.minimObj.*/
 String filename = "";

 /* GUI Ctr - instanties all the menu screen gui related items and adds them to mainmenu ControlP5
object. */
 GUI(PApplet main) {

92

 /* MAIN MENU SETTINGS */
 mainmenu = new ControlP5(main);

 noGalaxiesBar = mainmenu.addSlider("noGalaxiesBar",0,25,NoGalaxies,width/2-75,height-(height/
4)-315,100,10);
 noGalaxiesBar.setLabel("No. Galaxies");
 noStarsBar = mainmenu.addSlider("NoStarsBar",0,5000,NoStars,width/2-75,height-(height/4)-
300,100,10);
 noStarsBar.setLabel("No. Stars");
 spaceRadiusBar = mainmenu.addSlider("spaceRadiusBar",0,10000,R,width/2-75,height-(height/4)-
285,100,10);
 spaceRadiusBar.setLabel("Space Radius");

 wormholeNoStarsBar =
mainmenu.addSlider("wormholeNoStarsBar",0,20000,wormholeNoStars,width/2-75,height-(height/4)-
250,100,10);
 wormholeNoStarsBar.setLabel("Wormhole No.Stars");
 wormholeRadius = mainmenu.addSlider("wormholeRadius",0,5000,wormholeRmax,width/2-
75,height-(height/4)-235,100,10);
 wormholeRadius.setLabel("Wormhole Radius");
 galaxyNoParticlesBar =
mainmenu.addSlider("galaxyNoParticlesBar",0,2000,galaxyParticleNo,width/2-75,height-(height/4)-
200,100,10);
 galaxyNoParticlesBar.setLabel("Galaxy Particle Count");
 galaxyRadiusBar = mainmenu.addSlider("galaxyRadiusBar",0,5000,galaxyRadius,width/2-
75,height-(height/4)-185,100,10);
 galaxyRadiusBar.setLabel("Galaxy Radius");

 difficulty = mainmenu.addRadio("radio",width/2-75,height-(height/4)-150);
 difficulty.add("Normal",0);
 difficulty.add("Hard",1);

 mode = mainmenu.addRadio("modeRadio",width/2,height-(height/4)-150);
 mode.add("Game",0);
 mode.add("Vis",1);

 hud = mainmenu.addRadio("hudRadio",width/2,height-(height/4)-105);
 hud.add("HUD",0);
 hud.add("No HUD",1);

 sfx = mainmenu.addRadio("sfxRadio",width/2-75,height-(height/4)-105);
 sfx.add("SFX Off",0);
 sfx.add("SFX On",1);

 beatSensitivityBar = mainmenu.addSlider("beatSensitivityBar",0,50000,beatSensitivity,width/2-
75,height-(height/4)-60,100,10);
 beatSensitivityBar.setLabel("Beat Sensitivity");
 mainmenu.addButton("fileButton",10,width/2-75,height-(height/4)-25,150,20).setLabel(" Choose
File (.wav or .mp3) ");

 vol1 = mainmenu.addSlider("vol1",-100,5,-16,width/2-75,height-(height/4)+20,100,10);
 vol1.setLabel("Volume");

 mainmenu.addButton("playButton",10,width/2-50,height-(height/4)+60,80,20).setLabel(" Play");
 /* MAIN MENU SETTINGS */

 }

93

 /* createGameGUI - method called after the play button above has been pressed. This instantiates the
in-game and player stats objects
 and adds them to the respecive controlP5 object. */
 void createGameGUI(PApplet main) {

 /* PLAYER SETTINGS */
 gameData = new ControlP5(main);
 gameData.hide();

 scoreBar = gameData.addSlider("playerScore",0,20000,game.playerScore,width/2+75,height-
(height/6)+25,100,10);
 scoreBar.setLabel(" Score");
 scoreBar.setBroadcast(false);

 weaponEnergyBar =
gameData.addSlider("playerWeaponEnergy",0,2000,game.playerWeaponEnergy,width/2+75,height-
(height/6)-5,100,10);
 weaponEnergyBar.setLabel(" Energy");
 weaponEnergyBar.setBroadcast(false);

 healthBar = gameData.addSlider("playerHealth",0,400,game.playerHealth,width/2+75,height-
(height/6)-35,100,10);
 healthBar.setLabel(" Shield");
 healthBar.setBroadcast(false);
 /* PLAYER SETTINGS */

 /* GAME/VIS SETTINGS */
 gameSettings = new ControlP5(main);
 gameSettings.hide();

 difficulty2 = gameSettings.addRadio("radio",width/2-75,height-(height/6)-315);
 difficulty2.add("Normal",0);
 difficulty2.add("Hard",1);
 difficulty2.setValue(difficulty.value());

 sfx2 = gameSettings.addRadio("sfxRadio2",width/2,height-(height/6)-315);
 sfx2.add("SFX Off",0);
 sfx2.add("SFX On",1);
 sfx2.setValue(sfx.value());

 beatSensitivityBar2 =
gameSettings.addSlider("beatSensitivityBar2",0,50000,beatSensitivity,width/2-75,height-(height/6)-
265,100,10);
 beatSensitivityBar2.setLabel("Beat Sensitivity");
 beatSensitivityBar2.setValue(beatSensitivityBar.value());

 itemdropSpeedBar = gameSettings.addSlider("itemdropSpeedBar",1,20,game.maxspeedItems,width/
2-75,height-(height/6)-230,100,10);
 itemdropSpeedBar.setLabel("Item Drop Max Speed");
 asteroidSpeedBar =
gameSettings.addSlider("asteroidSpeedBar",1,20,game.maxspeedAsteroids,width/2-75,height-
(height/6)-215,100,10);
 asteroidSpeedBar.setLabel("Asteroid Max Speed");

 vol2 = gameSettings.addSlider("vol2",-100,5,-2,width/2-75,height-(height/6)-180,100,10);

94

 vol2.setLabel("Volume");
 /* GAME/VIS SETTINGS */

 }

 /* update - Updates the in-game player stats as well as the in-game settings. */
 void update() {
 weaponEnergyBar.setValue(game.playerWeaponEnergy);
 scoreBar.setValue(game.playerScore);
 healthBar.setValue(game.playerHealth);

 game.gameDifficulty = (int)newGUI.difficulty2.value();
 beatSensitivity = (int)beatSensitivityBar2.value();
 game.minimObj.beat.setSensitivity(beatSensitivity);

 game.maxspeedAsteroids = asteroidSpeedBar.value();
 game.maxspeedItems = itemdropSpeedBar.value();

 game.minimObj.song.setGain(vol2.value());
 }

 /* update2 - Updates the main menu settings. */
 void update2() {
 NoStars = (int)noStarsBar.value();
 NoGalaxies = (int)noGalaxiesBar.value();

 wormholeNoStars = (int)wormholeNoStarsBar.value();
 wormholeRmax = (int)wormholeRadius.value();

 galaxyParticleNo = (int)galaxyNoParticlesBar.value();
 galaxyRadius = (int)galaxyRadiusBar.value();

 beatSensitivity = (int)beatSensitivityBar.value();

 if(titleSong!=null) { titleSong.song.setGain(vol1.value()); }
 }
}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: ItemDrop
 brief: Class that represents an item drop/player stat booster in the game. Item drops are spawned
from the centre of Pulsers and can be one of three types corresponding to the three types of pulsers.
These three types are displayed through the colours red, blue and yellow which if retrieved by the
player boost the score, weapon energy level and shield respectively.

Once spawned they use the steer method taken from Daniel Shiffman's example boid class:
http://www.shiffman.net/itp/classes/nature/week06_s09/seekarrive/Boid.pde

Using this they travel towards the centre of the wormhole which is at an arbitrary point around the
player. The player has the option of attracting the item towards him/herself by way of the right mouse

95

button and diverting it in their direction. If the itemdrop effectively collides with the wormhole it is
removed, if it collides with the player then the relavant boost will be awarded after which it's removed.

The spawning of the item drops is designated by a particular type of Onset being detected (either a
kick, hat or snare) along with the type of pulser matching this onset detection being compared. Along
with the ctr and steer methods are update, render and drawRadarPoint methods.
*/

class ItemDrop
{
 /* pos - A vector representing the position of this item. */
 PVector pos;

 /* dir - A vector representing the direction of this item. */
 PVector dir;

 /* target - A vector representing the target, whether the wormhole or player. */
 PVector target;

 /* attraction - A boolean for whether the player is currently diverting the item to themself. */
 boolean attraction = false;

 /* isDead - A boolean for whether the item has collided either with wormhole or player and can be
removed. */
 boolean isDead = false;

 /* maxspeed, maxforce, origMaxspeed - Floating point values for the maximum speed and force this
item can accelerate to. The maxspeed can be altered when the player is attracting it towards them,
hence the use of an original value for when this is no longer the case. */
 float maxspeed,maxforce,origMaxspeed;

 /* prevTheta,theta,temp,distance - All used for the drawing of the point on the radar corresponding to
asteroid-player location discrepency. prevTheta and theta are the difference in dot products between the
direction of the player and vector from player-asteroid from the last update/current update. rotateBy,
the amount to rotate around the centre point. distance, the distance to offset the point from the centre
corresponding to actual distance calculated. */
 float prevTheta,theta,rotateBy,distance = 0;

 /* radar1,radar2,radar3,radar4, goRight - Used to determine which of 4 states the radar is in, between
increasing/decreasing past 180 and 0 respectively. The rotation needs to be different depending on
which direction the player is heading in etc. goRight signifies whether the player is rotating roughly
right or left and is also needed to update the radar correctly. */
 boolean radar1,radar2,radar3,radar4, goRight=false;

 /* type - An integer to represent one of three types the item can be which dictates when/where it will
be spawned and the colour/shape deformation as well. Either 0, 1, or 2, i.e. gold, red or blue, i.e. shield,
score, weapon modifier. */
 int type;

 /* ItemDrop - The item drop constructor, all values passed in, including type which is determined by
the type of onset detected and that matching the pulser type being compared. Direction updated through
steer method in update() */
 ItemDrop(PVector Pos, PVector Target, float ms, float mf, int Type)
 {
 type = Type;
 pos = Pos;
 dir = new PVector(0,0,0);
 target = Target;

96

 maxspeed = ms;
 origMaxspeed = ms;
 maxforce = mf;
 }

 /* steer - Creates a direction vector based on current position and target position.

Method directly taken from Daniel Shiffman's example boid class : http://www.shiffman.net/itp/classes/
nature/week06_s09/seekarrive/Boid.pde
with the additions of a boolean flag when the distance between asteroid-player is not greater than 0 and
what to do if this is the case, i.e. awarding of points, shield or weapon bonuses if the collision is with
the player. */
 PVector steer(PVector target, boolean slowdown) {

 PVector steer = new PVector(0,0); // The steering vector
 PVector desired = PVector.sub(target,pos); // A vector pointing from the location to the target
 float d = desired.mag(); // Distance from the target is the magnitude of the vector
 // If the distance is greater than 0, calc steering (otherwise return zero vector)
 if (d > 0) {
 // Normalize desired
 desired.normalize();
 // Two options for desired vector magnitude (1 -- based on distance, 2 -- maxspeed)
 if ((slowdown) && (d < 100.0f)) desired.mult(maxspeed*(d/100.0f)); // This damping is somewhat
arbitrary
 else desired.mult(maxspeed);
 // Steering = Desired minus Velocity
 steer = PVector.sub(desired,dir);
 steer.limit(maxforce); // Limit to maximum steering force
 }

 if(d <50.0 && (attraction)) {
 isDead = true;
 if(type == 0) {
 // gold
 game.playerHealth+=10;
 }
 else if(type == 1) {
 // red
 game.playerScore+=1000;
 }
 else if(type == 2) {
 // blue
 game.playerWeaponEnergyBase+=10;
 }
 steer = new PVector(0,0);
 }
 else if(d <10.0 && (!(attraction))) {
 isDead = true;
 steer = new PVector(0,0);
 }
 return steer;
 }

 /* update - The update method for calculating the distance between the item and target. If attraction is
set the target is the player, if not, the wormhole. If the item is being attracted by the player, the
maxspeed is adjusted as twice the original value. If not, the maxspeed is proportional to the average
value calculated in FFTSample meaning the difficuly in retrieving the items fluctuated with the

97

development of the song. The direction vector is passed to the steer method and then added to the
position. dec is the average passed in from MainGame that is taken from FFTSample.*/
 void update(float dec) {

 /* distance between myself and target, either player or wormhole. */
 float distance = pos.dist(target);

 /* If not attraction, moving towards wormhole, maxspeed is fft average. */
 if(!(attraction)) {
 maxspeed = dec;
 dir.add(steer(target,true));
 }
 /* if moving towards player, maxspeed becomes constant of twice the original value. */
 else if(attraction) {
 maxspeed = origMaxspeed*2;
 dir.add(steer(new PVector(0,0,0),true));
 }

 /* Move item */
 pos.add(dir);
 }

 /* render - Draws the item as a low detail sphere with a trail of smaller spheres behind it by offsetting
in the opposite direction of the item drop. */
 void render() {
 pushMatrix();
 translate(pos.x, pos.y, pos.z);

 /* Check type and change stroke/fill values accordingly between gold, red and blue. */
 if(type == 0) {
 stroke(0.1, pow(0.5,0.1), 1-0.5, 0.15); // 0.15
 fill(0.1, pow(0.5,0.1), 1-0.5, 0.15); // 0.15
 }
 else if(type == 1) {
 stroke(0.01, pow(0.5,0.1), 1-0.5, 0.15); // 0.15
 fill(0.01, pow(0.5,0.1), 1-0.5, 0.15); // 0.15
 }
 else if(type == 2) {
 stroke(0.6, pow(0.5,0.1), 1-0.5, 0.15); // 0.15
 fill(0.6, pow(0.5,0.1), 1-0.5, 0.15); // 0.15
 }

 sphereDetail(5);

 /* If not attracting towards player, set the size of the item to be proportional to the fft sample of a
sub band derived from the item type. Meaning if the item is moving towards the wormhole, it's size
will be fluctuating with the music and all items of type a will fluctuate in the same
 manner. */
 float sizeItem = 0;
 if(!(attraction)) {
 sizeItem = game.minimObj.thisSample.fft.getAvg((type+1)*2)/40;
 }
 /* else, player attracting it, set size as 1. */
 else {
 sizeItem = 1;
 }

 sphere(sizeItem+0.4);

98

 /* Draw the other smaller spheres behind the main one by offsetting in opposite direction from
item. */
 pushMatrix();
 for(int a=0; a<5; a++) {
 PVector tmpPos = new PVector(pos.x-(dir.x*a), pos.y-(dir.y*a), pos.z-(dir.z*a));
 translate(tmpPos.x, tmpPos.y, tmpPos.z);
 sphere((sizeItem+0.4) - ((a+1)/10));
 }
 popMatrix();

 popMatrix();
 }

 /* drawRadarPoint() - Method called each iteration in MainGame when in-game and not adjusting
settings. Used to plot a point in relation to player to illustrate where the asteroid is in comparison. Due
to the dot product between the player direction and player2asteroid vector returning between 0-180 (in
front/behind), to adjust a point around 360 degrees in the correct manner, need to know the direction
the player is heading in etc.

 The radar variables represent this. */
 void drawRadarPoint() {
 //If moving right
 if(goRight) {
 // if increasing & at 180
 if(prevTheta > theta && rotateBy >= radians(180)) {
 radar1 = true; radar2=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(-rotateBy);
 }
 // if decreasing & at 180
 else if(prevTheta < theta && rotateBy >= radians(180)){
 radar2 = true; radar1=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(rotateBy);
 }
 // if decreasing & at 0
 else if(prevTheta < theta && rotateBy <= radians(0)) {
 radar3 = true; radar2=false;radar1=false;radar4=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(rotateBy);
 }
 // if increasing and at 0
 else if(prevTheta > theta && rotateBy <= radians(0)) {
 radar4 = true; radar2=false;radar3=false;radar1=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(-rotateBy);
 }
 // else central, no change
 else {
 if(radar1) {
 rotateZ(-rotateBy);
 }
 else if(radar2) {

99

 rotateZ(rotateBy);
 }
 else if(radar3) {
 rotateZ(-rotateBy);
 }
 else if(radar4) {
 rotateZ(rotateBy);
 }
 }
 }
 // If moving left
 else {
 // if increasing & at 180
 if(prevTheta > theta && rotateBy >= radians(180)) {
 radar1 = true; radar2=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(rotateBy);
 }
 // if decreasing & at 180
 else if(prevTheta < theta && rotateBy >= radians(180)){
 radar2 = true; radar1=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(-rotateBy);
 }
 // if decreasing & at 0
 else if(prevTheta < theta && rotateBy <= radians(0)) {
 radar3 = true; radar2=false;radar1=false;radar4=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(-rotateBy);
 }
 // if increasing & at 0
 else if(prevTheta > theta && rotateBy <= radians(0)) {
 radar4 = true; radar2=false;radar3=false;radar1=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(rotateBy);
 }
 else {
 // else central, no change
 if(radar1) {
 rotateZ(rotateBy);
 }
 else if(radar2) {
 rotateZ(-rotateBy);
 }
 else if(radar3) {
 rotateZ(rotateBy);
 }
 else if(radar4) {
 rotateZ(-rotateBy);
 }
 }
 }

 stroke(255,0,255);

100

 ellipse(0, -(distance/30), 1,1);
 prevTheta = theta;
 }

}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: MainGame
 brief: This is the game object that contains the game loop with lists of all asteroids, item drops,
missiles and galaxies in-game. Stars, galaxies and asteroids are spawned at varying offsets from a
sphere, the radius of which was set in Main. This class also contains an instance of MinimAudio for the
playing/analysing of the in-game song used for spawning asteroids and item drops.

It also contains camera rotation code for rotating around a point in 3d, HUD code for displaying the
current key positions of asteroids/items etc, player scores and a rose/weapon pattern as well as in-game
settings that are changeable by hitting TAB. The HUD can be hidden with SHIFT.

Lastly it uses the Traer Physics library to keep hold of a set of particle position fired in some direction
that is used to map a pattern of dots to representing the player attack. The bulk of this code is found in
the Rose/Missiles classes respectively. The loop checks for whether it is in setup mode or not, if setup,
simple display a blank screen with the in-game settings, else cycle through all the objects in the game
and update/render.
*/

class MainGame {

 /* minimObj - The MinimAudio instance used to create, play and analyse the song of choice for in-
game. If in-game and not setup, play.*/
 MinimAudio minimObj;

 /* onSet - Used as a flag for when there is a onset detected and if this matches with the firing of the
player weapon, 2 extra missiles are fired giving a boost to the play for synchronised efforts. */
 boolean onSet = false;

 /* pulsers - The array list of pulser objects created in the constructor with positions around the player.
Updated in the Pulsers & updatePulsers methods respectively. */
 ArrayList pulsers;

 /* asteroidList - Array list of asteroid objects to be cycled through each update and calling each
asteroids update method. */
 ArrayList asteroidList;

 /* missiles - Array list of missile objects in the game at any given moment, missiles objects have a
finite life span and are periodically removed in the update methods found in Missiles() */
 ArrayList missiles;

 /* starsAlpha - the alpha values for drawing the points of the stars around the sphere to give a greater
feeling of depth in the scene. */
 float[] starsAlpha;

101

 /* stars - The corresponding stars array which uses the alpha values above and is an array of positions
around a sphere used to draw points to. */
 float[][] stars;

 /* galaxies - 2d Array of floating point values for the distribution of Pulsers around the player, at an
offset from the normal spherical distribution. */
 float[][] galaxies;

 /* cam - The Matrix used for camera rotation found in CamRotation() */
 PMatrix3D cam;

 /* gravitate, isFire - Boolean flags for whether the player is attracting an item to his/herself and
whether the player is firing the weapon. */
 boolean gravitate = true, isFire = false;

 /* newRose - Rose object which is used to generate patterns that are connected with the current max
and averages calculated in FFTSample that are used to display the missile objects. A preview of the
current iteration is shown on the HUD. */
 Rose newRose;

 /* n - int that is updated to the overall average calculated in the FFTSample object and passed to
Rose.setPoints. */
 int n=1;

 /* mx, my - Mouse x and Mouse Y values updated in the main loop. */
 float mx,my;

 /* d - The direction the player is facing. */
 PVector d;

 /* tmpDir - non normalized player direction vector */
 PVector tmpDir;

 /* pos - The position of the player at 0,0,0 */
 PVector pos;

 /* physics - The particle system including from the Traer Physics library: http://www.cs.princeton.edu/
~traer/physics/ */
 ParticleSystem physics;

 /* q - A particle to be re-assigned and attached to missile objects each time one is spawned. */
 Particle q;

 /* closeAsteroids - An array list of the asteroids that are within a certain range of the player to be used
for drawing the closest asteroids on the radar. */
 ArrayList closeAsteroids;

 /* onTarget - Is the player currently closely lined up with either an asteroid or an item drop, if yes,
true. */
 boolean onTarget = false;

 /* onAttract - Is the player currently onTarget, holding down right mouse button and has enough
weapon energy to attract an item. */
 boolean onAttract = false;

 /* tmpxRot - Amount of rotation in the x axis, used in CamRotation() */
 float tmpxRot = 0;

102

 /* tmpyRot - Amount of rotation in the y axis, used in CamRotation() */
 float tmpyRot = 0;

 /* items - Array list of all the item drops currently running in the game. */
 ArrayList items;

 /* itemOK - Boolean variable periodically set to allow the onset of a beat to result in items being
spawned, to restrict how often items are spawned. */
 boolean itemOK = false;

 /* itemCounter - Integer used with itemOK. */
 int itemCounter = 0;

 /* addItems - Integer counter used to total up how many items are being added in any one onset
detection, again for limiting purposes. */
 int addItems = 0;

 /* newWormhole - Wormhole object that is the point of attraction for all item drops. */
 Wormhole newWormhole;

 /* centreWormhole - A vector showing the centre position of the wormhole, used for the exact target
item drops move towards. */
 PVector centreWormhole;

 /* backCol - Used for the background colour, fades to white on completion of a song. */
 int backCol = 0;

 /* playerScore, playerHealth, playerWeaponEnergy, playerWeaponEnergyBase - Integer score and
shield values, floating point weapon energy values, base for when
 weapon energy adjusted. */
 int playerScore = 0, playerHealth=100; float playerWeaponEnergy=1000,
playerWeaponEnergyBase=1000;

 /* maxspeedAsteroids - Default value for the maxspeed asteroids can travel. Can be changed in the
settings in-game. */
 float maxspeedAsteroids = 2.0;

 /* maxspeeItems - Default value for the maxspeed item drops can travel at. Also editable in the in-
game settings. */
 float maxspeedItems = 3.0;

 /* setupGame - If the player presses TAB, settings gui appears and main game if statement is re-
directed to a blank screen and gui, otherwise, update,render
 as normal. */
 boolean setupGame = false;

 /* gameDifficulty - An integer for accessing/updating the game difficulty, which can be changed in
the settings. */
 int gameDifficulty=0;

 /* wormholeCentrePulse - The pulser object drawn at the centre of the wormhole object. */
 Pulser wormholeCentrePulse;

 /* MainGame - The constructor for the game object.

 Constructs wormhole, item list, Rose object, particle system, stars alpha value, stars, galaxy
positions, asteroidList, pulser positions, missile list,
 camera matrix, minimObj & the Pulser object at the centre of the wormhole in this order. */

103

 MainGame(PApplet Main) {

 background(0);

 newWormhole = new Wormhole();

 items = new ArrayList();
 newRose = new Rose();
 pos = new PVector(0,0,0);
 physics = new ParticleSystem();

 /* STARS ALPHA */
 starsAlpha = new float[NoStars];
 for(int h = 0; h < starsAlpha.length; h++)
 {
 float a = random(1, 255);
 starsAlpha[h] = a;
 }

 /* STARS POSITIONS
 Based upon: http://www.openprocessing.org/visuals/?visualID=2277
 */
 stars = new float[NoStars][3];
 for(int i = 0; i < stars.length; i++)
 {
 float p = random(-PI, PI);
 float t = asin(random(-1, 1));
 stars[i] = new float[] {
 2*(R * cos(t) * cos(p)),
 2*(R * cos(t) * sin(p)),
 2*(R * sin(t))
 };
 }

 /* GALAXY POSITIONS
 Based upon: http://www.openprocessing.org/visuals/?visualID=2277
 */
 galaxies = new float[NoGalaxies][3];
 for(int j = 0; j < galaxies.length; j++)
 {
 float p = random(-PI, PI);
 float t = asin(random(-1, 1));

 galaxies[j] = new float[] {
 R * cos(t) * cos(p)/2,
 random(-500, 500),
 R * sin(t)/2
 };
 }

 /* ASTEROID LIST */
 asteroidList = new ArrayList();

 /* PULSER OBJECT POSITIONS */

104

 pulsers = new ArrayList();
 for(int i = 0; i < NoGalaxies; i++) {
 Pulser newCon = new Pulser((int)random(0,3), false);
 pulsers.add(newCon);
 }

 /* MISSILE ARRAY */
 missiles = new ArrayList();

 /* CAMERA MATRIX */
 cam = new PMatrix3D();

 /* MINIM OBJECT */
 minimObj = new MinimAudio(Main, false);

 /* PULSER-WORMHOLE OBJECT */
 wormholeCentrePulse = new Pulser((int)random(0,3), true);
 }

 /* updatePulsers - Method used to update pulsers particle positions and check for beat onset detection
and spawn item drops if necessary. Called from Pulsers() method below which cycles through galaxy
array and calls this method with the current index value. */
 void updatePulsers(int index) {
 float r;
 addItems = 0;

 /* Create pulser based on one in array at index value */
 Pulser thisPulser = (Pulser)pulsers.get(index);

 /* cycle through this pulsers particle array and check for beat detections, always gravitate but only
spawn an item if beat onset. */
 for(int i = 0; i < thisPulser.Z.length; i++) {
 thisPulser.Z[i].gravitate(new PulserParticle(thisPulser.avgX, thisPulser.avgY, 0, 0, 0.6, false));

 /* If this pulser item type matches with any of the three beat onsets, spawn an item. */
 if(minimObj.beat2.isKick() && thisPulser.type==0 || minimObj.beat2.isHat() &&
thisPulser.type==1 || minimObj.beat2.isSnare() && thisPulser.type==2)
 {
 for(int y=0; y<20; y++) {
 thisPulser.Z[i].gravitate(new PulserParticle(thisPulser.avgX, thisPulser.avgY, 0, 0, 0.5,
false));
 }

 /* only add set of item drops per Pulser Array list update. */
 if(addItems == 0 && itemOK==true) {
 ItemDrop newItem = new ItemDrop(new PVector(galaxies[index][0]+thisPulser.avgX,
galaxies[index][1]+thisPulser.avgY, galaxies[index][2]), centreWormhole, maxspeedItems, 0.1,
thisPulser.type);
 items.add(newItem);
 addItems++;
 }
 }

 r = float(i)/thisPulser.Z.length;

 /* Check the type of pulser and adjust the stroke value accordingly. */

105

 if(thisPulser.type == 0) {
 stroke(0.1, pow(r,0.1), 1-r, 0.35); // 0.15
 }
 else if(thisPulser.type == 1) {
 stroke(0.01, pow(r,0.1), 1-r, 0.35); // 0.15
 }
 else if(thisPulser.type == 2) {
 stroke(0.6, pow(r,0.1), 1-r, 0.35); // 0.15
 }

 /* display the pulser's particle array*/
 thisPulser.Z[i].display();
 }
 }

 /* CamRotation - gets the amount of rotation in the x/y and rotates the current matrix by these values
before finding the direction vector and calling the camera() method with d. */
 void CamRotation() {
 float r;
 /* x and y axis rotation. */
 tmpxRot += -(mouseY - height / 2.0) / height / 5;
 tmpyRot += -(mouseX - width / 2.0) / width / 5;

 /* rotation values used to offset the display of a missile based upon the rotation of the player to
keep it in front. */
 if(degrees(tmpxRot) >= 180 || degrees(tmpxRot) <= -180) {
 tmpxRot = 0;
 }
 if(degrees(tmpyRot) >= 180 || degrees(tmpyRot) <= -180) {
 tmpyRot = 0;
 }

 /* CAM ROTATION
 Taken from : http://www.openprocessing.org/visuals/?visualID=2277
 */
 cam.rotateX(-(mouseY - height / 2.0) / height / 5);
 cam.rotateY(-(mouseX - width / 2.0) / width / 5);
 PVector x = cam.mult(new PVector(1, 0, 0), new PVector(0, 0, 0));
 PVector y = cam.mult(new PVector(0, 1, 0), new PVector(0, 0, 0));
 d = x.cross(y); tmpDir = new PVector(d.x, d.y, d.z); d.normalize(); d.mult(R);

 camera(pos.x, pos.y, pos.z, d.x, d.y, d.z, y.x, y.y, y.z);
 /* CAM ROTATION */
 }

 /* Asteroids - Method called in main game loop render() to cycle through, update, add and draw
asteroids to the game. */
 void Asteroids() {
 /* ASTEROIDS */
 colorMode(RGB,255);

 /* if beat onset, add a new asteroid to the list at a point offset from around the player.
 Placement of asteroids based upon: http://www.openprocessing.org/visuals/?visualID=2277
 */
 if (minimObj.beat.isOnset()) {
 newWormhole.beat=true;

 float p = random(-PI, PI);

106

 float t = asin(random(-1, 1));

 float tmpX = 1.5*(R * cos(t) * cos(p)) + 200;
 float tmpY = 0;

 /* If difficulty is hard, adjust the y value to attack the player from all angles, else distribute the
asteroids at 0 on the y axis. */
 if(newGUI.difficulty2.value()==1) {tmpY = R * cos(t) * sin(p); }

 float tmpZ = 1.5*(R * sin(t)) + 200;

 Asteroid newAsteroid = new Asteroid(new PVector(tmpX, tmpY, tmpZ), new PVector(0,0,0),
maxspeedAsteroids, 0.2, 45, 2, -100, 0, true);
 newAsteroid.god = false;
 asteroidList.add(newAsteroid);
 }

 /* cycle through the asteroid list of asteroids closest to the player, if asteroid is larger than x,
remove. */
 for(int l=0; l<closeAsteroids.size(); l++) {
 Asteroid thisAsteroid = (Asteroid)closeAsteroids.get(l);
 float d = PVector.dist(thisAsteroid.loc,pos);

 if (d > 2000) {
 closeAsteroids.remove(l);
 }
 }

 /* Cycle through main asteroid list, calculate whether player is within a margin to be directly
facing the asteroid, add to closeAsteroids if within X, check if dead or hit player and set the removing
boolean flag which will cause an explosion and alpha values to drop. */
 for(int k=0; k<asteroidList.size(); k++) {
 Asteroid thisAsteroid = (Asteroid)asteroidList.get(k);
 thisAsteroid.update(pos);

 PVector diff = PVector.sub(thisAsteroid.loc,pos);
 float theta = PVector.angleBetween(diff, tmpDir);

 if(theta < 0.05) {
 onTarget = true;
 }

 float d = PVector.dist(thisAsteroid.loc,pos);
 if(d < 2000) {
 closeAsteroids.add(thisAsteroid);
 }

 if(thisAsteroid.isDead || thisAsteroid.HitPlayer(pos, false)) {

 /* if not removing already, if sfx on, play sound effect, if game mode, lose health and flash the
screen white to emphasise collision. */
 if(!(thisAsteroid.removing)) {
 if(newGUI.sfx2.value()==1) { explosion =
game.minimObj.minim.loadSnippet("explosion.wav"); explosion.play(); }
 if(newGUI.mode.value()==0) { playerHealth-=20; }
 backCol = 255;
 }

107

 asteroidList.remove(k);
 }
 }
 /* ASTEROIDS */
 }

 /* Pulsers - Cycle through galaxy array positions, translate and call updatePulsers to detect beat
onsets, spawn items and draw accordingly. */
 void Pulsers() {
 /* PULSERS */
 colorMode(HSB,1.0);
 for(int j = 0; j < galaxies.length; j++)
 {
 pushMatrix();
 translate(galaxies[j][0], galaxies[j][1], galaxies[j][2]);
 updatePulsers(j);
 popMatrix();
 }
 /* PULSERS */
 }

 /* Wormhole - change the wormhole rotation speed dependent on the average of the FFTSample,
increment the colour value. Translate and draw the pulser object to the centre of the wormhole. */
 void Wormhole() {
 /* WORMHOLE */
 pushMatrix();
 // speed dependent on fft average.
 newWormhole.speed=minimObj.thisSample.average/5000;
 // colour fluctuates between alpha=0, alpha=0.3 etc, flashes full if beat onset.
 newWormhole.colourInc();
 colorMode(HSB,1.0);
 newWormhole.render();
 popMatrix();

 /* WORMHOLE-PULSER DRAW */
 pushMatrix();
 translate(centreWormhole.x, centreWormhole.y, centreWormhole.z);
 for(int h = 0; h < wormholeCentrePulse.Z.length; h++) {
 wormholeCentrePulse.Z[h].gravitate(new PulserParticle(wormholeCentrePulse.avgX,
wormholeCentrePulse.avgY, 0, 0, 1.6, false));
 if(minimObj.beat2.isKick()) {
 for(int z=0; z<20; z++) {
 wormholeCentrePulse.Z[h].gravitate(new PulserParticle(wormholeCentrePulse.avgX,
wormholeCentrePulse.avgY, 0, 0, 1.5, false));
 }
 }
 wormholeCentrePulse.Z[h].display();
 }
 popMatrix();
 colorMode(RGB,255);
 /* WORMHOLE */
 }

108

 /* Items - Cycle through array list of items. Same calculation for items and onTarget as for asteroids.
Also check if right mouse button down and weapon energy available before diverting item with
boolean flag switch. */
 void Items() {
 /* ITEMS */
 for(int h=0; h<items.size(); h++) {
 ItemDrop thisItem = (ItemDrop)items.get(h);

 PVector diff = PVector.sub(thisItem.pos,pos);
 float theta = PVector.angleBetween(diff, tmpDir);

 /* on target*/
 if(theta < 0.05) {
 onTarget = true;

 /* attracting item */
 if(onAttract && (playerWeaponEnergy>=10)) {
 thisItem.attraction = true;
 }
 }

 /*if item has been caught by player or met with wormhole, dead, remove from list. */
 if(thisItem.isDead) {
 items.remove(h);
 }
 /* update items with fft average to be used if not in attraction. */
 thisItem.update(minimObj.thisSample.average/5);

 colorMode(HSB,1.0);
 thisItem.render();
 colorMode(RGB,255);

 // reset attraction flag, means player needs to hold down mouse, thereby depleting more energy to
attract it all the way. */
 thisItem.attraction = false;
 }
 /* ITEMS */
 }

 /* Stars - Cycle through stars array, translate to position and draw a point using the alpha value of the
same index to adjust brightness. */
 void Stars() {
 /* STARS */
 for(int i = 0; i < stars.length; i++)
 {
 pushMatrix();
 float[] p = stars[i];
 translate(stars[i][0], stars[i][1], stars[i][2]);
 stroke(255,starsAlpha[i]);
 point(stars[i][0], stars[i][1], stars[i][2]);
 popMatrix();
 }
 /* STARS */
 }

109

 /* Missiles - Cycle through all current missile objects, check whether player has energy before
spawning more and check if firing coincides with a beat onset and if so, fire two extra missiles for the
price of one as bonus. */
 void Missiles() {
 /* MISSILE */
 if(isFire) {
 if(playerWeaponEnergy>=10) {
 /* position of particle spawned using particle system is the position of the player. */
 q = physics.makeParticle(1, pos.x,pos.y,pos.z);
 /* direction is a value proportional to the direction the player is facing. */
 q.velocity().set(d.x/30, d.y/30, d.z/30);
 /* pass in the current number of dots (maximum of fft) and n (avg of fft) to customise the
missile. */
 Missile newMissile = new Missile(q, d, tmpxRot, tmpyRot, minimObj.currentNoDots, n);
 missiles.add(newMissile);

 /* if onset, create two extra particles, offset to the left/right of original to cause extra damage
as bonus. */
 if(onSet) {
 q = physics.makeParticle(1, pos.x,pos.y,pos.z);
 q.velocity().set(d.x/30-2, d.y/30, d.z/30);
 Missile newMissile2 = new Missile(q, d, tmpxRot, tmpyRot, minimObj.currentNoDots, n);
 missiles.add(newMissile2);

 q = physics.makeParticle(1, pos.x,pos.y,pos.z);
 q.velocity().set(d.x/30+2, d.y/30, d.z/30);
 Missile newMissile3 = new Missile(q, d, tmpxRot, tmpyRot, minimObj.currentNoDots, n);
 missiles.add(newMissile3);
 }

 /* move missiles along. */
 physics.tick();
 }

 /* decrement player weapon energy if player has minimum. */
 if(playerWeaponEnergy >=20) {
 playerWeaponEnergy-=20;
 }
 }

 /* Cycle through current missiles, update positions, remove if dead and remove if greater than 20
total. */
 for(int l=0; l<missiles.size(); l++) {
 Missile thisMissile = (Missile)missiles.get(l);
 thisMissile.update();

 if(thisMissile.dead()) {
 physics.removeParticle(thisMissile.p);
 missiles.remove(l);
 }

 if(missiles.size() > 20) {
 missiles.remove(0);
 }
 }
 physics.tick();
 /* MISSILE */
 }

110

 /* HUD - draws crosshair, rose pattern and radar points for asteroids, item drops and the wormhole. */
 void HUD() {
 camera();
 if(onTarget) {
 stroke(0, 255, 0);
 }
 else {
 stroke(255);
 }

 /* CROSS-HAIR */

 line(width / 2 - 9, height / 2 - 0, width / 2 + 8, height / 2 + 0);
 line(width / 2 - 0, height / 2 - 9, width / 2 + 0, height / 2 + 8);

 if(minimObj.beat2.isKick()) { stroke(0,0,255); fill(0,0,0);ellipse(width/2,height/2,25,25); }
 /* TARGETTING */

 /* ROSE DISPLAY */
 n = (int)minimObj.thisSample.average+5;
 pushMatrix();
 translate(width / 2, height-(height/6));
 fill(0,255);
 stroke(255);
 ellipse(0, 0, 80, 80);
 ellipse(0, 0, 75, 75);
 newRose.setDayglowColor(n+newRose.theta/6);
 newRose.setPoints(50, n, minimObj.currentNoDots, 0);
 popMatrix();
 /* ROSE DISPLAY */

 /* BASIC RADAR ELLIPSE */
 fill(0,0,0,255);
 float offSetX = width/2-155;
 float offSetY = height-(height/6);

 translate(offSetX, offSetY);

 smooth();
 stroke(255);
 fill(0,255);
 ellipse(0, 0, 150, 150);
 ellipse(0, 0, 155, 155);
 stroke(255,0,0);
 ellipse(0, 0, 1,1);
 /* BASIC RADAR ELLIPSE */

 /* WORMHOLE DRAW */
 if(tmpDir != null) {
 PVector tmpWormhole = centreWormhole;
 PVector diff = PVector.sub(tmpWormhole,pos);
 // angle between the direction of the player to wormhole and the direction of the player.

111

 newWormhole.theta = PVector.angleBetween(diff, tmpDir);
 //distance between the wormhole and player.
 newWormhole.distance = tmpWormhole.dist(pos);

 pushMatrix();
 if(mx>width/2) { // moving right
 newWormhole.goRight = true;
 newWormhole.drawRadarPoint();
 }
 else if(mx <width/2) { // moving left
 newWormhole.goRight = false;
 newWormhole.drawRadarPoint();
 }
 else { // central
 newWormhole.drawRadarPoint();
 }
 popMatrix();
 /* WORMHOLE DRAW */

 /* ITEM DRAW */
 for(int a=0; a< items.size(); a++) {
 ItemDrop thisItem = (ItemDrop)items.get(a);

 PVector diff2 = PVector.sub(thisItem.pos,pos);

 //angle between direction to item and direction of player.
 thisItem.theta = PVector.angleBetween(diff2, tmpDir);
 //distance between item and player.
 thisItem.distance = thisItem.pos.dist(pos);

 if(thisItem.distance < 1000) {
 pushMatrix();
 if(mx>width/2) { // moving right
 thisItem.goRight = true;
 thisItem.drawRadarPoint();
 }
 else if(mx <width/2) { // moving left
 thisItem.goRight = false;
 thisItem.drawRadarPoint();
 }
 else { // central
 thisItem.drawRadarPoint();
 }
 popMatrix();
 }
 }
 /* ITEM DRAW */

 /* ASTEROID DRAW */
 for(int b=0; b< closeAsteroids.size(); b++) {
 Asteroid thisAsteroid = (Asteroid)closeAsteroids.get(b);

 PVector diff2 = PVector.sub(thisAsteroid.loc,pos);

112

 // angle between asteroid-player direction and player direction.
 thisAsteroid.theta = PVector.angleBetween(diff2, tmpDir);
 thisAsteroid.distance = thisAsteroid.loc.dist(pos);

 pushMatrix();
 pushMatrix();
 if(mx>width/2) { // moving right
 thisAsteroid.goRight = true;
 thisAsteroid.drawRadarPoint();
 }
 else if(mx <width/2) {
 thisAsteroid.goRight = false;
 thisAsteroid.drawRadarPoint();
 }
 else {
 thisAsteroid.drawRadarPoint();
 }
 popMatrix();
 popMatrix();
 }
 /* ASTEROID DRAW */

 }
 }

 /* render - main game loop. Determines whether in setup mode or not and what to draw otherwise.
Updates gui values, determines when to change to game over state and in what fashion. Also
replenishes weapon energy, increments item counter to limit number spawned, updates the audio object
and mouse positions along with calling all the object specific methods above. */
 void render() {

 // if in setup mode, display blank screen
 if(setupGame) {
 background(0);
 }

 // set wormhole position.
 centreWormhole = new PVector(newWormhole.mx+newWormhole.centre.x,
newWormhole.centre.y, newWormhole.my+newWormhole.centre.z);
 newGUI.update();

 // if there is a beat detection onset in the frequency that matches a kick sound, onset is true. Used
with missiles firing/sync.
 if(minimObj.beat2.isKick()) { onSet = true; }

 // if in game mode
 if(!(setupGame)) {
 newGUI.gameData.show();

 camera();

 if(minimObj.song.isPlaying() && playerHealth>0) {backCol = 0;}
 if(!game.minimObj.song.isPlaying()) { game.backCol+=5; if(game.backCol>=255)
{ gameOver=true;inGame=false; newGUI.gameData.hide(); } }
 if(playerHealth == 0) { game.minimObj.song.pause(); game.backCol+=3; if(game.backCol>=255)
{ gameOver=true;inGame=false; newGUI.gameData.hide(); } }

113

 background(backCol);

 closeAsteroids = new ArrayList();
 itemCounter++;

 // replenish weapon energy
 if(playerWeaponEnergy < playerWeaponEnergyBase) {
 playerWeaponEnergy+=1;
 }

 // increment item counter, reset periodically.
 itemOK = false;
 if(itemCounter> 100) {
 itemCounter = 0;
 itemOK = true;
 }

 // update audio
 minimObj.update();

 colorMode(HSB,1.0);

 mx = mouseX;
 my = mouseY;

 /* MAIN GAME OBJECT CALLS */
 CamRotation();
 Asteroids();
 Pulsers();
 Wormhole();
 Items();
 Stars();

 if(onAttract) {
 if(playerWeaponEnergy >=1.5) {
 playerWeaponEnergy-=1.5;
 }
 }

 Missiles();

 if(newGUI.mode.value()==0) {
 HUD();
 }
 else {
 newGUI.gameData.hide();
 }
 /* MAIN GAME OBJECT CALLS */
 }

 /* IF NOT GAME MODE - CHECK WHETHER SETUP IS FLAGGED, IF SO, DISPLAY GUI */

 /* TARGETTING */
 camera();
 if(inGame && setupGame) { newGUI.gameSettings.show(); newGUI.gameData.hide();}

114

 fill(255);
 stroke(255);

 /* RESET FLAGS */
 onSet = false;
 onTarget = false;
 isFire = false;
 }

}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: MainMenu
 brief: This is a class that draws text to the screen depending on what state the system is in, either title
or game over.
*/

class MainMenu {

 MainMenu() {
 // alternative fonts: Ethnocentric Distant Galaxy Good Times Induction Mael Nasalization Neon
Lights SF Movie Poster Times New Roman
 textFont(createFont("Ethnocentric", 32));
 textAlign(CENTER);
 }

 void render() {

 /* if main menu, display the title text */
 if(mainMenu) {
 textSize(40);
 fill(255);
 text("OBJECTS IN SPACE", width/2, height-(height-75));
 }

 /* if game over, display message, score and instructions. */
 if(gameOver) {
 textSize(40);
 fill(255);
 text("GAME OVER", width/2, height/2-200);

 textSize(30);
 fill(255);
 text("SCORE: " + str(game.playerScore), width/2, height/2);

 textSize(20);
 fill(255);
 text("PRESS ENTER TO RETURN TO MAIN MENU", width/2, height/2+200);
 }
 }
}

115

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: MinimAudio
 brief: Encapsulates all the audio related objects and method calls that the system uses. Contains
minim library objects: Minim, AudioPlayer FFT, BeatDetect and instantiations of the BeatListener
class. Uses three different beat listeners for the menu screen song, the in-game soung energy
detection(asteroids) and frequency detection(pulsers). Sets two main values, the overall average
frequency value and a latest maximum peak value.
*/

class MinimAudio {

 /* minim - Main Minim audio library class object. */
 Minim minim;

 /* song - Minim library object for loading in/playing songs. */
 AudioPlayer song;

 /* thisSample - instantion of the class which encapsulates and uses the minim library FFT class. */
 FFTSample thisSample;

 /* bl,beat, bl2,beat2, bl3,beat3 - Beat detection and listener objects for the three varities of beat
detection used. */
 BeatListener bl; BeatDetect beat; BeatListener bl2; BeatDetect beat2; BeatListener bl3; BeatDetect
beat3;

 /* currentNoDots - set in the update method to be proportional to the current maximum peak value. */
 int currentNoDots;

 /* sLength - song length in milliseconds. */
 int sLength;

 /* tempFactor - used to return the fraction of the song completed which in turn is used to blend the
pattern of the wormhole from a starting value to an end design. */
 float tempFactor;

 /* MinimAudio Ctr - Takes in the PApplet to use for constructing the Minim object. Also a boolean
value to determine whether the state is currenty in the title screen or not. */
 MinimAudio(PApplet main, boolean titleScreen) {
 minim = new Minim(main);

 /* if a file hasn't been chosen, use this default. */
 if(filename.equals("")) { filename = "kavinsky.mp3"; }

 /* if title screen, set up the song and beat detection with the filename set in Main. */
 if(titleScreen) {
 song = minim.loadFile(filename2, 4096); // 4096
 beat3 = new BeatDetect();
 beat3.setSensitivity(0);
 bl3 = new BeatListener(beat3, song);
 }
 /* else use the file chosen or the default set above. */
 else if(!titleScreen) {
 song = minim.loadFile(filename, 4096); // 4096

116

 }

 /* create instance of FFTSample. */
 thisSample = new FFTSample(song);

 /* create beat detection for missile/audio sync */
 beat = new BeatDetect();
 println(beatSensitivity);
 beat.setSensitivity(beatSensitivity);
 bl = new BeatListener(beat, song);

 /*setup beat detection for pulsers - uses frequency energy values. */
 beat2 = new BeatDetect(song.bufferSize(), song.sampleRate());
 beat2.setSensitivity(500);
 bl2 = new BeatListener(beat2,song);

 sLength = song.length();

 if(titleScreen) {
 song.play();
 song.loop();
 }
 else {
 song.play();
 /* if mode is visualisation, loop the song. */
 if(newGUI.mode.value()==1) { song.loop(); }
 }
 }

 /* update - updates the FFT which forwards the analysis of the spectrum values. Recalculates the
factor by which to adjust the wormhole pattern.
 Also calls findMax to calculate the maximum peak and overall average values. */
 void update() {
 thisSample.update();
 tempFactor = (float)millis() / sLength;

 thisSample.findMax();
 // set number of dots for rose pattern
 currentNoDots = (int)thisSample.currentMaximum/5;
 }
}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: Missile
 brief: Missile object which takes the pattern generated by the Rose class for display and the position
returned by the particle in the Traer particle system as it's position upon being generated and fired in
the direction the player is facing. Contains an update method which checks for collisions and renders
the pattern to a new point in space based on a particle position. Each missiles has it's own particle
object which is updated by the "physics.tick()" call in MainGame. Also has a timer value that is
decremented resulting in missiles being removed after x time if they haven't hit anything.
*/

class Missile {

117

 /* r - radius of missile object. */
 float r;

 /* timer - Timer value decremented over time resulting in time span before removal. */
 float timer;

 /* p - This missiles particle object, get updated in MainGame through physics.tick call. */
 Particle p;

 /* rotx, roty, rotz - rotational values for displaying the pattern in front of the player. */
 float rotx,roty,rotz;

 /* maximumSpecValue - the value taken from the FFTSample for currentMaximum when this
missiles was created. */
 int maximumSpecValue;

 /* averageSpecValue - the value taken from the FFTSample for the overall average when this missile
was created. */
 int averageSpecValue;

 /* Missile - constuctor - passes in the particle object from MainGame as well as rotational values and
the currentMaximum/average FFT values. */
 Missile(Particle P, PVector Vel, float rotX, float rotY, int Max, int Avg) {
 rotx = rotX;
 roty = rotY;
 p = P;
 r = 40.0;
 timer = 100.0;
 rotz = 0;
 maximumSpecValue = Max;
 averageSpecValue = Avg;
 }

 /* update - Method to update location, increments the z rotation, checks for collisions, reduces timer
and renders to screen if still alive. */
 void update() {
 rotz +=0.1;
 if(rotz>360) {
 rotz = 0;
 }

 collision();
 timer -= 1.0;
 render();
 }

 /* collision - Gets the particle position, compares with asteroid positions in the same way the asteroid
collision detection does using Daniel Shiffman's example collision code:
http://www.shiffman.net/itp/classes/nature/week06_s09/seekarrive/Boid.pde */
 boolean collision() {
 PVector tmpPos = new PVector(p.position().x(), p.position().y(), p.position().z());

 for(int k=0; k<game.asteroidList.size(); k++) {
 Asteroid thisAsteroid = (Asteroid)game.asteroidList.get(k);
 float d = PVector.dist(tmpPos,thisAsteroid.loc);

118

 float sumR = thisAsteroid.r + (r*.97/2);

 if (d < sumR && thisAsteroid.god == false) {
 thisAsteroid.asteroidHealth -=maximumSpecValue;

 thisAsteroid.isHit = true;
 // kills missile on impact
 timer=0;

 // if health less/equal to 0, asteroid removed, if parent, splitAsteroid called to create two new
ones.
 if(thisAsteroid.asteroidHealth <= 0) {
 if(thisAsteroid.parent && (game.gameDifficulty==1)) {
 thisAsteroid.splitAsteroid();
 }

 timer = 0;
 // removing boolean set to cause explosion and reduce alpha
 thisAsteroid.removing = true;
 return true;
 }
 }
 }

 return false;
 }

 /* render - Method to display missile */
 void render() {
 stroke(0,255,0);
 pushMatrix();

 /* translate to position of the particle p */
 translate(p.position().x(), p.position().y(), p.position().z());
 rotateX(rotx);
 rotateY(roty);

 /* draw the missile by calling the rose.setPoints method with relavant values. */
 game.newRose.setPoints(r, averageSpecValue, maximumSpecValue, rotz);
 popMatrix();
 }

 /* dead - Check if timer is less/equal to 0, if so, return true */
 boolean dead() {
 if (timer <= 0.0) {
 return true;
 } else {
 return false;
 }
 }

}

/* ObjectSpace Game
 13/08/09

119

 author: Ashley Morrison
 class: Pulser
 brief: This class is heavily based upon the OpenProcessing example 'Gravity Swarm' by Claudio
Gonzales: http://www.openprocessing.org/visuals/?visualID=2363 The Swarm.pde file is now the
Pulser class and the particle.pde is now the PulserParticle class. Besides an initial call to gravitate the
particles around a central point in the ctr, each pulser has it's array of PulserParticles updated/displayed
through calls made in the MainGame.updatePulsers() method depending on beat onsets. It has also
been adjusted for OpenGL, and each Pulser object is distributed in 3d space around a position offset
from a sphere.

Also, the initial distribution of the PulserParticles is extended to be around a sphere as this influences
the type of pattern to be made subsequently. This distribution around a circle uses a 2d version of:
http://www.openprocessing.org/visuals/?visualID=861 by 'Starkes'. The point of attraction is also
designated as the centre of the circle.
*/

class Pulser {

 /* Z - Array of PulserParticles, size set in the title screen. */
 PulserParticle[] Z = new PulserParticle[galaxyParticleNo];

 /* pos - Positional vector of the Pulser. */
 PVector pos;

 /* avgX, avgY - x,y value to gravitate around. */
 float avgX = 0;
 float avgY = 0;

 /* type - The type of the PulserParticle, randomly chosen at the MainGame setup to be one of three
types used in conjunction with the item drops and beat detection. */
 int type;

 /* Pulser - Ctr method, passes in an integer for the type and a boolean designating whether this Pulser
is a generic one or the one used with the centre of the wormhole. */
 Pulser(int Type, boolean wormhole) {

 type = Type;

 /* if wormhole variety, set particle size to much larger */
 if(wormhole) { Z = new PulserParticle[2000]; }

 /* calculate the x,y positions of a sphere and call PulserParticle ctr with the theta/u values to be
used. */
 for(int i = 0; i < Z.length; i++) {
 float theta = random(0,TWO_PI);
 float u = random(-1,1);

 Z[i] = new PulserParticle(theta, u, 0, 0, 2, true);
 avgX+=Z[i].x;
 avgY+=Z[i].y;
 }

 avgX = avgX/Z.length;
 avgY = avgY/Z.length;
 /* set positon of Pulser */
 pos = new PVector(avgX, avgY);

120

http://www.openprocessing.org/visuals/?visualID=2363

 /* cause an initial gravitation towards centre point. */
 for(int i = 0; i < Z.length; i++) {
 for(int y=0; y<20; y++) {
 Z[i].gravitate(new PulserParticle(avgX, avgY, 0, 0, 0.6, false));
 }
 /* display particles in array. */
 Z[i].display();
 }
 }
}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: PulserParticle
 brief: The particle class to be used with the Pulser objects. Contain x,y,z values and previous x,y,z
values as well as magnitude, angle and mass floating point values for use in pulling them towards a
position in a way analogous to the pull of gravity. If this is the first time instantiation, calculate the x/y
positions around a point on a circle. Else x/y = theta/u.
*/
class PulserParticle {

 /* x,y,z,px,py,pz - Current and previous x,y,z values. */
 float x; float y; float z; float px; float py; float pz;

 /* magnitude - floating point value for the magnitude of the pull. */
 float magnitude;

 /* angle - floating point value for the angle of attraction. */
 float angle;

 /* mass - floating point value for the mass of the particle which will determine the magnitude of the
force. */
 float mass;

 /* theta - theta value to be passed in from PulserParticle. */
 float theta;

 /* u - u value to be passed in from PulserParticle. */
 float u;

 /* radius - radius of the distribution of the particles, set in menu screen. */
 float radius = galaxyRadius; // 750

 /* PulserParticle - passed in x/y values, magnitude, angle and mass. */
 PulserParticle(float dx, float dy, float V, float A, float M, boolean startup) {

 if(startup) {
 theta = dx;
 u = dy;

 /* Uses circular distribution of particles taken from: http://www.openprocessing.org/visuals/?
visualID=861 except just for x/y. */
 x = radius*cos(theta)*sqrt(1-(u*u));
 y = radius*sin(theta)*sqrt(1-(u*u));

121

 px = radius*cos(theta)*sqrt(1-(u*u));
 py = radius*sin(theta)*sqrt(1-(u*u));
 }
 else {
 x = dx;
 y = dy;

 px = dx;
 py = dy;
 }

 magnitude = V;
 angle = A;
 mass = M;
 }

 /* gravitate - Takes in a new PulserParticle object to be attracted to which has the position of being in
the centre of the circle. Uses equations for calculating the magnitude and angle values taken from:
http://www.openprocessing.org/visuals/?visualID=2363*/
 void gravitate(PulserParticle Z) {
 float F, mX, mY, A;
 if(sq(x - Z.x) + sq(y - Z.y) != 0) {
 F = mass * Z.mass;
 mX = (mass * x + Z.mass * Z.x) / (mass + Z.mass);
 mY = (mass * y + Z.mass * Z.y) / (mass + Z.mass);
 A = findAngle(mX - x, mY - y);

 mX = F * cos(A);
 mY = F * sin(A);

 mX += magnitude * cos(angle);
 mY += magnitude * sin(angle);

 magnitude = sqrt(sq(mX) + sq(mY));
 angle = findAngle(mX, mY);
 }
 }

 /* display - decreases the magnitude value to slowly bring the particles to a stop over time. updates
the x,y values based on the magnitude/angle values calculated in gravitate() and draws a line between
the current and old x/y positions before updating the old ones.*/
 void display() {
 magnitude *= 0.825;

 // update latest values with angle of direction and decremented magnitude.
 x += magnitude * cos(angle);
 y += magnitude * sin(angle);

 // draw to screen
 pushMatrix();
 line(px,py,x,y);
 popMatrix();

 // update old values.
 px = x;
 py = y;
 }

122

}

/* findAngle - Takes in the x/y values for the Particle to be attracted to. This method is unaltered from
the original example:
http://www.openprocessing.org/visuals/?visualID=2363*/
float findAngle(float x, float y) {
 float theta;
 if(x == 0) {
 if(y > 0) {
 theta = HALF_PI;
 }
 else if(y < 0) {
 theta = 3*HALF_PI;
 }
 else {
 theta = 0;
 }
 }
 else {
 theta = atan(y / x);
 if((x < 0) && (y >= 0)) { theta += PI; }
 if((x < 0) && (y < 0)) { theta -= PI; }
 }
 return theta;
}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: Rose
 brief: This class is a modification and re-use of Jim Bumgardner's 'Rose Display' OpenProcessing
sketch: http://www.openprocessing.org/visuals/?visualID=1555
It's also the sketch that most inspired the possibilities of using audio to fuel visualisations for this
project. The key value for the equation that is documented in the background section of the thesis is a
value n which determines the number of petal like shapes or curves the pattern generates. This rose
generation now takes in a value n that is connected with the FFTSample class and the average of those
frequency values. It also passes in a number of points to be used for drawing the pattern which is the
current maximum peak value, hence in a moment of explosion in the audio, the rose generation will
jump in complexity.
*/

class Rose {

 /* n - set in MainGame to be equal to the average+5. */
 int n;

 /* theta - used to calculate the radius, colour and curve points */
 float theta;

 /* sizePoint - how big should the points be displayed as. */
 float sizePoint;

123

 /* rr,gg,bb - the red, green and blue values selected in the setDayglowColor() method, left from the
original sketch. */
 int rr, gg, bb;

 /* Rose - ctr */
 Rose() {

 }

 /* setPoints - Takes in a radius value to determine the size of the pattern drawn, a new n value, the
number of dots to draw and a rotational value. */
 void setPoints(float radius,int newN, int NoDots, float rot) {
 sizePoint = 2;
 n = newN;

 float rad = radius*.97/2;
 float cx = 0;
 float cy = 0;

 pushMatrix();
 rotateZ(rot);
 /* for the total number of dots to be drawn this time, calculate a colour, radius and x,y positions for
NoDots and draw as ellipses. */
 for (int i = 0; i <= NoDots; ++i)
 {
 pushMatrix();
 theta = i*PI*2 / NoDots;
 setDayglowColor(n+theta/6);
 float r = rad * sin(n*theta);
 float px = cx + cos(theta)*r;
 float py = cy + sin(theta)*r;
 ellipse(px,py,2,2);
 popMatrix();
 }
 popMatrix();
 }

 /* setDayglowColor - takes in a hue value which is also proportional to the n value having been
passed in from setPoints() */
 void setDayglowColor(float myHue) {
 float ph = sin(millis()*.0001);

 rr = (int) (sin(myHue) * 127 + 128);
 gg = (int) (sin(myHue + (2*ph) * PI/3) * 127 + 128);
 bb = (int) (sin(myHue + (4*ph) * PI/3) * 127 + 128);
 fill(rr,gg,bb);
 stroke(rr,gg,bb);
 }
}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: SpiralGalaxy

124

 brief: SpiralGalaxy class modified slightly from Philippe Guglielmetti's 'Spiral Galaxy'
OpenProcessing sketch: http://www.openprocessing.org/visuals/?visualID=699
This class is used for the menu visualisation and contains modifications the the display of the points as
well as allowing the number of points to be added to. The result on the menu screen is a set of spiral
patterns that develop with some synchronisation to the music, with more points being added over time
as well as changes in colour etc.
*/

class SpiralGalaxy3 {

 /* colour - the colour of the spiral galaxy to be used. */
 float colour = random(1);

 /* stars - the current number of stars, incremented over time with the audio. */
 int stars=0;

 /* Rmax - galaxy radius */
 int Rmax=300;

 /* speed - a random rotational speed. */
 float speed=random(0.001, 0.005);

 // stars follow elliptic orbits around the center
 /* eratio - ellipse ratio */
 float eratio=random(0.2,1);
 /* etwist - twisting factor (orbit axes depend on radius) */
 float etwist=random(0,8.0/Rmax);

 /* angle - Array list of angle values. */
 ArrayList angle = new ArrayList();

 /* radius - Array list of radius values. */
 ArrayList radius = new ArrayList();

 /* angleArray - array of angle values. */
 float []angleArray;

 /* radiusArray - array of radius values. */
 float []radiusArray;

 /* cx, cy - centre x and centre y values. */
 float cx; float cy;

 /* beat - Boolean flag for whether the corresponding beat has been detected. */
 boolean beat=false;

 /* colourChange - Boolean flag for whether it is time increment the colour. Changed in Background
class. */
 boolean colourChange=false;

 /* pos - Position of the spiral galaxy in 2d on the screen. */
 PVector pos;

 /* SpiralGalaxy - Constructor, takes in a radius size. Initialises the star angle/radius array values to be
used in determining point positions in render() */
 SpiralGalaxy3(int rmax){
 pos = new PVector(random(-width/3,width/3), random(-height/3,height/3));

125

 Rmax=rmax;
 // begin in the center
 cx = width/2;
 cy = height/2;

 // init stars
 for (int i=0; i< stars; i++){
 angle.add(random(0,2*PI));
 radius.add(random(1,Rmax));
 }
 colorMode(RGB,255);
 }

 /* updateStarCount - Convert between the array and array lists to adjust the number of stars to draw
per galaxy. */
 void updateStarCount() {
 /* UPDATING SIZE */
 int len = angle.size();
 angleArray=new float[len];
 radiusArray=new float[len];

 Float[] fa1 = new Float[len];
 angle.toArray(fa1);

 Float[] fa2 = new Float[len];
 radius.toArray(fa2);

 // re-fill arrays with new values from adjusted array lists, angle and radius.
 for (int h = 0; h < len; h++)
 {
 angleArray[h] = fa1[h];
 radiusArray[h] = fa2[h];
 }
 /* UPDATING SIZE */
 }

 /* drawGalaxy - cycles through angle and radius values to calculate latest x,y values around centre
point. Slightly modified to adjust for star count changes and colour changes.
http://www.openprocessing.org/visuals/?visualID=699 */
 void drawGalaxy(){
 float strokeCol;

 colorMode(HSB,1);
 float r,a,x,y,b,s,c,xx,yy,dd;

 updateStarCount();

 pushMatrix();
 translate(pos.x, pos.y);
 for (int i=0; i< stars; i++){
 r=radiusArray[i];
 a=angleArray[i]+speed*(Rmax/r)*3.0; // increment angle
 angle.set(i,a);

 /* Calculation of new point positions taken entirely from Guglielmetti's sketch. */
 x=r*sin(a);
 y=r*eratio*cos(a);
 b=r*etwist;

126

http://www.openprocessing.org/visuals/?visualID=699

 s=sin(b);
 c=cos(b);
 xx=cx + s*x + c*y; // a bit of trigo
 yy=cy + c*x - s*y;
 /* Calculation of new point positions taken entirely from Guglielmetti's sketch. */

 strokeCol = float(i)/stars;
 if(beat) {
 stroke(colour, pow(strokeCol,0.1), 1-strokeCol, 0.4);
 }
 else {
 stroke(colour, pow(strokeCol,0.1), 1-strokeCol, 0.35);
 }
 // draw point and extend in the z axis by an amount proportional to the radius value.
 point(xx, yy, -r/2);
 }
 popMatrix();

 strokeWeight(1);
 colorMode(RGB,255);
 if(colourChange) {
 colour+=random(0.02);
 if(colour > 1) {
 colour = colour%1;
 }
 colourChange=false;
 }
 }

}

/* ObjectSpace Game
 13/08/09

 author: Ashley Morrison
 class: Wormhole
 brief: Wormhole class modified from Philippe Guglielmetti's 'Spiral Galaxy' OpenProcessing sketch:
http://www.openprocessing.org/visuals/?visualID=699

This class is used for the wormhole feature in-game that item drops are drawn towards. The changes
made are setting the centre point, pulsing the colour of object drawn, altering the appearance by not
drawing X points that are close to the centre to give more of a black hole effect, changing the
ratio/twist values determining the pattern drawn when there is a beat and by a factor of how far along
the song is. The wormhole position is also drawn to the HUD to relay it's position in relation to the
player.
*/

class Wormhole {
 /* speed - a random rotational speed. */
 float speed=0.0001;

 // stars follow elliptic orbits around the center
 /* eratio - ellipse ratio */
 float eratio=0.1;

127

 /* etwist - twisting factor (orbit axes depend on radius) */
 float etwist=0.005;//8.0/wormholeRmax; // twisting factor (orbit axes depend on radius)

 /* angleArray - array of angle values. */
 float []angle=new float[wormholeNoStars];

 /* radiusArray - array of radius values. */
 float []radius=new float[wormholeNoStars];

 /* cx, cy - centre x and centre y values. */
 float cx; float cy;

 /* x,y values to translate the wormhole by */
 float mx,my;

 /* centre - A Vector representing the centre position of the wormhole points. */
 PVector centre;

 /* prevTheta,theta,temp,distance - All used for the drawing of the point on the radar corresponding to
asteroid-player location discrepency. prevTheta and theta are the difference in dot products between the
direction of the player and vector from player-asteroid from the last update/current update. rotateBy,
the amount to rotate around the centre point. distance, the distance to offset the point from the centre
corresponding to actual distance calculated. */
 float prevTheta,theta,rotateBy,distance = 0;

 /* radar1,radar2,radar3,radar4, goRight - Used to determine which of 4 states the radar is in, between
increasing/decreasing past 180 and 0 respectively. The rotation needs to be different depending on
which direction the player is heading in etc. goRight signifies whether the player is rotating roughly
right or left and is also needed to update the radar correctly. */
 boolean radar1,radar2,radar3,radar4, goRight=false;

 /* beat - Boolean flag for whether the corresponding beat has been detected. */
 boolean beat=false;

 /* hole - floating point value to determine the size of the black hole that is incremented with a beat
detected. */
 float hole = 10;

 /* colour, increasing, decreasing - A colour value in the hsb range and two boolean values determining
whether the colour is being incremented or decremented as it phases between almost invisible and full
brightness when a beat is detected. */
 float colour=0; boolean increasing=true, decreasing=false;

 /* Wormhole - Constructor for the Wormhole class. */
 Wormhole(){

 /* random position around player. */
 mx = random(-1000,1000);
 my = random(-1000,1000);
 speed=speed/frameRate;
 centre = new PVector(0,0);

 // begin in the center
 cx = width/2;
 cy = height/2;

 // init angle/radius values.
 for (int i=0; i< wormholeNoStars; i++){

128

 angle[i]= random(0,2*PI);
 radius[i]=random(1,wormholeRmax);
 }

 // used in calculating centre point based on smallest radius value.
 float minimum=10000;
 int index=0;
 float tmpRadius=0;

 // cycles through all radius values finding the smallest and sets index to relavant i value to be used in
calculateCentre()
 float xx,yy;
 for (int i =0; i< wormholeNoStars; i++){
 float r=radius[i];

 tmpRadius = r;
 // index set here
 if(tmpRadius < minimum) { minimum=tmpRadius; index=i; }
 }

 calculateCentre(index);
 }

 /* calculateCentre - uses the index found above for the value in the radius array that was smallest to
access this in working out the x/y values and setting centre accordingly. */
 void calculateCentre(int index) {
 float xx,yy;

 // index used here to get radius and angle values for working out the x/y
 float r=radius[index];
 float a=angle[index]+speed; // increment angle

 float x = r*sin(a);
 float y= r*eratio*cos(a);
 float b=r*etwist;
 float s=sin(b);
 float c=cos(b);

 xx = cx+s*x+c*y;
 yy = cy+c*x-s*y;

 // centre point set here.
 centre = new PVector(xx,yy,-r/2);
 }

 /* colourInc - Used to set a colour value for drawing the points, flips between increasing and
decreasing the value to create a slow pulsing effect and changes to full brightness on a beat detection.
Uses hsb scale, maximum value of 0.4 before decreasing to near 0. */
 void colourInc() {
 colorMode(RGB,255);

 if(increasing) {
 colour+=random(0.001);
 }
 else if(decreasing) {
 colour-=random(0.001);
 }

129

 float diff = (Math.abs(colour-0.4));

 // if approx 0.4 and decreasing, switch flags
 if(diff>0.38 && decreasing) { increasing=true; decreasing=false; }

 // if almost 0 and increasing, switch flags
 if(diff<0.002 && increasing) { increasing=false; decreasing=true; }
 }

 /* render - cycles through angle and radius values to calculate latest x,y values around centre point.
Slightly modified to adjust for changes in the pattern and black hole size.
http://www.openprocessing.org/visuals/?visualID=699 */
 void render(){

 float xx,yy;

 pushMatrix();
 // translate to mx/my position
 translate(mx,0,my);

 for (int i =0; i< wormholeNoStars; i++){
 float r=radius[i];
 float a=angle[i]+speed; // increment angle
 angle[i]=a;

 /* Calculation of new point positions taken entirely from Guglielmetti's sketch. */
 float x = r*sin(a);
 float y= r*eratio*cos(a);
 float b=r*etwist;
 float s=sin(b);
 float c=cos(b);
 xx = cx+s*x+c*y;
 yy = cy+c*x-s*y;
 /* Calculation of new point positions taken entirely from Guglielmetti's sketch. */

 if(r > hole) {
 if(!beat) {
 if(r>255) {
 stroke(colour,255);
 }
 else {
 stroke(colour,255-r);
 }
 }
 // else beat=true, change ratio,twist and hole sizes + increase brightness
 else {
 hole+=0.0001;
 eratio = 1.2 * game.minimObj.tempFactor + 0.1;
 etwist = 0.1 * game.minimObj.tempFactor + 0.005;
 stroke(colour+0.1,255);
 }

 // draw point and extend in the z axis by an amount proportional to the radius value.
 point(xx,yy,-r/2);
 }
 }
 popMatrix();
 beat=false;

130

http://www.openprocessing.org/visuals/?visualID=699

 }

 /* drawRadarPoint - Method called each iteration in MainGame when in-game and not adjusting
settings. Used to plot a point in relation to player to illustrate where the asteroid is in comparison. Due
to the dot product between the player direction and player2asteroid vector returning between 0-180 (in
front/behind), to adjust a point around 360 degrees in the correct manner, need to know the direction
the player is heading in etc.

 The radar variables represent this. */
 void drawRadarPoint() {
 //If moving right
 if(goRight) {
 // if increasing & at 180
 if(prevTheta > theta && rotateBy >= radians(180)) {
 radar1 = true; radar2=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(-rotateBy);
 }
 // if decreasing & at 180
 else if(prevTheta < theta && rotateBy >= radians(180)){
 radar2 = true; radar1=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(rotateBy);
 }
 // if decreasing & at 0
 else if(prevTheta < theta && rotateBy <= radians(0)) {
 radar3 = true; radar2=false;radar1=false;radar4=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(rotateBy);
 }
 // if increasing and at 0
 else if(prevTheta > theta && rotateBy <= radians(0)) {
 radar4 = true; radar2=false;radar3=false;radar1=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(-rotateBy);
 }
 // else central, no change
 else {
 if(radar1) {
 rotateZ(-rotateBy);
 }
 else if(radar2) {
 rotateZ(rotateBy);
 }
 else if(radar3) {
 rotateZ(-rotateBy);
 }
 else if(radar4) {
 rotateZ(rotateBy);
 }
 }
 }
 // If moving left

131

 else {
 // if increasing & at 180
 if(prevTheta > theta && rotateBy >= radians(180)) {
 radar1 = true; radar2=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(rotateBy);
 }
 // if decreasing & at 180
 else if(prevTheta < theta && rotateBy >= radians(180)){
 radar2 = true; radar1=false;radar3=false;radar4=false;
 rotateBy = radians(180);
 rotateBy = rotateBy +(rotateBy-theta);
 rotateZ(-rotateBy);
 }
 // if decreasing & at 0
 else if(prevTheta < theta && rotateBy <= radians(0)) {
 radar3 = true; radar2=false;radar1=false;radar4=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(-rotateBy);
 }
 // if increasing & at 0
 else if(prevTheta > theta && rotateBy <= radians(0)) {
 radar4 = true; radar2=false;radar3=false;radar1=false;
 rotateBy = radians(360);
 rotateBy = rotateBy -theta;
 rotateZ(rotateBy);
 }
 else {
 // else central, no change
 if(radar1) {
 rotateZ(rotateBy);
 }
 else if(radar2) {
 rotateZ(-rotateBy);
 }
 else if(radar3) {
 rotateZ(rotateBy);
 }
 else if(radar4) {
 rotateZ(-rotateBy);
 }
 }
 }

 stroke(0,0,255);
 ellipse(0, -(distance/30), 2,2);
 prevTheta = theta;
 }
}

132

