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Figure 1: A simple 2D tree generated with L-System grammar
[Prusinkiewicz and Lindenmayer 2004].

1 Introduction

1.1 L-Systems

Aristid Lindenmayer �rst proposed his mechanism of axiomatic biological de-
velopment using formal grammar by studying and simulating the development
of algae [Lindenmayer 1968]. The rewriting structures of growth featuring in
his pivotal work soon became known as L-Systems.

In this project, a technique is presented to allow dynamic animation and
re-modelling of L-Systems using elastic deformable body mechanics. The imple-
mentation is presented as an interactive program, but other uses are discussed.

L-Systems provide the platform for quickly creating not only complex, but
also realistic representations of plant structures. Prusinkiewicz and Linden-
mayer demonstrate the potential with a wide range of examples in their studies
[Fig. 1][Prusinkiewicz and Lindenmayer 2004]. In computer graphics, generat-
ing plant structures in this way is a highly practical approach to the creative
problem of having to manually do so.

1.2 Problem Statement

With such a procedural approach to creating realistic complex structures comes
the unfortunate restriction that is the lack of precise regionalised control over
shape. In the creative environment, artists need the capability of applying
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speci�c unique form and character to any geometrical structure they generate,
in a non-procedural manner. The task of manually adjusting the point and line
geometry of a generated structure with traditional modelling methods is just as
prohibitive as modelling it in the �rst place.

Further to this is the static property of the L-System geometry. Creating
convincing motion and animation in the branches or leaves of the structure is
another very di�cult task. In a dynamic environment, there may even be the
need to have other objects interacting with the system, and the system in turn
a�ecting these objects.
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2 Previous Work

2.1 Modelling of L-Systems

Decomposing the generation process of L-Systems has been a previous �eld
of study. Both physical and non-physical approaches to altering the structure
have been examined in order to create unique shape based on environmental
factors such as forces of gravity and wind. Prusinkiewicz and Lindenmayer
[Prusinkiewicz and Lindenmayer 2004] propose two examples: The a�ect of ex-
ternal forces such as gravity on the structure; The simulation of tropism for
plants and trees, giving their branches additional realism with bend during
growth. These a�ecters are augmented as an additional stage during the gener-
ation process itself.

Prusinkiewicz et al. [Prusinkiewicz et al. 2001] de�ne methods of modelling
individual plant stems and leaves in a highly controllable and detailed way.
Their approach uses a combination of pre-de�ned L-System rules and extended
syntax, where curves and surfaces used to shape regions are de�ned in the
grammar. This in-depth approach combining procedural setup and uniquely
modelled stems produces varied and precisely detailed results, focussing equally
on the underlying structural shape and the geometrical surface output.

Using an inverse-kinematics system, Power et al. [Power et al. 1999] present
a method of interactive manipulation of models whilst retaining a high level of
botanical realism. Using �exural and torsional sti�ness attributes in the plant
branch joints, the branches are connected as rigid segments that can be inter-
actively repositioned to obtain a new arrangements. Since they are rigid, each
branch segment has complete rotational information allowing accurate bend-
ing and twisting. Their system also demonstrates clipping and pruning of the
plants.

2.2 Procedural Animation of L-Systems

Noser et al. [Noser et al. 1992] present a technique of animating L-Systems via
time integration of the construction points in velocity �elds, de�ned within the
system's generation syntax. They demonstrate how elastic deformations can
be achieved on each articulation of the structure, with unique attributes such
as bend speci�ed for each giving greater realism and variation to the possibil-
ities available. This technique is an interesting approach to obtaining realistic
animation, with the potential for regionalised control. However, due to the
paradigm in which the forces are applied, that is, within the production rules of
the L-System, it is di�cult to manipulate the exact a�ect of the forces on the
structure other than in a procedural pre-emptive way. A force description has
to be mathematically de�ned prior to the generation of the animated geometry
sequence. This is more a problem of feedback than a lack of control a�orded
by the method. A syntactical approach to applying forces on a point structure
for speci�c animated results is perhaps unmanageable for any e�ect other than
�uid-like force interactions, for which the method was principally presented.
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3 Technical Background

In the realm of visual e�ects, where creativity and visual result are favoured over
complete physical or botanical accuracy, the techniques previously discussed
have displayed many concepts which are useful to take into account when de-
signing interesting and versatile, if less accurate, re-modelling and animation of
L-Systems.

3.1 Dynamic Approaches

By using a physics-based approach, it is possible to de�ne an L-System that
could behave according to its internal physical properties. It can then also be
subjected to external physical factors such as environmental forces. To obtain
the natural �exibility and springy nature of branches and plants, the represen-
tation will need elastic deformation properties. A brief examination of some
existing deformation models is appropriate in order to �nd a good basis for
this project. Since L-Systems are concerned with point and mesh data, only
Lagrangian-style discretised point deformation methods are considered, as op-
posed to Eulerian volumetric types.

Terzopolous et al. [Terzopoulos et al. 1987] �rst introduced deformable bod-
ies to the computer graphics �eld, realising the potential of a physically based
approach to simulating objects that are not intended to be perfectly rigid. Many
new systems have been proposed since this introduction for di�erent kinds of
e�ects, some more accurate yet computationally expensive, while some cheaper
but inaccurate.

Breen et al. [Breen et al. 1994] consider a �eld of particles connected by
spring constraints to model the bending, stretching and shearing forces found
in cloth. They show how their technique is able to simulate cloth with good
likeness to real cloth references. Nowadays this is considered a spring and mass
approach, where the particles are point masses, in this case arranged at the
crossing positions of the cloth weave, and the connecting springs were arranged
along the weave. For this reason, the topology of the connections will greatly
a�ect the nature of the dynamic simulation.

A model of representing solid objects by Teschner et al. [Teschner et al. 2004]
uses a similar point mass technique where potential energies derived from trying
to preserve surface area and solid volume. This technique allows triangulated
meshes or tetrahedral solids to be deformed elastically or plastically at inter-
active speeds, with the capability of inter-object relationships such as collision
response forces. Since the system is designed for use with triangulated meshes,
the shape of an assumed triangle input mesh should not a�ect the nature of
the simulation. This is a sought-after property, although the initial condition
of only triangulated meshes, or their tetrahedral solid equivalent, may remain a
restriction.

Finally, an intriguing system introduced by Muller et al. [Muller et al. 2005],
which is completely topology independent, is based on shape matching. Their
approach takes the initial point cloud of an input mesh and simulates them as
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free particles, requiring no connectivity information. At each simulation step,
the un-deformed mesh position is moved to the locale of the point cloud via a
transformation calculated using the method of least squares. The position of
each point is then compared to that of its counterpart's position in the origi-
nal un-deformed transformed mesh. Because the ideal position of the deformed
point is known, the integration step which advances the point forward in time
based on the force acting on it can be prevented from overshooting its desti-
nation. This aspect of their system's design is a superbly simple solution to
enforcing simulation stability in any circumstance.

3.2 A Suitable Dynamic Approach

In this project, the focus is on the deforming nature of an L-System. As dis-
cussed, an L-System implementation can produce point and line data, before
additional schemes are used to apply a visual surface to the structure. The
intention is to �nd a dynamic approach to animating L-Systems that has the
advantages of the modern dynamic systems, such as stability and �exibility of
use, whilst also being able to operate on this minimal data set.
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4 Solution

Unlike previously mentioned animation approaches which use additional syntax
within the L-System grammar to drive the dynamic animation [Noser et al. 1992],
the problem is instead approached by taking the static output geometry (the
bare point and line data) from an L-System generation scheme, and using this
as input to a new system speci�cally designed to manipulate and animate hier-
archical data structures. The reason for this decision is to cleanly separate the
generation and animation stages. Such an abstraction is important to allow for
a more �exible working pipeline: The generative phase of an L-System should
be considered the initial modelling phase of a traditional pipeline; Animation
is a phase that occurs secondarily to modelling. It also means that the ani-
mation can be produced visually and interactively. Should the two processes
be interconnected, the partition between these clear production phases becomes
clouded. Appropriately, a modeller should be responsible for creating the initial
shape of the tree, and an animator of its movement.

4.1 L-System Setup

Using the built-in L-System generation node in Houdini [SideFX 2009], botani-
cal L-System geometry could be quickly created and used as a working example
set to develop the system with. Support was developed for the Wavefront OBJ
(.obj) [Wavefront 1995] and ASCII Houdini GEO (.geo) [SideFX 2009] geome-
try �le formats. These speci�cations produce human readable geometry infor-
mation. This was important initially so that an L-System data type could be
developed which could be easily extended to interpret other L-System generator
output geometries.

An advantage of using the Houdini .geo �le format is that of custom attribute
passing. Speci�c point attributes created in the L-System generation process
can be included in the geometry �le. These comprise details such as point
generation and width, two common L-System point attributes.

The C++ programming language was chosen as a developing platform due
to its object-oriented and cross-platform nature, and also because of its popu-
larity in the visual e�ects industry, such as in large libraries like the Maya API
[Autodesk 2009].

An L-System class was therefore created (LSystem_3i) which could load
data from geometry �les into a common data type, capable of performing the
same general operations irrespective of the attributes that were or were not
available in the geometry �le. When the information is initially loaded from �le,
three sets of data are allocated for: States (State_3i), an array which individu-
ally holds position, velocity and force information for each of the points loaded
(LSystem_3i::pSte); Nodes (LSysNode_3i), an array of exactly equal size to
the array of states, holding the L-System attributes at the point, where a node
array index can be interchangeably used in both the node and state arrays for
the related state/node attributes (LSystem_3i::pNde); Bones (LSysBone_3i),
an array of line segments which hold two indices, one to the start and one to the
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Figure 2: The State, Node and Bone classes, showing the most poignant at-
tributes.

end state/node from which the line segment is constructed (LSystem_3i::pBne).
[Fig. 2].

Nodes carry a Boolean leaf attribute that indicates whether or not it is at the
very end of a branch. Bones carry a "restLength" attribute de�ning the original
length of the line when loaded. The vector "originalDir" is a unit direction
vector directing from the start state to the end state positions of the bone in
the initial pose of the system. The vector "orientedDir" will be explained later
[4.4], and de�nes the direction of the original vector after the system has been
transformed to a new orientation. The vector "deformedDir" is used during the
simulation step and will also be explained later [4.2.2], and is initialised to the
same value as the "originalDir" vector.

If the generation attribute of the node is not available in the input geometry
�le, then it is assigning the number of the point to which it relates. This may
seem careless, but in-fact L-Systems grow from an initial point, the root point,
and after �nding this the true generations are then procedurally generated by
working up from the node with the lowest generation. This root point is the so
called "original root node". Next, an "original root bone" is found, being the

9



bone whose start node index is that of the original root node.
In order to construct a hierarchy of all bones, a recursive L-System class

method is used (LSystem_3i::mSetupBoneHierarchy(...)) which accepts the in-
dex to any bone in the bone array. The children of this bone are then �nd
(The bones in the hierarchy which are directly connected to the input bone end
node) by comparing the input bone end node indices with all other bone start
indices. Those bones that have a start node index identical to the input bone's
end node index are descendants of the input bone, and are stored as the children
of the input bone. The bone attributes "childCount" and "pChildren" are for
this purpose, holding a count of the number of children the bone has, and an
array with the actual bone indices to the child bones in it, respectively. This
method is called once from the main setup method (LSystem_3i::mSetup(...))
with the original root bone as the argument, but subsequently calls itself until
all branches have been traversed to their leaf node.

Whilst this process is carried out, the generation attribute in all nodes is
set so that it begins as 1 in the original root node and increases by 1 every
additional node step along the hierarchy. The leaf attribute is also set true in a
node when it is found to be at the very end of a branch, or false otherwise.

If the width attribute is not available in the input �le, it is created by dividing
1 by the node's generation. This creates a fall-o� where the original root bone
will be thickest and all children will become gradually thinner, with a clamped
minimum width of 0.1. At this point, all generation and width attributes are set
however the data was obtained from �le. The width attribute is subsequently
normalised. This process was introduced after having developed the simulation
somewhat, as a method if standardising initial behaviour resulting from changes
in di�ering L-System width scales. It involves �nding the greatest of all node
widths, then dividing each node width by it. The resulting widths are in the
range 0 to 1.

4.2 Dynamic L-System Evaluation

In order to simulate the state of the L-System over time, regular evaluation of
the current attributes of the state array must occur. The time interval that
is covered, referred to as the time-step, can be arbitrarily de�ned. However,
smaller time-steps are required for greater accuracy. In order to achieve the
current results, each evaluation of the L-System sees two separate integration
steps occur. During the �rst, forces that have been applied to the state from
external sources such as the environmental forces in the scene [4.3], and standard
internal forces generated by the dynamic L-System [4.2.1], are concatenated and
integrated. In the second, parameterised forces are generated by the dynamic
L-System [4.2.2] and are integrated.

The L-System class contains an integration scheme (base class type Inte-
grator_3i) to step the states over time after forces have been applied, and
then �ushing the applied forces. There are two derived integrator types, In-
tegEuler_3i and IntegRungeKutta4_3i, performing explicit Eulerian integra-
tion [Fig. 3] and Runge-Kutta-4 type integration, respectively. These schemes
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X(t + dt) = X(t) + (V (t) ∗ dt)
V (t + dt) = V (t) + (F (V (t), X(t), t) ∗ dt)

Figure 3: Explicit Eulerian integration, where t is the current time and dt is
the time-step to cover. X is the state attribute position, V is the state velocity
and F is the force acting on the state.

F = −kx

Figure 4: Hooke's law of elasticity. F is the spring force, k is the spring constant
and x is the displacement of the spring end from its equilibrium position.

were derived from examples presented by Fiedler [Fiedler 2006], and work di-
rectly with the Lagrangian discretised point architecture that was �rst chosen
for the structure representation. The IntegEuler_3i Eulerian scheme is cheap
but inaccurate, while the IntegRungeKutta4_3i scheme is expensive but more
accurate. Both were implemented for comparative studies.

4.2.1 Standard Force Concatenation and Integration

Utilising spring and damper techniques outline by Breen et al. [Breen et al. 1994],
an implementation was designed to generate spring forces on all states based on
bone connectivity. This force is simple to calculate and apply.

Hooke's law of elasticity [Fig. 4] states that the extension of a spring is in
direct proportion with the load added to it as long as this load does not exceed
the elastic limit.

Assuming that each bone is a spring, with length of equilibrium as its
"restLength" attribute, a spring force can be generated by �nding the displace-
ment at each step between this rest length and the current distance between
the bone start and end states. The bones can be assumed to have no elastic
limit like a real spring would, in order to simplify the simulation. The method
LSystem_3i::mEvalForceStd(...) is used to generate and apply this force. First,
the spring displacement is found, and subsequently a spring force, which is ap-
plied negatively to the bone start state, and positively to the bone end state, in
the direction of the unit vector between the two current bone state positions.
This results in the bone states being pulled together if the spring current length
exceeds the bone rest length, or being pushed apart if they become closer than
the bone rest length [Fig. 5].

L = (P1 − P0)
F = ( L

|L| ) ∗ (restLength− |L|) ∗ k

Figure 5: The standard spring force rule used. L is the vector between the
current bone state positions P0 and P1, k is the spring constant and F is the
spring force.
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V = V1 − V0

B = −V ∗ b

Figure 6: The spring damping term. V is the relative velocity between the
two bone state velocities V0 and V1, b is the damping coe�cient and B is the
damping force.

A spring damping term is also applied to smooth the application of force
[Fig. 6].

These forces shall be considered "stretch" forces, since they are concerned
solely with maintaining the branches length. The application of these forces
alone will not help retain the shape of the structure if it is subject to any
external forces, it will only su�ce to maintain the rest distance between the
bone state positions. The states are subsequently integrated over half of the full
time-step with a scheme such as [Fig. 3].

4.2.2 Parameterised Force Concatenation and Integration

In order to maintain the shape of the tree structure, additional forces must be ap-
plied to the states that draw bones toward their preferred direction. A preferred
direction vector is known for the branches, the "originalDir" bone attribute, as
calculated in the setup stage [4.1]. In combination with the "restLength" at-
tribute, the exact original desired position for any one bone's states can be found,
assuming the predecessors of the bone are completely un-deformed. Since alter-
ations to bone directions toward the original root bone should actually a�ect the
bone directions of each child bone, this information alone will not su�ce. An
initial implementation of this primitive method shows how the forces drawing
every bone state toward its original direction will yield unsatisfactory results
[Fig. 7]. Instead, the alteration of a root bone direction should propagate down
into all child bones, giving a true representation of their orientation [Fig. 8].

The forces which are generated as a result of a di�erence in a bones orig-
inal and deformed direction shall be considered "bend" forces, since they are
concerned with the direction the bone is facing, not its length. In order to cal-
culate bend forces, a recursive, hierarchy traversing system was used. The root
call of this calculation process is the method LSystem_3i::mEvalForcePar(...).
At the start of the procedure, all bones have their deformed direction vec-
tor attribute set the same as their original direction vector. A method LSys-
tem_3i::mCalcForceParChildren(...) is then called with the original root bone
as the initial argument. This method recurses over all bones in the hierarchy,
where the input bone is considered the root bone for the current operation. It
then call itself for all child bones of the root bone passed in.

The forces, which are applied to the input root bone end state, are generated
in the following steps:

1. The exact current direction vector C between the input bone constructing
states P0 and P1 is found: C = (P1 − P0)
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Figure 7: The direction vector of a root bone b is changed from its original
direction. The original direction vectors o of each child bone is wrongly sought
by them, displaying a lack of transform inheritance from the parent bone.

Figure 8: The direction vector of a root bone b is changed from its original
direction. All child bone's original direction vectors o are transformed by rota-
tion angle r about the deformed parent bone b start node p to obtain the new
deformed direction vector d, which they now seek instead of original vector o.
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2. The ideal directed length vector I is found by scaling the input bone
deformed direction vector D by the rest length of the bone: I = D ∗
restLength

3. For the current input bone, the goal di�erence vector G between its ideal
end state position and its current end state position is found by taking the
current direction vector from the ideal directed length vector: G = C − I

4. The goal force S is then calculated with using the spring equation where
the direction of the spring force is G magnitude of the spring is |G|, which
is then scaled by the spring constant k and the bone width attribute, and
applied as force to the bone end state: S = G ∗ k ∗ width

An important reason for generating the bend forces in this way is that, much
like the goaling scheme illustrated by Muller et al. [Muller et al. 2005], the
ideal destination of the state being integrated is known. This means that there
can be a limit applied to the size of the position step (the magnitude of the
goal di�erence vector, which is also stored in the state), preventing it from
overshooting its ideal location. This has a major a�ect on the stability of the
entire system. The spring constant of the forces involved can be considerably
tighter with a far smaller adverse impact on stability using this method, allowing
much more realistic, rigid plants to be simulated.

After the force has been applied to the current root bone end state, a quater-
nion rotation to map the current bone direction unit vector onto the bone de-
formed direction vector is found (the rotation discussed in [Fig. 8]) and applied
to the deformed direction vectors of all children of the current bone with the
recursive LSystem_3i::mCalcForceParRoteHierarchy(...) method. The quater-
nion rotation, which is applied with centre of rotation at the position of the
current root bone start state, is found in the following steps:

1. Normalise the current bone direction vector C: C = C
|C|

2. Find the angle r between the current unit direction vector C and the
deformed unit direction vector D: r = cos−1(C �D)

3. Find the normal axis A of rotation by �nding the vector perpendicular to
both C and D: A = C⊗D

|C⊗D|

After the entire hierarchy has been traversed, the states are integrated for the
second time. On this occasion, a modi�ed integration step occurs, which limits
the maximum position step of the state by the stored magnitude of the state's
goal di�erence vector. The modi�ed schemes are present in all overloaded ver-
sions of the pure abstract integrator method Integrator_3i::mIntegratePar(...),
which enforce the step size condition.

4.2.3 Resolution

An additional attribute associated with the L-System itself is stretch resistance.
This attribute gives the user control over how much stretching is allowed to
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occur in the bones of the structure. Since the bone stretch concerns length only,
a simple resolution procedure can be used to enforce the degree of stretching
allowed. This is performed in the recursive LSystem_3i::mResolve(...) method.
This is called once with the original root bone as the initial root. Once again, the
current bone length is calculated and compared with the rest length. Assuming
the start state of the bone is �xed, the displacement of the end node is the
di�erence between the bone rest length and current length. This displacement is
scaled by the stretch resistance parameter and applied as a negative translation
to the end state position along the current direction vector of the bone. This
operation will naturally also prevent compression of the bone.

4.3 Forces

The ability for the user to interact, move and animate the L-System structure
was the principal aim of the project. This functionality is incorporated entirely
through user-malleable forces.

To accommodate for these operations, a scene object was created (Scene_i)
which manages selection of items such as the di�erent forces and L-System
bones. It also takes charge of instigating the regular L-System evaluation pro-
cess, and can be used as an entry point for all scene object operations.

Three force types were implemented, each allowing a speci�c di�erent kind
of manipulation of the L-System. Pulling forces (ForcePuller_3i) allow a force
to be applied to a speci�c location on an L-System bone. The magnitude of the
force applied is based on the distance it is moved from the bone once attached.
Uniform vector forces (ForceUniVec_3i) allow a speci�c directed force to be
applied uniformly to all states in the L-System. This is useful for applying
regular force such as gravity. The user can direct and alter the magnitude of
this force. Finally, velocity �eld forces (ForceVField_3i) create a voxel �eld of
velocities which are advected and di�used as a �uid container using the stable
interactive �uid solving technique proposed by Stam [Stam 2003], which is also
regularly evaluated along with the L-System by the scene. This force type
is useful for re-creating e�ects such as that of wind blowing or water moving
through the structure.

In order for the scene to cope with multiple forces of each type, a container
object was created for each force type, each derived from the base class Force-
Bin_3i. These act as managers for all forces of a particular type.

4.3.1 Force Manipulation and Application

For the user to have proper control of the L-System, precise selection and
manipulation of the forces was required. This problem was approached via
ray selection based on techniques by Comninos [Comninos 2006] and Ericson
[Ericson 2005], where mouse clicks to the interface viewport are translated into
rays and cast into the scene object. Using ray selection enabled very speci�c
parts of the scene objects to be selected, such as points along an L-System bone,
or a speci�c part of the force manipulator tools.
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After creating a pulling force at a point along a bone, a perpetual spring
force is proportionally applied to both states of this bone, weighted according
to the position of the pulling origin along the bone line segment. Since the force
objects and L-System objects are highly individual entities, a standard method
of applying the generated forces between the types was required. This caused
the architectural decision to separate the L-System point types into the now
separate State_3i and LSysNode_3i classes. The State_3i class is not directly
associated with the LSystem_3i class, instead stands alone as a physical state
associated with the integration classes. With this design, both the force objects
and the L-System objects operate on the states as though they were a central
resource, although they are still belong inside the L-System object. The L-
System can return its State_3i array via the LSystem_3i::mGetStateSet(...)
method, and also the size of the state array with another. Each force type is
then responsible for the application of its force onto the point set no matter how
it has been designed.

At each regular evaluation step, the scene collects the L-System state set,
and passes it to each of the di�erent force manager types for their force contri-
bution to be applied to it. Architecturally, this allows the forces to store little
or no information about the state set it shall operate on, but have complete
information about them when applying the forces.

This design was in-fact essential to the operation of the pulling force speci�-
cally, which acts like a dynamic spring constraint between the puller manipulator
position and the arbitrary states to which it is connected. For the connection
to be made between a pulling force and an L-System bone, a selection on the
L-System is �rst required. The selection can then be obtained by the scene in
the form of the two state indices which de�ne the bone in the L-System, and
the parameter along the line de�ned by the two state positions where the exact
selection occurred. A pulling force can then be created which stores these pa-
rameters. When the force object applies its force contribution to the state set it
receives, it can assert that the state indices it holds are in the valid state array
range before application. This is a robust mechanism, far more so than perhaps
the dangerous alternative of allowing the pulling force object to store pointers
directly to the state addresses within the L-System, although this would be
simpler to implement.

The uniform vector force object applies force to all states in the set it receives
according to the direction of the arrow manipulator tool.

The velocity �eld force operates in a slightly di�erent nature than other
types. The force manipulators, which are similar in appearance to those of
the uniform vector, source velocity into single a voxel �eld maintained by the
ForceBinVField_3i class, which also contains all of the individual velocity �eld
forces. The voxel �eld is poised at the position of the L-System original root
node by the scene in order that it always encompasses the structure. The state
positions are each embedded into the voxel �eld to �nd the voxel cell they occur
in. The linearly interpolated velocities of the 8 surrounding cells are applied to
the states as a drag force [Fig. 9].
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Figure 9: A 2D visualisation of the 4 cells of the voxel �eld surrounding the state
p. The cell indices i and j for the cell containing the state p are �rst found;
the velocities of the 4 nearest cells are then interpolated to �nd the velocity
component f at p. In 3D, the 8 surrounding cells are considered.

The force application techniques could not be nearly so diverse without the
centralisation of the L-System state resource via the intervention of the scene.
Each force container applies their forces via an overloaded version of the pure
abstract ForceBin_3i::mApply(...) method in the base class.

4.4 Positioning, Orienting and Attaching the L-System

In order for the user to position the L-System how they desire inside the scene,
additional functionality was added to the L-System itself as well as the scene.
The L-System was augmented with a source position point, source normal and
source tangent vectors that allow arbitrary root bone orientation. The normal
vector de�nes the direction of a surface that the L-System is assumed to be
upon. With no attachment, this is a vertical direction, assuming a �at ground
surface. This vector is independent of the actual original root bone direction,
whose pitch is relative to this normal vector. The tangential vector can be
used to specify the heading of the structure. The scene can set these attributes
directly, allowing the user to alter the root bone yaw angle. Alternatively, a
mesh can be loaded, any face of which can be selected and act as a source
location for the L-System to be attached.

The Mesh_3i class can load a triangulated polygonal mesh from either the
Wavefront OBJ (.obj) [Wavefront 1995] or the ASCII Houdini Geometry (.geo)
[SideFX 2009] �les, much like the LSystem_3i class. The mesh can also be
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selected using ray-triangle intersection testing [Ericson 2005] to �nd any point
on a polygon surface. In the same manner as L-System selection parameters
can be obtained by the scene, a mesh selection can also be obtained in the
form of the three points constructing the selected triangle and the barycentric
coordinates of the selection within the face. The scene can also collect the point
and normal set of the mesh, enabling the exact selection position and surface
normal at this position to be found. A tangent vector is then calculated by
normalising a line vector between the selection point to any consistent point in
the selection set. These attributes are passed directly to the L-System, which
orients its position, normal and tangent direction vectors accordingly.

To allow for a richer set of possibilities, a sequence of meshes can be loaded.
These can be scrolled through one at a time, or played through at the scene
evaluation rate. For this reason, the attachment process is conducted also at
each scene evaluation. As long as the source mesh point set numbering does
not vary, a selection will stay consistent throughout playback since the position
is parameterised through the selected face point indices and their barycentric
coordinates.

When the L-System receives the new sourcing information in the form of the
point position, normal and tangential vectors, it must orient the un-deformed
bone vectors. This is the purpose of the "orientedDir" vector attribute, which
acts as a pre-computed, oriented version of the original bone direction. For
this reason, the L-System evaluation process no longer begins by setting the
deformed direction of the bones as the original direction vector, but instead the
oriented direction vector.

The orientation operation, which occurs in LSystem_3i::mSetRootSource(...),
�nds the angular di�erence between the input normal vector and the default up
vector {0,1,0}. Finding the angle between two arbitrary vectors is prone to
rounding errors should they be tending towards parallelism or anti-parallelism.
To avoid these potential problems, and abolish any restrictions that could be
implied by maintaining and using one static reference vector, a dynamic solution
has been implemented. Initially the scalar product of the two vectors is taken.
This can be used to de-mystify the relationship between them, and classify the
operations to follow based on the four di�erent approximate cases:

1. A scalar product less than -0.7 indicates that the vectors are tending
towards anti-parallelism. Find a new vector in the plane de�ned by the
origin and the inverted up vector {0,-1,0} as a normal. The angle can safely
be calculated using the identity [Fig. 10] with the input normal vector and
new plane vector, and adding 270 degrees. The axis of rotation can also
now be safely found using the cross product of these two vectors.

2. A scalar product between -0.7 and 0.0 indicates the vectors are tending
towards being perpendicular, where their cross product will generate a
vector in a left handed coordinate system. Use the inverted up vector
to �nd rotation angle with [Fig. 10] and adding 180 degrees. Find the
rotation axis with the cross product of the inverted up vector and the
input normal vector.
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a = cos−1(V0 � V1)

Figure 10: The angle a between two arbitrary normalised vectors V0 and V1.

3. A scalar product greater than 0.7 indicates the vectors are tending towards
parallelism. Find a new vector in the plane de�ned by the origin and the
default up vector as the normal. The angle can safely be calculated using
[Fig. 10] with the input normal vector and the new plane vector, and
adding 90 degrees. The axis of rotation can now be safely found using the
cross product of these two vectors

4. A scalar product between 0.7 and 0.0 indicates the vectors are tending
towards being perpendicular. The angle can be safely calculated using
[Fig. 10] with the input normal vector and the default up vector, and the
axis of rotation can be found using the cross product of these two vectors.

A similar process occurs when mapping the input tangential vector onto the
default tangential vector {0,0,1}, except the problem is �attened into the plane
de�ned by the origin and the input normal vector. Both of the calculations
generate a quaternion rotation that can be combined and used to rotate every
original bone direction vector to �nd their new oriented direction vector.

4.5 Modelling the L-System

Unlike a traditional modelling environment where point or line elements could
be transformed individually or in a group, this mechanism simply allows the
currently deformed shape of the tree to become its new un-deformed rest pose.
This allows the tree bones to be shaped by any of the same forces that would
be used during animation. Unlike a traditional single or group transformation
of point/line data, alterations to any part of the structure propagate naturally
along the bone hierarchy that they belong.

After the new shape has been created, a user can set it to be the rest shape.
This calls part of the original L-System setup procedure LSystem_3i::mSetupBoneAttrib(...),
which will set the original bone direction vector as the current direction vector
between the constructing states, and the rest length as the current distance be-
tween them. This operation is identical to what occurs after the state set has
been loaded from the geometry �le, after the hierarchy has been established.
At this point, the scene removes all existing forces so that they do not have a
double-transforming e�ect on the newly shaped structure. The simplicity of this
freezing operation is due to the simplicity of the L-System data, merely point
and line information.

4.6 Capturing and Using L-System Animation

In order for the resulting motion of the L-System to be useful in other envi-
ronments other than just this demonstration program, the class itself can write
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the current structure to a geometry �le in the same format that it was loaded.
The data is written in the form of point positions and line segments, like that
of the input data. This capturing process can occur whilst the user is interact-
ing with the dynamic L-System without a�ecting performance too noticeably.
If the ASCII Houdini Geometry �le (.geo) [SideFX 2009] is used, additional
point attributes are written, such as velocity, mass, width and node up-righting
vectors.

These geometry �les can then subsequently be imported into any 3D soft-
ware package that can accept line segment meshes in the format used. For
demonstration purposes, two small Houdini [SideFX 2009] digital assets were
created which can usefully interpret the data passed in an ASCII .geo �le:

1. The "nhLSGenRoughSurface" asset uses built in nodes and some addi-
tional Houdini expressions to form a polygonal surface in place of the line
segment mesh, using the width attribute to de�ne the radius of the surface
around each segment. This can subsequently be scaled to alter the overall
thickness of the structure.

2. The "nhLSGenLeafSurface" asset uses built in nodes to copy user de�ned
leaf geometry onto the leaf nodes of the structure, allowing varied scale
and orientation to be added to each.

4.7 Architectural Overview

To allow easy interaction between all elements of the scene, the lower classes were
designed to allow another object to control them. A clear hierarchy was estab-
lished, keeping classes at good access levels in relation to the information they
needed to operate on. The scene containing the forces and L-System controls
dynamic connections, not the objects themselves. A diagrammatic overview is
shown in Figure 11.
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Figure 11: L-System state data can be obtained by the scene and connected to
the mesh or forces. The force bins are responsible for all individual forces.
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5 Results

5.1 Visual Result

The visual e�ectiveness of the system can be evaluated from a number of di�er-
ent perspectives, since animation has a number of styles. Cartoon-style anima-
tion seeks to amplify movements by stretching and exaggerating proportions.
This is done by manually altering the scale and length of, for example, charac-
ter limbs. Animation aimed at capturing reality seeks to avoid any unnatural
proportional distortion.

By comparing photographs with output from the simulation, some compar-
isons can be made between the e�ectiveness of the pulling forces [Fig. 12], the
uniform vector force [Fig. 13], and the velocity �eld force [Fig. 14]. Unfortu-
nately, the comparable photographs show only small di�erences in shape of the
captured trees.

5.2 User Interaction

The ray selection method proves to be e�ective for allowing precise position and
selection of items. The addition of a Qt interface displaying program controls is
also helpful. Functional controls are split into di�erent tabs, such as L-System
parameter options, force creation, mesh loading and playback, and animation
capturing. The navigation of the scene is familiar to any 3D software package
user, allowing tumbling, tracking and dollying of the camera. The manipulation
of the forces is easy and transparent, although the lack of precise control over
position and rotation of vector based forces can become inconvenient since they
are moved only in the plane of the camera for simplicity.

5.3 Dynamic Simulation

Some aspects of the simulation are e�ective while others are unstable and erro-
neous. These are brie�y discussed and solutions proposed.

5.3.1 Simulation Accuracy

Brie�y re-examining the L-System internal force application processes in section
4.2.1 and 4.2.2, it is noticeable that there is in-fact a duplication of certain
force components applied. Namely, the forces applied along the bone direction
vector to prevent stretching or compression [4.2.1] are in the same direction
as a component of the force applied to goal the bone end states back to their
ideal position [4.2.2]. Since the goaling forces of section 4.2.2 are capable of
reforming the shape of the tree by themselves, it would seem appropriate to
drop the addition of those force in section 4.2.1 altogether. As we have seen,
the goaling forces are unconditionally stable, no matter the time-step size. By
adding the stretch forces of section 4.2.1, the system is in-fact made less stable
by the unstable explicit integration step which is taken. Unfortunately, by
removing these pure stretching forces, certain attractive behaviours are lost
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Figure 12: Pulling forces are used to mimic deformation on a tall thin tree
which is moved by the wind. Because the pulling forces can be positioned at
very precise positions along the branch, and moved to any position around the
scene, tactile and intuitive reshaping of the structure is easy to achieve. By
moving a bone lower in the hierarchy, all child bones are a�ected by change
in direction. The e�ect can be created using as many puller forces as desired,
adding and removing wherever necessary. If the structure contains a very deep
hierarchy, i.e. there are many bones sequentially connected constructing one
branch route, such the L-System depicted, the tree can become more di�cult to
control. Small alterations to pulling forces attached nearer the root bone a�ect
the behaviour of the bones towards the leaf nodes more erratically. Reducing
the bone stretch resistance parameter can lessen this.
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Figure 13: A uniform vector force is applied to a previously static L-System
(left) to imitate the e�ect of gravity (right). It is clear how the bones each
bend slightly in the direction of the downward force, resisting only part of the
force applied to them. Each successive generation, the sagging of the branches
is propagated down the hierarchy. For simple uses, the uniform vector force
is very e�ective, such as the gravity in this situation. For other uses such as
imitating a sideways wind force, the result can be very regular and not at all
convincing.
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Figure 14: A velocity �eld force is applied to the higher bones of a voluminous
tree. The movement of the leaf nodes and the bones is interesting and varied, as
well as localised to the injection stream of the force manipulator. The velocity
voxel �eld is quite coarse to enable interactive use, which results in less interest-
ing wind vortices to be created. This can adversely a�ect the detail of the forces
applied to the di�erent states. The system is less concerned with this aspect
however, since should the L-System deformation technique be implemented in
an existing animation package with �uid support [Autodesk 2009, SideFX 2009],
then these built-in �uid �elds could be used to apply the force.
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Figure 15: On the left, the stretch forces are being applied. On the right,
there are no stretch resisting forces. In both cases, a pulling force of the same
magnitude is applied to an identical L-System. On the left, the pulling force
attracts not only the bone to which it is directly attached, but also the ancestors
and children of this bone, in a natural manner. On the right, the pulling force
only a�ects the children of the bone and the bone itself. This leads to extremely
unnatural behaviour where the plant seems locked at all states other than those
children of the pulled bone.

from the simulation [Fig. 15]. For this reason, the force was retained, despite
the instabilities it introduces.

By keeping the goal force applied, stability which is lost due to the stretch
force is regained, although not completely. Hard coded restrictions have been
applied to the maximum resistances that can be applied for this reason. This is
an unfortunate way to have to resolve the stability problems. Exactly the same
behaviour is lost when the stretch resistance parameter is set to 1.0, which will
eliminate all stretching of the bones at the resolution step [4.2.3] for the same
reasons [Fig. 15].

A subtle disadvantage of using goal-based forces as is seen in the bend re-
sistance is that the branches do not display any springiness/bounciness. This
occurs where a state does overstep its ideal location during integration, but in a
manner that does not lead to instability. Since using a goaling scheme prevents
any overstepping, all springiness is lost. This can be seen as advantageous,
allowing the animator more precise control over adding the bounce manually
where they like, or as a disadvantage because natural secondary animation is
lost.
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5.3.2 Orientation Di�culties

Since all forces are generated purely through the use of oriented vectors, there
is degeneracy along the axis of the vector where the actual bone yaw is impos-
sible to deduce. The yaw of the root bone is enforced solely by maintaining
a �xed o�set between a default heading vector {0,0,1} and the current source
tangential vector [4.4]. Unlike a skeletal animation system where bones have
full orientation information, there is no use for the L-System bones to carry
this information because it becomes invalid after one simulation step: No full
orientation information can be deduced from the arbitrary vector between the
new state positions. This simpli�es the simulation, but makes certain e�ects
impossible to achieve. For example, true twisting of a bone, where the tangent
of the bone vector di�ers along it.

5.3.3 Collision Detection

As an aside from the internal L-System simulation, collision detection and re-
sponse is an important aspect of a dynamic scene. In this situation, collision
detection between the L-System and meshes could be trivially performed via
line segment-polygon intersection or nearest point testing [Ericson 2005]. Col-
lision response could be implemented in any familiar fashion such as penalty
forces rejecting states from any intersections occurring.

5.3.4 Future Considerations

In order to combat the con�ict of interests experienced between stability and
behaviour [5.3.1], a purely goal based approach is suggested for future consid-
eration and experimentation:

1. Concatenation of forces resulting from bone stretch, all external forces
from the environment and a direct goal force to the current deformed
con�guration of the tree, with maximum step size enforced on integration.

2. Recon�guration of the tree ideal bone/state goal positions based on true
deformed state positions.

This would avoid the unstable goal-free step, whilst allowing the states to move
freely as though connected in a loose spring system [Breen et al. 1994] and
maintaining the L-System shape.

A foundation for introducing a bone-twisting scheme could involve using
tubes instead of line segments for the bones. The tubes could be simulated as
free rigid bodies which are connected through joints at the current state posi-
tions. True orientation information can be obtained from a properly simulated
rigid body, indicating that twist may be derivable by some means.

5.4 Surface Generation

The digital assets created in Houdini [SideFX 2009], which create a rough tree
surface to visualise the plant allow for primitive representation of the L-System.
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Figure 16: The checker pattern reveals the UV coordinates applied to the model.
Along the right side of the main tree trunk, on two successive frames, the UV
coordinates have jumped erratically due to the alteration in mesh topology.

They demonstrate a few key points that should be considered however. Cur-
rently, a built-in "polywire" node is used to generate a polygonal surface around
the wire-frame structure. This operation is responsible for also creating the tex-
ture coordinates for each vertex of this polygonal surface. As the wire-frame
L-System changes over time, the topology of the geometry that is generated also
varies uncontrollably [Fig. 16]. This is a problem likely to plague any surface
generation scheme of this type which, as recently discussed, has only degen-
erative vectors with which to establish an oriented surface from. Instead, the
generation of one initial rest mesh is proposed. This mesh will then be deformed
based on the deformation occurring on the wire-frame L-System. This would
ensure that the topology is consistent. The static mesh could be deformed via
some skinning or lattice scheme. This is perhaps more �tting, since a highly de-
tailed surface could be generated once and deformed, instead of at each di�erent
wire L-System frame.
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6 Conclusion

This project demonstrates a technique for dynamic L-System animation and re-
modelling in the form of an interactive environment, while the core mechanism
behind the L-System dynamics are suitable for any kind of implementation.
The mechanism could be implemented in a number of situations such as: 3D
animation software, in the form of a plug-in where the forces could be properly
keyframed for repeatable animation; Interactive computer games as fully inter-
active foreground items or more realistic backing elements; L-System generation
software where the generated plants can be further manipulated or animated.

The project proves that it can produce acceptable results even when physical
evaluation step sizes are large and infrequent, a restriction most evident in
interactive programs.
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7 Source Code Guide

Following is a breakdown of the source �les included in the project, identifying
the aspects that were written for this project and the aspects that were used or
based on other sources.

C++ header and source code �les, all classes originally were written for the
Animation Software Development unit and directly re-used with only minor
modi�cations:

• programming/includeOther/Point.hpp

• programming/includeOther/Vector.hpp

• programming/includeOther/Window.hpp

• programming/sourceOther/Point.cpp

• programming/sourceOther/Vector.cpp

• programming/sourceOther/Window.cpp

C++ header and source code �les, all classes were originally written for the Ani-
mation Software Development unit. The Quaternion_i class is based on quater-
nion example code [Bourg 2009]. A new Quaternion_i::rotate(...) method has
been added which allows a point to be directly rotated by the quaternion, which
combines what can also be achieved by combining the operations: "Quater-
nion_i * Quaternion_i(Point) * Quaternion_i.inverse()". The new method
reduces obsolete calculations when performing the rotation:

• programming/includeOther/Quaternion.hpp

• programming/sourceOther/Quaternion.cpp

C++ header and source code �les, all classes researched and outlined during
the Personal Inquiry unit, and subsequently re-factored. All classes based on
example code by Fiedler [Fiedler 2006]:

• programming/include/Integrator.hpp

• programming/include/Integrator.cpp

C++ header and source code �les, all classes developed for this project. As-
pects of the code have been generated by the Designer-qt4 interface-building
scheme [TrollTech 2008]. The original interface designer project �le is: pro-
gramming/Qt/lsAnimator.ui; the deprecated output �le from the interface code
generation process is: programming/Qt/QtTurboHeader.hpp

• programming/include/Interface.hpp

• programming/source/Interface.cpp
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C++ header and source �les, all code written for this project, except Scene_i::
mInitialiseScene(...) which was originally written for the Animation Software
Design unit. This method was formerly responsible for creating an OpenGL dis-
play list used to visualise the scene origin grid shape, but has been subsequently
re-factored:

• programming/include/Scene.hpp

• programming/include/Scene.cpp

C++ header and source code �les, the Solver_3i class was originally written
for the CGI Tools unit. The class structure has been architecturally revised.
The Field_3i class has been added, taking attributes and behaviours originally
inside Solver_3i on. The Solver_3i::mBoundarySink(...) method was added
for use applying a sink boundary condition to the �uid simulation �eld. The
SolverBasic_3i class has been added for a basic �uid solving specialisation of
the base Solver_3i abstract solver class:

• programming/include/Solver.hpp

• programming/source/Solver.cpp

C++ header and source code �les, all code written for this project. Code in the
"mCreateSelection(...)" family of methods found in the ForceBin_3i class and
descendants, and the Mesh_3i class is based on the mathematical principles
outlined by Comninos [Comninos 2006] and Ericson [Ericson 2005] for e�cient
ray intersection tests. In the context of these methods, they are presented as
line segment to line segment nearest point tests in 3D:

• programming/include/ForceBin.hpp

• programming/include/Mesh.hpp

• programming/source/ForceBin.cpp

• programming/source/Mesh.cpp

C++ header and source code �les, all code written for this project. Code
in the "mClosestPtLineLine(...)", "mIntersectRayPlane(...)", "mIntersectRay-
Sphere(...)", "mCollidePointPlane(...)", "mCollidePointPlane(...)" family of meth-
ods of the Utility_i class based on the examples presented by Comninos [Comninos 2006]
and Ericson [Ericson 2005] for ray to primitive intersection tests and distance
of point from plane geometric tests in 3D:

• programming/include/ Utility.hpp

• programming/source/ Utility.cpp

C++ header and source code �les, all code written for this project:

• programming/include/Camera.hpp
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• programming/include/LSystem.hpp

• programming/include/mainGui.hpp

• programming/include/mainNoGui.hpp

• programming/include/Ray.hpp

• programming/source/Camera.cpp

• programming/source/LSystem.cpp

• programming/source/mainGui.cpp

• programming/source/mainNoGui.cpp

• programming/source/Ray.cpp

Shell Script, written for this project to build the lsAnimator and lsAnima-
torNoGui versions of the simulation program:

• programming/build.sh
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