
Masters Project

Swooping Angels in Massive

Frank Dumont

MSc Computer Animation & Visual Effects

21st August 2009

Contents

1. Introduction 2

2. Previous Work 4

3. Technical Background 5

4. Solution 6
Aim 6
Massive agents 6
Swooping 7
Following 11
Spiralling 17
Integrating the swoop 20
Balancing Spirallers 22
Beacons 24
Leader agent 25
Follower agent 26
Spiraller agent 27
Placement 28
Modelling 30
Texturing 35
Animation 37
Lighting 40
Shaders 40
Cameras 41
Background 41
Render set-ups 42
Level of detail 42
Rendering 43

5. Conclusion and Further Work 44

6. References 45

7. Appendices 47

1

1. Introduction

Warring angels is a current topic being tackled in the film industry, with the film Legion
due for release in 2010[1], featuring an army of angels descending on Earth to start the apocalypse,
and a version of Paradise Lost in pre-production[2], with the battle leading to the expulsion of
Lucifer from Heaven set to be depicted[3].

The aim of this project is to produce Massive[4] agents for a single shot from a sequence
depicting the following scene from the Book of Revelations:

“And there was war in heaven: Michael and his angels fought against the
dragon; and the dragon fought and his angels, And prevailed not; neither was
their place found any more in heaven. And the great dragon was cast out, that
old serpent, called the Devil, and Satan, which deceiveth the whole world: he
was cast out into the earth, and his angels were cast out with him.” (Revelation
12:7-9, King James Bible)

As well as being a dramatic scenario to recreate, the need for flying characters in the
sequence offers an interesting challenge in Massive, which was originally designed for crowds that
move on the ground. The sequence is imagined as a teaser trailer for a larger production on the
same theme:

Outside Heaven, with clouds above and clouds below, rumbles of thunder accompany a
darkening of the ground as a red mist rises. From the fog the shapes of Satan’s fallen angels and
demons emerge as they march to war. Ahead of this army a light breaks through the clouds above
and angels fly out in large numbers to defend Heaven. Small skirmishes would be shown as the
two sides meet, with angels clashing in mid-air and attacking characters on foot as they swoop by
at high speed, whilst others are brought crashing to the ground. The sequence would end after
following the hero character, Michael, as he flies down amongst other angels and lands on the
ground, poised to join the battle.

The shot chosen from this sequence to produce was the emergence of the first angels from
the clouds above the battlefield.

Initially an extreme long shot shows an empty sky before the first angel drops from the
clouds into view. Immediately after the first angel appears more emerge from the same spot in the
sky, following the first as it falls. A constant stream of angels begins to descend in a column until
they gather enough speed to use their wings to pull up, spread out and glide towards the camera
(Fig. 1.1).

2

Figure 1.1: Storyboard of the intended sequence

This shot was chosen because it allows for a large number of characters but requires little
variation in their appearance, and also features a lot of interesting character movement. Other parts
of the sequence would also require a lot of complex character animation to be created, in the form
of walk cycles or fight animations, whereas the major factor in the visual impact of the angels in
the chosen shot is the way in which they move through the air as they fly.

The shot should show a large number of angels moving in a coordinated group, falling
from above until they pick up enough speed to use their wings and pull up to glide past the camera.

3

2. Previous Work

Previous work judged most relevant to this project included films containing CGI angels
and films with a large number of flying creatures moving together.

The film Dogma[5] features three main characters that are angels: Metatron, Loki and
Bartleby. For most of the film all three characters have their wings hidden, but they are visible in
two scenes and appear both computer-generated and as props. The wings used are traditional, with
all white feathers, and match up well with the human bodies. Both Loki and Bartleby wear armour
cuirasses, which would be appropriate dressing for the angels in this project as they are about to
fight a battle.

Gabriel is a main character in the film Constantine[6] that is half-human half-angel, and
other similar characters also appear. As in Dogma the wings of these angels are largely hidden, and
in Constantine can only be seen by certain characters in the story. Unlike in Dogma however they
are not universally white, and the wing span is much larger. Although the wings used look more
impressive than in Dogma they may not work as well with a large number of angels in one shot, as
they would need to align their bodies with other angels in order to stay close without touching each
other.

As well as CGI angels Constantine also features an imagining of Heaven using clouds. The
bright sunshine is a strong symbol of the presence of God and also allows a lot of colour in the
shot which could look dull if only white clouds were used. The inclusion of a modern-looking city
in the landscape is an interesting addition, although not in keeping with the notion in this project
that Heaven itself is above the clouds from which the angels are descending.

X-Men: The Last Stand[7] has a single character simply named Angel, who is a human
mutant with wings that are a pure white. The scenes in which his wings are visible include several
with him flying as well as swooping, which provide good reference for creating flying angels in
Massive.

The film Pitch Black[8] is a science-fiction film featuring winged aliens that fly together in
large flocks. The way they move forms streams of creatures that stick together and move as one,
with chaotic movements within the flock which make individual aliens hard to see. This gives a
strong impression of a coordinated group which would be appropriate to recreate for an army of
angels, although with slower, more controlled movements for individual characters.

Finally The Matrix Revolutions[9] was researched for its use of flying robots, which move in
large numbers in the film when they are battling against humans. When the robots fly in groups
they form streams similar to those in Pitch Black, with the additional feature of the machines at the
edge of the group spiralling around the stream. This extra movement makes the group seem more
solid, as if the outside members are holding the shape together and providing protection for the
robots inside of the stream. This would be an interesting behaviour to try to achieve in Massive,
whilst adding an extra dimension of coordination to the crowd of angels.

4

3. Technical Background

This project is created using Massive software, named as the acronym of Multiple Agent
Simulation System in Virtual Environment[10]. Massive is designed for animating large crowds of
characters, using artificially intelligent agents that can be programmed to interpret and respond to
their surroundings. These agents are combined with 3D geometry and animations in order to
render 3D animated scenes.

Each agent is defined as a combination of a body and a brain. The body represents the
physical properties of an agent, including size and appearance, and is comprised of a skeleton
coupled with 3D geometry and surface materials for rendering the agent.

The brain represents the artificial intelligence processes of an agent, and is constructed as a
node network for evaluating a series of fuzzy logic operations. Channels which monitor variables
within the scene are used as inputs to determine conditions that are currently affecting the agent,
and fuzzy logic is applied to these inputs in order to make decisions on how to respond. This
response is enacted by altering the value of output channels representing the current attributes of
the agent.

Fuzzy logic in the brain is implemented using membership functions which take any value
and evaluate the “truth” of that value based on a specified curve, returning 1 for true, 0 for false or
any value in between. The different fuzzy logic nodes available in Massive are shown in Figure
3.1.

The input node reads the value of a channel to receive information about an
agent or its surroundings. Expressions can also be added to inputs to make
calculations for use in the brain.

The output node writes values to channels to alter the state of an agent or
affect its surroundings

The fuzz node holds a membership curve which is used to evaluate the fuzzy
logic “truth” value of its input

The defuzz node converts fuzzy logic values back into values for use in a
channel

The AND node applies the fuzzy logic equivalent of the Boolean AND
operation, and is true when all of its inputs are true

The OR node applies the fuzzy logic equivalent of the Boolean OR operation,
and is true when at least one of its inputs is true

The timer node measures time, and is started when it receives a strong
enough input signal. Timer nodes can count up to a specified time in a loop or
else start counting and never stop.

The noise node generates random values between 0 and 1, changing at a
specified rate

Figure 3.1: Table of brain nodes in Massive

5

4. Solution

Aim

After considering the previous work relevant to this project, the final aim is to produce
agents in Massive that could be used to create the shot described in the Introduction section. The
agents should appear as humans with wings, dressed in armour ready to fight. The angels should
be able to convincingly fall under gravity in a column, and glide in a specific direction. Angels on
the outside of the column should move in a spiralling motion, keeping the shape of the column
together, and there should be no collisions between characters.

Massive agents

To create the angels in Massive three main agents were required. The angels used to form
the column were separated into 'Leaders' and 'Followers'; the Leaders determining the path for the
group to take and the Followers using them as a guide. The third 'Spiraller' agent represented the
angels spiralling around the column in order to preserve its shape.

Each agent skeleton was created from the human skeleton used in Massive’s 'Ambient'
agent[11]. To transform them into angels, bones were added to the skeleton to replicate the bones in
a bird’s wing and also allow control of the feathers.

Figure 4.1: Angel skeleton in Massive

Using the orientation of the skeleton, the appearance of falling and flight is achieved using
the 'ty' channel, which sets the speed or acceleration of an agent along its y-axis. At the start of any
scene however each angel is positioned so that it is pointing ‘upwards’, so a node network was
created in each brain to rotate the agent until it was correctly orientated to drop downwards, before
it was allowed to move.

6

Figure 4.2: Node network for ‘setup’ behaviour

The 'ly' and 'rx' channels are used as the input and output of the network respectively. The
lx channel monitors the y-component of a unit vector in the direction of the agent's current
heading, and the rx channel affects the agent's speed of rotation about the x-axis. The 'ready' fuzz
node holds a membership function which returns 1 if the value of ly is -1, and the angel is pointing
directly downwards, and zero otherwise. The 'rotate' fuzz node holds the opposite membership
function, so that when the angel is not pointing downwards the rotate defuzz node causes the agent
to pitch down using the rx channel until it is. The 'stop' timer is set up so that once started by the
ready node it stays true, and the black NOT connection stops the rotate node having any more
effect. Finally the ready node also triggers a second timer, enabling the rest of the brain to start its
processes.

Swooping

In order to achieve a convincing swooping motion in Massive it was decided to first create
a program to simulate the behaviour using C++, OpenGL and the GraphicsLib library[12]. The
Glide program uses simplified equations to calculate the lift, drag and gravity forces acting on a
glider, based on its current speed and angle of flight. The glider starts from a stationary position
pointing downwards to replicate the angels beginning their descent. At each step in the simulation
the three forces are calculated and combined to get the net force, which is used to adjust the speed
and inclination of the glider. OpenGL is used to draw the glider as a cuboid, following the motion
to demonstrate how it looks. The forces acting on the glider are also rendered as coloured lines of
varying length to show how they change as the glider gains speed and pulls up.

Figure 4.3: Diagram illustrating
forces acting on a glider

The lift force l acts perpendicular to the velocity vector and the drag force d acts in the
opposite direction to the velocity vector. The magnitudes of these forces are calculated as

7

[13]

where v is the current speed of the glider, α is the attack angle of the wing and b and c are the
width and span of each wing respectively. To simplify the equations further, the angel wings are
assumed to have a 1 metre width and 2 metre span, and the angle of attack is assumed to be the
angle from the velocity vector to the horizontal, so that

The gravity force acts downwards and is calculated as 10 times the mass of the glider.

These equations combined in the simulation to create a smooth convincing swooping
motion as the glider picks up enough speed to generate lift and pull itself into a gliding position.

The first method that was tried to bring the swooping motion into Massive involved
reproducing the force equations using the variables and mathematics available in Massive (Fig.
4.4). Because Massive doesn’t support vector arithmetic the calculation of the net force acting on
the glider was separated into x and y components, and the clamp function was also incorporated to
prevent divisions by zero. However this method failed because of the recursive nature of the
equations, which use the current speed and attack angle of the glider to calculate the new speed
and angle. Because the variables are node based they are not initialised, and start without values as
a “not a number” error. In a non-recursive equation when one value is set it allows the calculation
of the next, pushing this error message along the nodes until it is no longer needed. In the gliding
equations however the error propagates in the loop until every node gives a “not a number” error.

A modified method to calculate the swoop in Massive used agent channels instead of new
variables wherever possible to make use of their initial values, but this did not resolve the problem.

8

Figure 4.4: Annotated brain attempting to reproduce force equations in Massive

The alternative to calculating the swoop dynamically was to use dead reckoning, repeating
the motion produced in the simulation directly without taking into account the state of the agent.
To achieve this the Glide program was altered to output the attack angle and speed of the glider
after each calculation, and these values were brought into a spreadsheet to produce graphs of the
values changing as the glider pulls up (Fig. 4.5).

These graphs could then be approximated in Massive by splitting them into sections that
fitted the shape of Massive’s membership curves, and using Boolean switches to control which
curve is used at a specific time (Fig. 4.6). The current membership curve is then used to blend
between the values at the start and end of the relevant section of the simulation graph.

In the early test agents both the speed and angle graphs were recreated in Massive in this
way, but it was eventually decided that the speed changes were not crucial to the impression of the
swoop, and that the speed would be better controlled elsewhere in the brain.

9

Figure 4.5: Simulation graph showing the angle change per second as the glider pulls up

Figure 4.6: Coloured membership curves replicating the angle change graph. The coloured
boxes show the time periods over which the curve sections are active. Each curve section is

squashed or stretched depending on the range of the values it blends between.

Figure 4.7: Node network for the ‘swoop’ behaviour

Each section of the graph is recreated using two fuzz nodes, two AND nodes and two
defuzz nodes (Fig. 4.7). One fuzz node holds a membership curve designed to mimic the shape of
the simulation graph whilst the other holds a Boolean function which is true for the time interval
that the curve is valid. The defuzz nodes hold the start and end values of the relevant section of the

10

graph, to be used as the rotation speed about the x-axis. Finally the AND nodes are set up so that
one is the inverse of the other and they always add up to 1, blending between the start and end
values at a rate dictated by the curve.

Once an agent is in the right position, this node network can be triggered by starting the
timer and the agent will repeat the motion of the simulation and swoop into a gliding position.

Following

The starting point for the Follower agents involved using sound to determine where
surrounding agents were. Using the distance and direction to other agents, each falling angel could
move away from those that came too close and move towards others that weren’t.

Figure 4.8: Node network for an early Follower agent

The early Follower brain can be separated into five sections, each representing a behaviour
carried out by the agent (Fig 4.8). The set-up behaviour uses the same method explained
previously, with a noise node incorporated to vary the time it takes for each agent to be ready to
move. The gravity nodes control the speed of the agent, accelerating at 10 m/s2

 using the ‘go’ node
until the ‘terminal’ fuzz node is true, and the angel has reached terminal speed. The go node is then
balanced with the ‘stop’ node to keep the speed steady at the terminal value. The sound behaviour
outputs constant values to the ‘sound.a’ and ‘sound.f’ channels to emit sound at a specified
amplitude and frequency respectively. The ‘sound.x’ channel gives the angle in the xz-plane from
an agents current heading to the source of any sounds that the agent can hear, and is used by the
avoid and follow behaviours to find out which direction the other agents are in. To decide whether
the avoid or follow behaviours should be active the distance to the nearest sound is found using the

11

‘sound.d’ channel, so that when the ‘too close’ fuzz node is true the nearest agent is too close and
must be avoided. The direction to the nearest agent is used to trigger a rotation in the opposite
direction, avoiding a collision. The black connections between the avoid and follow nodes stop the
follow behaviour being active whenever an agent is too close, giving priority to the avoid
behaviour. When the agent is not avoiding other agents, the follow behaviour is enabled and the
agent uses the direction of sounds heard in order to turn towards other agents in an attempt to
follow them.

This early brain network kept the follower agents together in a group as they fell and
ensured there were no collisions, but because the followers and the leader all emitted the same
frequency sound there was no distinction made and the group could ignore the leader agent.
Another problem was that whenever one agent tried to move towards another it would pass the
spot it was aiming for before realising and taking time to start moving the other way, causing it to
“rock” back and forth behind the agent it was following. This behaviour in a group of agents trying
not to collide meant that all the followers were likely to start rocking, taking away the impression
of the angels moving as a coordinated group.

At this point it was decided that the node networks in the brain of each agent were getting
too complicated and disorganised to understand and alter. To fix this, individual behaviours were
encapsulated into separate macros (Fig. 4.9). Each macro was named after its purpose and given an
AND node as a switch. Each switch is wired to a behaviour network so that the behaviour is
entirely active if the switch value is 1, but has no affect on any output channels if it is 0. The
switch takes as inputs any conditions which must be true for the behaviour to start, and any
conditions which should stop the behaviour can be input to the switch using black NOT
connections. As well as making each brain easier to follow, the macros also allowed each
behaviour to be switched on and off in different combinations for testing purposes.

12

Figure 4.9: First Follower brain using macros

To stop the problems with angels rocking back and forth, a new ‘orient’ behaviour was
added so that when an agent came close to the sound it was following it would start to rotate itself
to point in the same direction as its target. This behaviour reduces an agent’s movement relative to
its target and stops it from overshooting as it gets near.

Figure 4.10: Macro for early ‘orient’
behaviour

The 'sound.ox' channel used measures the relative heading of another agent to the current
agent in the xz-plane, and the 'sound.oy' channel measures the relative angle from the agent to the

13

xz-plane. Because Massive was intended for characters travelling along the z-axis and staying on
the ground, these channels do not measure the roll rotation of agents. This meant that with the
agents orientated along the y-axis these channels could not measure the necessary relative-yaw
angle between angels. As a result the Leader and Follower agent skeletons were rotated to point
them along the z-axis, and the brains were altered to move using the 'tz' channel, and rotate
differently as described in Figure 4.11.

Figure 4.11: Diagram illustrating the different channels used for rotations for agents aligned
along the y and z-axes

To allow the Follower agents to distinguish the leader as their main target, the leader agent
was altered to emit a lower frequency sound, and the follow behaviour (Fig. 4.12) in the Follower
brain was changed to only listen for this frequency. Although this meant that the leader now
controlled the group of angels, all of the Followers aiming for a single agent meant they would
stick very close together and spend a lot of time avoiding each other. This problem was solved by
also changing the Follower agents so that if they were settled behind the Leader agent, they would
start to emit the same frequency as that Leader, forming a chain in the group that kept all of the
angels following the leader, directly or indirectly.

14

Figure 4.12: Macro for ‘follow’ behaviour

Figure 4.13: Macro for ‘sound’ behaviour of the Follower
agent

15

Figure 4.14: Macro for ‘orient’ behaviour

The updated orient macro (Fig. 4.14) includes ‘centre’ fuzz nodes to determine when the
agent is ‘in position’ behind its target, in order to trigger a change in the frequency of the sound
emitted to match the Leader agent. The behaviour was also given separate triggers for the different
rotations it performs, so that when the agent is close enough to align in one axis but not the other,
the macro can still be used.

The final behaviour added to the follower agents to keep them following the leader in a
column is encapsulated in the ‘balance’ macro (Fig. 4.15). This part of the brain combines the
movements of the other behaviours with a desire to keep the angel pointing directly downwards.
This has the effect of reducing the severity of the movements made by a follower jostling for
position, and makes the falling angels appear more in control as they travel downwards inside the
column. It also means that any agent that gets lost and has no sounds to follow will behave in a
predictable way, continuing to fall directly down until it is told otherwise.

16

Figure 4.15: Macro for ‘balance’ behaviour

With the agent aligned along the z-axis the lx and ly channels measure the x and y
components in world space of a unit vector pointing along the y-axis of agent space. For the agent
to be pointing directly down both of these channels must equal 0, so the brain uses pitch and yaw
rotations to reach these values. This macro is only simple because the agent has not been allowed
to roll yet; once a roll rotation is introduced the lx, ly and lz values are no longer mutually
exclusive and more complicated patterns of rotation are required to reorient the agent.

Spiralling

The first method considered for a spiralling behaviour involved using sound to keep the
falling column on one side of the agent. If the agent started outside of the column with its stomach
facing the centre, as it flew forward and the sounds of the falling agents moved behind it, it could
pitch down so that the sounds were directly underneath it again. Rotating to keep the column on
the same side of the agent would cause the agent to move in circles around the column, falling
downwards with the other angels and forming a spiral.

This method was first tested with a single spiralling agent and a target agent. The target
agent was a sphere which moved at a fixed rate in the y-axis. The spiralling agent took the sound.x
and sound.y values of the target and used them to keep the target underneath its wings as it moved
forwards at a fixed speed. This set-up resulted in an agent which could successfully move with the
target whilst performing a spiralling motion, but was heavily dependent on the starting positions of
both agents. If the circle flown by the spiralling agent became lined up with the target’s movement
then the angel would fly below the target and pull round so that it flew directly upwards against
gravity.

In an attempt to fix this problem an input taking into account the y-component of the
spiralling agent’s heading was added to its brain. When this value rose above 0 then the agent was
travelling upwards against gravity and started rotating downwards to correct itself. This adjustment
meant that the spiralling agent fell into a correct motion wherever it started near to the target, but if
the spiraller did pass below the target then it would twist in an undesirably complicated pattern
until it was able to return to spiralling.

At this point it was decided that to create a spiralling agent it would be necessary to find
out exactly what rotations a Massive agent would have to perform in order to move around the
shape of a regular helix. The parametric equation of a helix in Cartesian coordinates is given as

17

[14]

for some parameter t, where a is the radius of the helix, and 2πb is the distance travelled in the z-
axis after a full rotation. To replicate the desired motion these equations were changed from
describing a helix spiralling around the positive z-axis to describing a helix around the negative y-
axis by swapping the y and z equations and negating b.

 This equation is not directly useful in Massive however as agent positions can only be
affected by speeds and rotations rather than placement at positions in world-space, so a program
was written in C++, OpenGL and the GraphicsLib library[12] to
simulate a cuboid following the path dictated by a helix equation
and calculating the rotations carried out on the shape’s three axes
as it follows the tangent of the spiral. The rotations were found to
be constant values in all three rotation axes, which varied
depending on the radius and pitch of the helix. When these
rotations were implemented in the brain of a Massive agent (Fig.
4.16) travelling at a fixed speed the resulting motion followed the
path of a regular helix, but pointing in an arbitrary direction that
sent the angel flying the wrong way.

To achieve a spiral in the desired direction it was clear that the initial heading of the agent
needed to be changed. A test agent was created with controls to manually rotate the agent before
flicking a switch to start the spiralling rotations. The lx, ly and lz channels were monitored to
determine the rotated heading of the agent in each test. This approach was not fast or accurate
enough to provide satisfactory results however and it was decided to calculate the required initial
heading to use the helix equation results for spiralling downwards.

The first task was to calculate the central line about which an arbitrary helix rotates. This
was achieved by adapting the Helix program to recreate the Massive helix, starting the cuboid in
the orientation of the agent and moving it using the same rotations that the first program produced.
The x, y and z coordinates of the cuboid after each calculation were outputted by this new program
and brought into a spreadsheet, where separate graphs were produced for the x, y and z coordinates
of the cuboid’s position as it followed the shape of the helix (Fig. 4.17). Provided that enough
position data was collected it was observed that the centre-line could be calculated using the
regression lines of these graphs. If each regression line is a linear equation

then the centre-line is the combination of these linear equations into a 3D line, given by

18

Figure 4.16: Macro for
‘spiral’ behaviour

Figure 4.17: Graphs showing the components of the position along a helix over time

To simplify the calculation of the centre-line for an arbitrary helix the three lines of
regression were calculated as part of the Helix program using the following equation:

where

and

[15]

Once the centre-line is found, the program calculates the rotation required to move from its
current direction to the desired downward vector, and applies it to the old initial agent heading to
give the correct heading for downwards spiralling. To ensure that the centre-line also passes
through the origin the radius of the spiral can be calculated as the shortest distance from any point
on the helix to the centre-line, and the agent offset from the centre of the column by that amount.
Because the Spiraller agent was still orientated along the y-axis, the lx, ly and lz channels
represented the x, y and z components of a unit vector in the direction of the agent's heading. This
meant that they could be used to control the rotations required to reach the calculated start heading
that would lead to a spiral travelling directly downwards. The setup behaviour used by the Leader
and Faller agents was adapted into two separate macros, 'setup yaw' and 'setup pitch'.

19

Figure 4.18: Macro for ‘setup pitch’ behaviour Figure 4.19: Macro for ‘setup yaw’ behaviour

Each macro works in the same way as the original setup behaviour, with fuzz nodes that
determine when the agent is correctly orientated and trigger an appropriate rotation if it is not.
They differ however in that they have the ability to rotate the agent in both directions about an
axis, so that if the agent overshoots the required value it can rotate in the opposite direction in
order to reach it accurately.

Integrating the swoop

In order to coordinate each agent’s transition from falling to gliding it was decided to
create a beacon agent to trigger the swoop macro in each brain. The beacon was represented as a
sphere, and dropped before the angels to a designated height before emitting a loud noise. The
angel agents were set up so that moving within a certain distance of the beacon activated a new
behaviour named 'prepare', which caused them to roll until they were facing away, with the beacon
behind their wings, before starting the swoop action to end up gliding in the direction towards the
beacon. This set-up worked except that the time it took to prepare to swoop was decided by the
initial direction in which the agent was facing. This meant that the height at which each angel
started to swoop varied dramatically. Instead of this system it was decided to have two beacon
agents, named 'roll beacon' and 'swoop beacon'. Both beacons emit different frequency sounds, and
the angel agents have separate macros for detecting either beacon as they pass behind them on
their descent. The roll beacon starts the rotation into the right heading, and the swoop beacon starts
the transition from falling to gliding.

Figure 4.20: Macro for the ‘detect roll beacon’ behaviour of the Leader
and Follower agents

20

Figure 4.21: Macro for the ‘prepare’ behaviour of the Leader and
Follower agents

The 'detect roll beacon' macro (Fig. 4.20) combines the sound.x and sound.f channels to
locate the roll beacon, and wait for it to be passed. When the beacon is more than 90 degrees to the
left or right of the agent then it has been passed, and the roll timer is started. The 'detect swoop
beacon' works in the same way, triggering the switch belonging to the swoop macro to start the
swoop timer. Once the roll timer is started the prepare behaviour (Fig. 4.21) becomes active, using
the sound.x channel to dictate in which direction to rotate so that the roll beacon is behind the
angel's wings. After these rotations are finished the centre and above fuzz nodes are “true”, and the
ready timer is started to deactivate the prepare behaviour.

The detect beacon macros in the brain of the Spiraller
agent do exactly the same job as those in the Leader and
Follower agents, but because of the different starting
orientation of the agent the sound.y channel is used to
determine when a beacon has passed behind the agent (Fig
4.22).

Figure 4.23: Macro for the ‘gravity’ behaviour
of the Leader and Follower agents

Figure 4.24: Macro for the ‘glide’ behaviour

21

Figure 4.22: Macro for ‘detect
swoop beacon’ behaviour of the

Spiraller agent

Two macros, ‘gravity’ and ‘glide’, are used to control the acceleration of each agent before
and after the swooping manoeuvre. The gravity behaviour in the Leader and Faller agents (Fig.
4.23) controls the speed of the angels as they drop, accelerating at 10 m/s2 until the value of speed
tz reaches the terminal velocity of 67 m/s. At this point the acceleration becomes balanced with a
decelerating defuzz node in order to maintain the terminal speed for the rest of the drop. The glide
behaviour (Fig. 4.24) uses exactly the same method for controlling the speed, but the speed
changes at a slower rate, and the top speed of a gliding agent is less than half of the terminal speed.

Figure 4.25: Macro for the ‘gravity’
behaviour of the Spiraller agent

The gravity macro for the Spiraller agent (Fig. 4.25) works similarly to that of the other
agents, but includes an extra defuzz node named ‘boost’. For the agent to maintain the shape of the
spiral it needs to travel at a constant speed, and cannot spend time accelerating in order to reach
terminal velocity. The boost node is triggered when the angel first starts to move, and accelerates it
rapidly to full speed before relinquishing control to the other defuzz nodes to steady the speed at
67m/s.

Balancing Spirallers

Before the Spiraller agents could replicate the prepare behaviour and line up ready to
swoop they first needed to stop spiralling and start falling directly downwards. The balance macro
used to keep the Follower agents pointing down could not be used because the spiralling motion
requires rotations in all three axes, and the individual rotations required to return them to a specific
new heading would be difficult to determine. Instead it was decided a new beacon would be used
as a guide, similar to the roll and swoop beacons. The 'centre beacon' emits sound in its own
frequency from a position a long way below the path of the angels, but in line with the centre of
the column. This beacon can then be used as a target for the Spiraller agents to aim at, causing
them to orient into an approximately downwards direction.

22

Figure 4.26: Macro for the ‘aim at centre’ behaviour

The ‘aim at centre’ macro (Fig. 4.26) uses the same method as the ‘follow’ behaviour,
using the location of the centre beacon determined by the sound.x channel to decide on which way
to rotate in order to aim at it. However, because the centre beacon is not directly below the
Spiralling agent but below the centre of the column, extra nodes are incorporated to stop them
moving towards the inside of the column. Because the angle difference between the line to the
beacon and the downwards vector increases as the beacon gets closer to the agent, the ‘near’ fuzz
node is used to test the distance to the beacon,
stopping any more rotations when it becomes
too small. The ‘ahead’ fuzz node which
evaluates the sound.y channel has a loose
definition of when the centre beacon is in
front of the Spiralling agent, and stops any
more rotations at this point before the agent is
pointing directly at the beacon and hence
towards the inside of the column. When the
rotations stop the ‘prepare’ behaviour (Fig
4.27) can begin, rolling the agent until the roll
beacon is behind its wings, ready to swoop.

23

Figure 4.27: Macro for the ‘prepare’ behaviour of
the Spiraller agent

Beacons

Figure 4.28: Brain of a beacon agent

Each of the roll, swoop and centre beacons share the same brain (Fig 4.28), differing only
in the distance they drop before being in position and the frequency of the sound that they emit.
The distance is determined by an agent variable named ‘droptime’ and the speed in the ‘drop’
defuzz node which is outputted to ty. When the Massive simulation starts the built-in ‘time’
variable is at 0, and the expression ‘time - droptime’ is negative. The ‘-ve’ fuzz node evaluates true
whilst the simulation time is less than the value of droptime, causing the agent to move downwards
in the y-axis. Once the expression turns positive the fuzz node evaluates as false, the beacon is in
position and the sound is activated.

24

Leader agent

Figure 4.29: Brain of a Leader agent

Each angel has an agent variable named ‘starttime’ with a value in seconds determining at
what point in the Massive simulation it should start its descent. The Leader brain (Fig 4.29) uses
the built-in time variable to wait for this point, before triggering the setup macro. When the setup
has finished the Leader can begin its drop, and the gravity and sound macros are triggered. The
end of the setup also causes the detect roll beacon and detect swoop beacon behaviours to be
enabled. The angel drops straight down until the roll beacon is passed, and the prepare behaviour is
started. This causes the Leader to roll into position with the beacon behind it, before the swoop
beacon is detected and the swoop macro is triggered. As well as applying rotations to transition the
angel from falling to gliding, this macro switches off the acceleration due to gravity and enables
the glide behaviour to control of speed the agent. The Leader angel then continues gliding off into
the distance. The ‘trigger’ output nodes in the brain control the animations of an agent, and are
explained in the Animation section.

25

Follower agent

Figure 4.30: Brain of a Follower agent

The brain of a Follower agent (Fig. 4.30) starts in exactly the same way as the Leader,
waiting for the start time before performing the setup behaviour and starting to drop. Similarly the
end of the setup macro starts the gravity, sound, detect roll beacon and detect swoop beacon
behaviours. Instead of just dropping though the end of the setup macro also activates the avoid,
follow, orient and balance behaviours so that the Follower angels move around inside the column,
trying to follow the nearest Leader agent whilst avoiding collisions which each other. If the
Follower finds itself behind a Leader agent and heading in the same direction, the ‘in position’
fuzz node will evaluate to true, and a switch in the sound macro will change the agents sound
frequency to match that of a Leader agent. The Follower continues to position itself within the
column until the roll beacon is passed. The detect roll beacon macro uses black node connections

26

so that when the prepare behaviour starts the avoid, follow, orient and balance macros are all
disabled, and the agent stays fixed in its position relative to all other agents from that point
onwards. After the Followers start to roll their behaviour is identical to that of the leader, the
swoop beacon triggers the swoop action, which in turn disables the gravity macro and enables the
glide macro to control the agents speed.

Spiraller agent

Figure 4.31: Brain of a Spiraller agent

The Spiraller agent’s brain (Fig 4.31) starts with the setup yaw macro once the ‘starttime’
value is reached. After the yaw rotations are complete the setup pitch macro rotates the angel into
the right heading to ensure that the helix it creates spirals directly downwards. The end of the set-
up triggers the spiral behaviour and the gravity macro, which boosts the angel to terminal velocity

27

within a few frames so that the radius of the helix is fixed as the angel rotates around the falling
column. The detect roll beacon and detect swoop beacon behaviours are also enabled, and the
angel spirals downwards until the roll beacon is passed. A black connection from the detect roll
beacon macro stops the agent from spiralling once the roll beacon is behind the agent, and the aim
at centre behaviour is enabled. The agent rotates out of its spiralling position until it is heading
downwards, and when the centre beacon is approximately ahead of the angel the prepare macro is
triggered, rolling the angel into position to perform the swoop manoeuvre. Similarly to the other
agents, when the swoop beacon passes the agent the swoop behaviour is started and the speed
control is switched from the gravity to the glide macro, leaving the angel to glide off into the
distance.

Placement

The initial placement of each agent within the scene is crucial for their behaviours to
produce the intended visual result. The Spiraller agent is the most dependent on its positioning, as
the helix that they follow is fixed and must encapsulate the entire column in a tight circle, without
causing collisions with any other agents. To achieve this the Spiraller agents are placed along on a
curve in the shape of a circle around the origin, with a radius equal to that of the helix. Using trial
and error the angle of each agent is offset by a fixed amount from the path of the circle until the
circular motion of each Spiraller is centred on the origin. For large numbers of spiralling agents a
random height offset is also added to each starting position, to reduce the risk of two agents
following the same spiral at the same time and intersecting each other. In order to form a column
when they descend the Follower agents are placed inside a circle, sized to fit just inside the curve
of the Spirallers so that they are close to each other but not colliding.

At first the Leader agents were placed randomly inside the Follower's circle, but this
created problems when the Follower agents followed them away towards one side of the column,
causing it to skew. This was fixed by creating another circle in which to place the Leaders, with a
small radius in the centre of the column.

Finally, a single centre beacon agent is placed at the centre of the three circles, and the roll
and swoop beacons are placed together a short distance outside of the circles, in the direction that
the angels will swoop.

28

Figure 4.32: The locators of every agent for the final render. The Spirallers are green, the Followers are
pink and the Leaders are yellow. The red locator is for the centre beacon and the roll and swoop beacons

are placed at the blue marker

For the final render 360 Spiraller agents, 600 Followers, 9 leader agents, and 1 of each of
the three beacons were used. Utilising the 'starttime' variables, these angels were set to start
dropping over a period of 16.8 seconds. The Leader agent start times ranged from 0 to 15 seconds,
whilst the Follower agents' start times ranged from 0.2 to 15 seconds, giving time for a Leader
agent to drop first. As the spiralling angels start at terminal speed, the first Spiraller agents began
after 2 seconds and finished at 16.8 seconds, giving the other angels a head start.

The 'droptime' agent variables for the roll and swoop beacons were set to 2 and 4 seconds
respectively. Because they drop at a speed equalling the terminal speed of the angels, this meant
that each angel would have slightly more than 2 seconds after passing the roll beacon in order to
prepare for its swooping manoeuvre. The centre beacon was given a drop time of 6 seconds at a
faster drop speed than the other beacons, ensuring it was far enough below the column to
approximate a point directly beneath each Spiraller.

29

Modelling

To simplify the modelling of the angels a
human character model, “Michael 4”[16], and a
sword model[17] (Fig. 4.33) were acquired as a
starting point to work from. As well as geometry
the human model also came with textures and
rigged for inverse kinematics in DAZ Studio
software[18]. This left only the armour and the
wings to be modelled in Maya[19]. As reference
for the armour it was decided to use the Roman
Lorica Segmentata[19] (Fig. 4.34), as it combines
a simple structure without too much detail with
an impressive appearance.

Figure 4.34: Reference images of Lorica Segmentata armour[19]

30

Figure 4.33: Human and sword models

Figure 4.35: Stages of the armour modelling

At this point in the modelling it was decided
that since the arms carrying a sword would not move
very much during flight it would be better to model the
armour with them in place, rather than outstretched. To
this end the body geometry was taken into Daz Studio
and re-posed using the inverse kinematics rig to match
the angel’s position in flight. The hands were brought
out in front of the chest and fingers wrapped around the
handle of the sword (Fig. 4.36), and the geometry in its
new pose was exported as a .obj file to import back into
Maya.

31

Figure 4.36: Reposed arms and
hands

Figure 4.37: Stages of the armour modelling

To cover the bottom half of the angel it was not immediately obvious what should be
modelled. With the characters moving so fast the material needed to be rigid to avoid the need for
cloth simulation, but also had to appear to allow the angel to move well enough to fight. This
resulted in a pair of short metal shorts, incorporating the theme of the Lorica Segmentata with
metal plates covering the thighs.

32

Figure 4.38: Stages of the armour modelling

Rather than modelling individual feathers to produce the detailed outline of the angel’s
wings, it was decided to combine simpler geometry with a texture that was transparent wherever
there weren’t feathers. Images of ospreys[21] (Fig. 4.39) were used as reference for the shape and
profile of the wings. Once finished the wing and body models were combined into a single mesh to
make it easier to bring into Massive, and ensure that they couldn’t separate and create visible gaps.

Figure 4.39: Reference images of osprey wings[21]

33

Figure 4.40: Stages of the wing modelling

Figure 4.41: Completed angel model

34

As the desired scene requires a large number of angels to be rendered, it is unnecessary to
use such a highly detailed model for each one. For characters that weren’t very close to the camera
two lower polygon models were created. The first was the mid-poly model created from the high-
detail geometry by removing individual edge loops to create a model with fewer and larger
polygons. The lowest detail model was created from scratch to match the outline of the other
models when viewed from a distance.

As the desired scene requires a large number of angels to be rendered, it is unnecessary to
use such a highly detailed model for each one. For characters that weren’t very close to the camera
two lower polygon models were created. The first was the mid-poly model created from the high-
detail geometry by removing individual edge loops to create a model with fewer and larger
polygons, reducing the total polygon count from approximately 55000 to 29000. The lowest detail
model was created from scratch to match the outline of the other models when viewed from a
distance. The low detail model used a total of 811 polygons in Maya, but after problems displaying
non-planar polygons in Massive the model was triangulated, increasing this number to 1561
polygons.

Figure 4.42: Mid-poly model Figure 4.43: Low-poly model

Texturing

Once the modelling was complete, textures were needed to add detail to the surfaces. As
the human model had its own already and the metal was expected to use the Renderman[22] metal
shaders, only the wings needed a new texture creating. Images of feathers[23] (Fig. 4.44) were
acquired to combine into a wing, with an alpha background so that the outlines of the feathers
would form the visible edge of the wings (Fig 4.45).

Figure 4.44: Images of feathers for the wing texture[23]

35

Figure 4.45: Wing texture on a transparency grid

The textures for the male body[16] model came as separate face, torso, limbs and eye images
in 512 x 512 or 1024 x 1024 resolutions. Since the body and wing models were joined to form a
single mesh for use in Massive, similarly all of the body textures and the wing texture also had to
be combined into a single 2048 x 2048 pixel map. Once the joint map was created the UV texture
coordinates of the mesh were modified in Maya to line up with the new texture.

Figure 4.46: UV-coordinates of the high-poly
model

Figure 4.47: Combined skin and wing texture
map, with alpha as pure white

To keep the lower poly models quick to render, the same texture map was used, but at 1024
x 1024 resolution for the mid-poly model and 512x512 pixels for the low-poly model.

36

Figure 4.48: Textured high-poly model Figure 4.49: Textured low-poly model

Animation

To make the angels more convincing it was decided that their wings should be given
simple animations. To achieve this, the angel geometry was first brought into Massive to be rigged.
Using the body page and Bones window the angel skeleton was matched to the pose of the angel
model, and the volumes of influence of each bone in the wings of the skeleton were adjusted so
that every point of the wing geometry was constrained to the appropriate bones. As the rest of the
body was not going to be animated the volumes of influence were set up only to ensure that all of
the points in the model were constrained to the skeleton and would move with the agent when the
scene was run. Once the skeleton was matched with the model, the bind pose was exported from
Massive as a .ma file of joints to be used in Maya. These joints were then key frame animated by
forward kinematics, before the motion graphs were smoothed using Maya’s Graph Editor.

The basic wing poses required were for angels falling at speed, gliding and flapping their
wings. These three poses were animated as short loop-able sequences one after another in a single
Maya scene (Fig. 4.50), with transitions animated between them to move from dropping to gliding,
gliding to flapping and flapping back to gliding.

Poses from wing flap

Figure 4.50: Animation poses in Maya

37

Skeleton bind pose Drop pose Glide pose

The animations were imported back into Massive as a single sequence before being
trimmed and named in the Action Editor as six separate actions: drop, drop to glide, glide, glide to
flap, flap and flap to guide (Fig. 4.51).

Figure 4.51: Animations in Massive’s Action Editor

The “one shot” attribute in the loop tab was set for each transition action to ensure that they
were only triggered to move from one loop to another, and wouldn’t be played in a loop
themselves.

The next task was to add latch and transition curves to each action. Latch curves dictate
when one animation can be interrupted in order to begin another, and transition curves specify how
many frames to use when blending an action with the animation that preceded it. These two curves
are created for an action along with its agent curves after the animation is specified as being
“static”, “turning”, “locomotion”, “ramp” or “other”. Each type of animation creates a different set
of agent curves to specify how the agent’s position and rotation have changed in carrying out that
action. This caused difficulties, because the wing animations were designed to be played alongside
the motion already built into each agent’s brain, but the agent curves entirely controlled the
movement and rotations of an agent whilst an action was being carried out. This meant that each
character was stuck in its starting position when the actions were enabled, and attempts by the
brain to move the agent were ignored. This problem was overcome by specifying each animation
as “other” before looking in the curves tab for every agent curve created and deleting them.

Because the animations were created to start and end in fixed poses the latch and transition
curves were simple to set up and no other blending aids were required.

38

Figure 4.52: Agent motion tree

The Massive motion tree for each agent consists of the three key states that an angel can
take, with a looped animation connected to each one and transitions to move between them (Fig
4.52). Three trigger channels named “drop_trigger”, “glide_trigger” and “flap_trigger” control the
tree. Drop is the default action and the only one assigned to the drop trigger. Drop to glide, glide
and flap to glide are all controlled by the glide trigger and glide to flap and flap use the flap
trigger. These triggers are channels which can be controlled by the brain of an agent. When a
trigger is given a value above 0.5 then Massive will assess the motion tree to see which action
associated with that trigger is available from the current state and carry it out.

Figure 4.53: Drop trigger connected in an agent
brain

Figure 4.54: Glide and flap triggers connected in an
agent brain

The three animation triggers are connected to the brain of each agent in the same way. The
drop trigger is connected to the ‘ready & not gliding’ AND node, which evaluates to true when the
setup macro has finished and the angel is falling. This causes the looping drop animation to play
until the angel begins to swoop. An OR node is used to determine if the angel is either carrying out
the swoop behaviour or has already finished it and has started to glide. When the OR node first
evaluates as true, the swoop manoeuvre has begun; the AND node controlling the drop trigger is
stopped and the ‘not flap’ node controlling the glide trigger is activated, causing a transition from
the drop pose to the glide pose at the start of the swoop. The flap trigger is only introduced when
the swoop behaviour is finished and the agent is gliding. A noise node is connected to the ‘flap’
fuzz node, which evaluates as true when the random number generated is greater than 0.5. When it
is true the flap trigger is activated, causing the angel to flap its wings as it glides, until the noise
value drops again and the motion tree transitions the animation back into the glide loop.

39

Lighting

The default lighting set-up for a Massive scene consists of four lights, named ‘key’, ‘sky’,
‘bounce’ and ‘ambi’ (Fig. 4.55), short for ambient, which are designed to replicate daylight for an
outdoors scene. This lighting setup was an appropriate simple set-up for demonstrating the agents,
but the ambient light was toned down in intensity from 1 to 0.15 to prevent the characters looking
washed out, with the other lights being made brighter to compensate. Also the original lights were
altered from directional lights pointing in the same direction to directional lights pointing in
multiple directions.

Figure 4.55: Default lights in Massive

Shaders

The first shader tested for the body and wings of the angel character was Renderman’s
texmap shader for projecting a texture onto a surface using uv-coordinates. This shader does not
take into account the alpha values of the texture map however and shaded the parts of the wing
geometry without feathers black, occluding any objects behind them including the body and
armour of the angel. Since none of the other default shaders support alpha in textures a new shader
was required to render the wings correctly. The Alpha-channel texturing shader by Daylon
Graphics[24] was acquired as a starting point for this new shader, as it combined the simple plastic
shader coefficients and functionality with the ability to read texture files including the alpha
channel. This shader uses the alpha value of the texture to blend between the colour of the texture
and the default colour assigned to the surface, but was modified to use the alpha value as the
surface opacity Oi instead, and to incorporate this opacity value into the surface colour Ci as well.
The new txalpha shader was brought into Massive by adding its parent directory in the Shader
Paths window. With this shader the transparency of the texture was corrected and only the feathers
can be seen on the wings of the angel. Also with the specular coefficient Ks lowered from the
default 0.5 to 0.1 and the roughness value increased the plastic look of the shader was removed
and the skin and wings were more convincing.

For the armour and the sword both the metal and shinymetal default shaders were tested.
The metal shader gave an accurate representation of metal but was too dark for the steel-look that

was desired, with no way to adjust its diffuse colour. The shinymetal
shader on the other hand was extremely bright, mimicking chrome,
and had too much reflected light to appear realistic. To get more
control over the colour of the metal it was decided to use a texture,
and since no transparency was required the default texmap shader
was used. An image of brushed metal[25] was acquired and modified
into a simple texture, with no extra detail added. The roughness value
for the specular highlights was set as 0.1 to mimic the metal shader,
the coefficient Ks was set to 0.75 and the diffuse coefficient Kd was
also set to 0.75 to lower the brightness.

40

Figure 4.56: Metal texture

Figure 4.57: Rendered high-poly angel

Cameras

The first camera used to demonstrate the agents was created in Maya. The scene was
exported from Massive as a series of particle cache files, with each particle demonstrating the
motion of a single agent. This simple representation of the scene showed the movement of the
agents in a way which could be played forwards and backwards without loading times, making it
much easier to decide where to place the camera to capture the most important action. The camera
was set up to start close to the column in order to see the first angels falling, before tracking back
out to a point along the path taken by the angels after they pull up, so that they fly over and past its
position.

The second camera was setup in Massive. Using the constrain options this camera was
attached to a single Follower agent, moving and rotating in the same way as the angel to get a first-
person perspective of the inside of the column.

Background

Rather than demonstrate the Massive agents against a black background a simple static
billboard with a cloudy sky texture[26] was created in Maya to place behind the agents. Using the
key-framed camera already created in Maya a sequence of images was rendered that matched the
camera movement in the Massive shot.

Unfortunately this method could only be used for the first camera, as the second was
dynamically created during the Massive simulation, and could not be exported in a format that
Maya could read.

41

Render set-ups

Two render set-ups were created in Massive, one for each camera, using the ‘PRman rgba’
render pass. This is a Renderman beauty pass including an alpha channel, so that areas without
agents are rendered as transparent, and the render can be easily composited with other footage.

Level of detail

Because of the large number of characters in the scene it was important to ensure that only
those close to the camera were rendered using the highest detail model, and that the furthest away
angels used the lowest detail model. This was achieved using Renderman’s Level of Detail
function. This function enables multiple models of varying detail to be included in a .rib file, so
that the renderer can decide which one to use dynamically at render time depending on the size of
the object in the frame. Massive does not support Level of Detail itself however, so a separate
method[27] was required instead.

Inside Massive a new variable “lod” was created for each agent, and used to control option
nodes in the body page which selected which detail level of geometry to use.

When the .rib files are created for rendering, they contain lines like the following for each
agent:

Procedural "DynamicLoad" ["massive.so" "1 /AgentDir/agent_1_1.cdl /AgentDir/frame.1.apf 1
starttime 2.1 lod 0"] [-119.343 119.958 -15.3002 76.9196 -94.8108 118.459]

This command loads an agent name “agent_1_1” with the Sim data from
“frame.1.apf”, and variables “starttime” and “lod” with values 2.1 and 0 respectively. The numbers
in square brackets represent the bounding box coordinates of the specified agent. Using a script
each of these lines can be replaced with a Level of Detail structure which calls the same command,
changing the value of the “lod” variable depending on the required level of detail. The final .rib
file looks like the following for each agent:

AttributeBegin

Detail [-119.343 119.958 -15.3002 76.9196 -94.8108 118.459]

DetailRange [0 0 2000 2000]

Procedural "DynamicLoad" ["massive.so" "1 /AgentDir/agent_1_1.cdl /AgentDir//frame.1.apf 1
starttime 2.16851 lod 0"] [-119.343 119.958 -15.3002 76.9196 -94.8108 118.459]

DetailRange [2000 2000 42000 42000]

Procedural "DynamicLoad" ["massive.so" "1 /AgentDir/agent_1_1.cdl /AgentDir//frame.1.apf 1
starttime 2.16851 lod 1"] [-119.343 119.958 -15.3002 76.9196 -94.8108 118.459]

42

DetailRange [42000 42000 10000000 10000000]

Procedural "DynamicLoad" ["massive.so" "1 /AgentDir/agent_1_1.cdl /AgentDir//frame.1.apf 1
starttime 2.16851 lod 2"] [-119.343 119.958 -15.3002 76.9196 -94.8108 118.459]

AttributeEnd

The numbers after the “Detail” command are the coordinates of the bounding box used for testing
the size of the object being drawn, and are set equal to the bounding box of the agent. The numbers
after the “DetailRange” command represent the amount of the frame taken up by the object being
drawn. Rendering these .rib files with the new function included means that when an agent is being
rendered a test will be carried out to find out how close it is to the camera. If it is a long way away
then the agent will be loaded with an “lod” value of 0, and the low-poly model will be used.
Similarly closer agents will be called with level of detail values of 1 or 2 and the mid or high-poly
models will be used respectively. This addition to the rendering process dramatically reduces
render time.

Since the Level of Detail function overwrites the value of the “lod” variable outside of
Massive it would be useful to keep it at 0 inside of Massive to avoid having to load the high-poly
model. The first attempt to achieve this involved using the expression window to set the value with
the expression “0”. This did not work however, as the expression was applied after the call from
the .rib file and undid the work of the Level of Detail function. Instead it was found that setting the
range of the variable in Massive from 0 to 0 kept the value at 0 for all agents in Massive, but
allowed for higher values to be used when they were set in the .rib file.

Rendering

The first stage in rendering out the Massive simulation to an image sequence involved
creating a preview sequence using the Pics output in the Sim dialog. This feature runs the
simulation and outputs a series of screen captures of the Massive View window as .tif files. This
sequence can then be played back in real-time, to check that the camera is set up correctly and that
the agents behave as expected. If the preview is satisfactory then the Sim Dialog can be used to run
the simulation again, creating the .apf and .rib files required for rendering. The .apf or ‘Sim’ files
store the position and animation of each agent as it is dictated by the agent brains, and can be used
instead of recalculating the brains in later simulations. Two types of .rib files are outputted by
Massive for rendering, one containing the scene information such as lights and camera position,
and one containing all of the agents within the scene. To use the Level of Detail function only the
agent .rib files need altering, with each agent being replaced as described previously. All agents
used in the scene need to be saved before the .rib files are rendered, as the files they are stored in
are used as part of the rendering process. Once the .rib files are ready to be rendered, a shell script
file named ‘render_script.sh’, created by Massive along with the .rib files, can be run from the
terminal to render each frame into a .tif image file.

43

5. Conclusion and Further Work

The aim of this project was to create Massive agents that could be used in a shot featuring a
large number of angels leaving Heaven to fight a battle. These agents were meant to produce
angels that dropped from the sky together in a coordinated column, with some spiralling around
the outside, until they gathered enough speed to use their wings and fly towards the camera.
Although several of the intended methods for producing these behaviours did not make it into the
final agents, the alternative simpler, less robust methods still managed to achieve the desired
effect. The render from the perspective of an angel is as confusing as it is entertaining, but the
dollying shot is a good demonstration for the shot that was intended. Considering this I would
describe the project as a success, but with a lot of scope for further work.

To improve on the agents the following could be investigated:

 dynamically producing the swoop and spiralling manoeuvres, creating a wider variety of
movements and allowing interaction between agents whilst they are carried out

 combining the different agents into one agent, that changes its behaviour depending on its
situation

 creating more coordinated angels that can move together in a tighter formation before
spreading out

 extending the angel behaviours to their first contact with the enemy

To improve on the visual aspect of the scene further work could include:

 multiple angel models and/or multiple textures for a wider variety of angels
 more animations to reflect the movement of the agent, and animations on the entire body
 3D clouds or a matte painting backdrop, with a volumetric cloud or alpha mask to hide the

angels before they drop
 multiple camera angles to place focus on the interesting action, and stretch out the effect
 volumetric lighting, with the sun shining from the clouds behind the angels

44

References

[1] The Internet Movie Database, 2009. Legion (2010). Available from:
http://www.imdb.com/title/tt1038686/ [Accessed 20 August 2009].

[2] The Internet Movie Database, 2009. Paradise Lost (2011). Available from:
http://www.imdb.com/title/tt0484138/ [Accessed 20 August 2009].

[3] MTV News, 2008. Scott Derrickson Says His 'Paradise Lost' Film Might Lead To Sympathy
For The Devil. Available from: http://www.vh1.com/movies/news/articles/1591447/20080723/
story.jhtml [Accessed 20 August 2009].

[4] Massive Software, 2008. Massive (3.51) [computer program].

[5] Dogma, 1999. Film. Directed by Kevin Smith. USA: View Askew Productions.

[6] Constantine, 2005. Film. Directed by Francis Lawrence. USA: Warner Bros. Pictures.

[7] X-Men: The Last Stand, 2006. Directed by Brett Ratner. USA: Twentieth Century-Fox Film
Corporation.

[8] Pitch Black, 2000. Directed by David Twohy. USA: Polygram Filmed Entertainment

[9] The Matrix Revolutions, 2003. Directed by Andy Wachowski and Larry Wachowski. USA:
Warner Bros. Pictures.

[10] Computer Science for Fun, ca. 2007. How Who's fat just walks away. Queen Mary,
University of London. Available from: http://www.cs4fn.org/simulation/adipose.php
[Accessed 20 August 2009].

[11] Massive Software. ca. 2008.Ambient agent. (0.9.0). [Massive agent]

[12] Macey, J. ca. 2008. GraphicsLib. (52). [Library]

[13] Mckenzie, C. Flight Dynamics Engineer, Marshall Aerospace Ltd. (personal communication,
April 2009).

[14] Devlin, K. 2003. The Double Helix. The Mathematical Association of America. Available
from: http://www.maa.org/devlin/devlin_04_03.html [Accessed 20 August 2009].

[15] Dallal, G. E., 2000. Introduction to Simple Linear Regression. Available from:
http://www.jerrydallal.com/LHSP/slr.htm [Accessed 20 August 2009].

[16] DAZ 3D. 14 October 2008. Michael 4 Base. (4) [3D rigged model and textures]. Available
from:

45

http://www.daz3d.com/i/3d-models/-/michael-4-base?item=7877&_m=d&refid=362817725
[Accessed 20 August 2009].

[17] 3DaMaze. 15 July 2005. Sword. [3D model]. TurboSquid. Available from:
http://www.turbosquid.com/3d-models/free-3ds-mode-sword/269802

 [Accessed 20 August 2009].

[18] DAZ 3D Inc. 2009. DAZ Studio 3.0. (3.0.1.135) [computer program].

[19] Autodesk. 2008. Maya 2008 Extension 2. (02 25 03 22) [computer program]

[20] Imperium Ancient Armory, 2007. Newstead Cuirass. Available from:
http://www.imperiumancientarmory.com/Newstead%20Lorica.htm
[Accessed 20 August 2009].

[21] Bartosik, M. B., 2006, Life on the Osprey time Photo Gallery by Mark B Bartosik at
pbase.com. Available from: http://www.pbase.com/mbb/life_on_the_osprey_time
[Accessed 20 August 2009].

[22] Pixar. ca. 2008. Renderman. (14.0) [computer program]

[23] CGTextures, [CG Textures] - The worlds largest free texture site, Available from:
http://cgtextures.com/ [Accessed 20 August 2009].

[24] Gardener, R., 2003. Alpha-channel texturing shader. Daylon Graphics Ltd. Available from:
http://www.daylongraphics.com/products/leveller/shaders/index.php#txalpha
[Accessed 20 August 2009].

[25] Masters Appliance Heating & Air, 2009. Home. Available from:
http://mastersappliancehvac.com/ [Accessed 20 August 2009].

[26] lightfiretech, 11 October 2006. Sky_Collection_01 – Cloudy. TurboSquid. Available from:
http://www.turbosquid.com/FullPreview/Index.cfm/ID/325022 [Accessed 20 August 2009].

[27] Woods, A. 2008. Massive Community Site - Forum - Rendering - LOD – prman. Available
from: https://secure.massivesoftware.com/community/modules/newbb/viewtopic.php?
topic_id=646&forum=9&post_id=2881& [Accessed 20 August 2009].

46

Appendices

The following video clips are included in the hand-in as part of the Previous Work section:

Dogma – Bartleby.avi[5]

Dogma – Metatron.avi[5]

X_Men_3-Angel-1.avi[7]

X_Men_3-Angel-2.avi[7]

X_Men_3-Angel-3.avi[7]

Pitch Black 1.avi[8]

Pitch Black 2.avi[8]

Pitch Black 3.avi[8]

Pitch Black 4.avi[8]

Matrix Revolutions 1.avi[9]

Matrix Revolutions 2.avi[9]

47

