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1 Abstract

There are various di�erent algorithms and techniques for �uid simulation, both
physical simulation and more artistic simulation. Some of these techniques
are available to the general public through existing 3d software packages. The
purpose of this thesis is about developing a work�ow that provides more control
for artistic �uid simulation in Houdini. This work�ow consists of two main
elements, the development of a tool that helps with the creation of custom
volumetric �elds and the implementation of these �elds in Houdini's dynamic
context.

2 Introduction

Fluids and gaseous materials are hard to art direct. Physical simulation of �re
and smoke can result in realistic results, but can also make it harder to control
them as they are bound by certain rules. For certain shots in �lms a physically
impossible behaviour might be required and that is when artists need to be able
to truly direct where the smoke or �re needs to go and how it needs to get there.
In two dimensions it is straightforward to paint strokes on a canvas to de�ne
where certain densities, colours or other properties should be. In a 3D �eld it
becomes a lot harder to de�ne these artistic strokes.

Sometimes it is not the movement that needs to be di�erent, but the look.
There might be a demand to mix di�erent types of smoke together, for instance
a red gas and a blue gas forming purple gas when they mix. If this colour
property is linked to the behaviour perhaps only the red gas is in�ammable, or
perhaps they become in�ammable when they start mixing, similar to chemical
reactions. Because of this complexity in both look and behaviour, software that
can handle this could be a useful tool. This project focuses on the development
of a tool and work�ow that can provide this kind control in Houdini.

3 Previous work

3.1 Introduction

There are several approaches to creating volumetric e�ects. The two main
approaches are either using a large amount of very transparent particles as
developed by Frantic Films [1] and rendering them to an accumulation bu�er or
using a voxelgrid, ray-marching through the volume [8]. Both approaches could
bene�t from additional user control through custom �elds. However, most of the
current solutions are either part of visual e�ects studios proprietary software,
or programmed in isolated simulators.

Some of the �uid solvers that are incorporated in mainstream 3d applications
provide not enough control to be able to create more advanced visual e�ects.
A plug-in such as FumeFx for 3dsmax is basically a black box with little extra
control beyond the provided parameters. Similarly the �uid solver in Maya is
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Figure 1: Separate user de�ned �elds combined into a �nal velocity �eld, created
by Rhythm and Hues using FELT. Image taken from [6]

also limited in terms of control. These solvers will provide good results quickly,
but are not able to be extended or internally modi�ed by users for more speci�c
requirements.

3.2 Proprietary Systems

3.2.1 Rhythm and Hues' Field Expression Language Toolkit

An example of a proprietary system that helps de�ne 3d scalar and vector �elds
is a tool developed by Rhythm and Hues. They create and combine user de�ned
vector �elds using �FELT�, their Field Expression Language Toolkit as can be
seen in Figure 1. The resulting velocity �eld is used to drive particles for the
movie The Incredible Hulk [6].

3.2.2 ILM's directable, high resolution �re

ILM has created high detailed �re for the movie Harry Potter and The Half
Blood Prince, using particles that were �rst advected by a low resolution �uid
simulation and then were used to �ll up �eld information such as temperature,
velocity for high resolution 2d �elds [10]. Those �elds are then processed by
a �uid solver solving velocity, density and temperature. The particles are pro-
jected on 2d slices perpendicular to the camera, similar to the way sprites face
the camera as can be seen in Figure 2. Because the slices are 2d, the resolu-
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Figure 2: High resolution 2d �uid containers controlled by information from
projected particles created by ILM. Image taken from [10]

Figure 3: Advecting the simulation with curl noise where turbulent energy is
detected. Image taken from [14]

tion can be raised quite high. The interesting part is that the relatively small
amount of particles are used as a way to de�ne the high resolution �elds. The
particles represent a custom �eld, this hints towards the idea that the custom
�eld does not need to have a very high resolution as some of the simulations
only used 20.000 to 100.000 particles.

3.3 Research

3.3.1 Introducing noise in the velocity �eld

Another example of the use of a custom �eld to give more interesting results
in �uid simulation is the introduction of curl-noise for procedural �uid �ow [3].
They generate turbulent velocity �elds based on Perlin noise. This type of noise
is procedural but could just as well be added to �uid simulations, which is what
is being done in [14] with the additional condition that the curl noise is not
advecting the velocity everywhere, but only where their physically motivated
energy model dictates it as can be seen in Figure 3.
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Figure 4: The di�erent states of target driven smoke using custom �elds. Image
taken from [7]

3.3.2 Target driven smoke animation

Custom �elds can also be used to create target driven smoke animations, as in
[7]. They introduce a driving force term that causes the �uid to carry the smoke
towards a particular target and they also add a smoke gathering term which
prevents the smoke from di�using too much due to numerical dissipation. The
core concept behind this technique is using the gradient of a blurred density
�eld of a target shape as direction vectors to advect the velocity �eld of the
smoke. The resulting vector �eld looks like all the vectors are pointing towards
the target shape. Because the start and end shape might have di�erent densities
or the smoke might lose density along the way, density is added as it interpolates
between the two shapes as can be seen in Figure 4.

3.4 A broader public

The above approaches use custom �elds and geometry to gain more control
over the simulation, but they are separate or proprietary software solutions.
Because they are custom built they have the advantage that they will �t within
the pipeline of a particular company and are able to explore new hardware
platforms such as the GPU. The drawback is that these tools are not very
portable and useable by a broader public.

3.4.1 Node based dynamic simulations

One company that is trying to change the way �uid simulations are set up
is Exotic Matter with their software called Naiad [5]. The creators are Mar-
cus Nordenstam and Robert Bridson who have both contributed greatly to the
development of �uid solvers over the past ten years. Robert Bridson has pub-
lished several insightful papers and also the book Fluid Dynamics for Computer
Graphics [2]. At its core Naiad is a dynamics solver and a simulation frame-
work. Naiad allows for the creation of a description of a simulation scene. This
description can then be simulated. The description can be made through a node
based interface which resembles that of node based compositing software as can
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Figure 5: The node based operator graph in Naiad, by Exotic Matter. Image
taken from [5]

be seen in Figure 5. They are trying to establish a �Nip� (Naiad Interface Proto-
col) format which is similar to a RenderMan RIB format, but then for dynamic
simulation. This has not been done before and will hopefully help establish a
standard for dynamic simulations. This is also one of the few systems which
uses a node based approach for �uid dynamics, the other major node based
dynamics system is part of Houdini.

3.4.2 A brief history of Houdini's dynamic context

Since Houdini 8 node based dynamic operators (DOPS) were introduced and
since Houdini 9 �uids and gas microsolvers were added. Houdini 10 brought a
further development of a preset pyrosolver which can produce high quality py-
rotechnic results combined with an extensive pyroshader. They also introduced
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Figure 6: The various microsolvers available in Houdini's dynamics context.

an upres technique which greatly increases the detail in the �nal high resolu-
tion result. To handle these high resolution simulations they allow distributed
simulation over a network of computers. These developments and techniques
will be explained in greater detail in the next section as they are important to
understand the proposed work�ow and tool.

4 Technical Background

Houdini's node based architecture is open and not a black box. For example the
preset pyrosolver is a digital asset, which means it can be unlocked, modi�ed
to support extra functionality and saved as a new custom solver. Therefore
Houdini is very well suited to get more control over �uid simulations. However
in order to determine where to insert extra functionality and make modi�cations
an explanation of some of the current �uid techniques and their implementation
in Houdini is required. Some of the equations of �uids will be explained for
completeness and some of the equivalent microsolver networks will be shown
alongside.

4.1 What are microsolvers?

Microsolvers are nodes inside of DOPS that perform speci�c tasks related to
the �uid solving process. Instead of solving various aspects of a �uid simula-
tion in one big solver node as is done with the preset smoke- or pyrosolver, a
microsolver performs only a speci�c mathematical task. By wiring these mi-
crosolvers together more complex operations can be performed, this is how the
bigger smoke and pyro solvers were created. Some microsolvers are digital as-
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sets, which means they are built from a network of smaller microsolvers inside.
There are currently around 60 microsolvers in Houdini 10 as can be seen in
Figure (6). It is beyond the scope of this thesis to cover all of them so instead a
few of the more important ones of which the equivalent often shows up in �uid
equations will be covered. Microsolvers are wired together by using a merge
dop, the order of the inputs is very important as it will de�ne which microsolver
contributes to the �nal result �rst. The order of operations works from left to
right, top to bottom. This is quite di�erent from the pure top to bottom node
�ow inside of the surface operators context (SOPS).

4.2 How do volume �elds work in Houdini?

4.2.1 De�ning scalar and vector �elds

Volume �elds in Houdini come in two types: scalar �elds and vector �elds. They
are de�ned as primitives in SOPS (surface operators) but can also be created
in DOPS (dynamic operators) and represent an attribute of the volume, the
most commonly known is the density scalar �eld. Other custom �elds can be
de�ned using a volume sop which will de�ne an empty volume primitive or an
iso-o�set sop which will de�ne a volume based on the closed mesh of an input
geometry. One of the more powerful ways to de�ne custom volumes is by using
the volumevop. This runs CVEX (Houdini's vertex expression language) over
a set of volume primitives, the operations can be de�ned through code or by
building a CVEX VOP (vertex operators) network. Not only do you have a lot
of low level mathematical functionality, using VOPS will compile the resulting
network in vex code which will make it a lot faster to run in comparison to
normal expressions which would have to be interpreted. This volumevop is used
as part of the tool that was developed to de�ne custom �elds in SOPS.

In DOPS �elds can be created using a (SOP) Scalar Field node or a (SOP)
Vector Field node. The (SOP) part allows you to reference �elds from SOPS,
but sometimes temporary �elds are needed to store results of calculations and
the �eld is created without the need to reference it from SOPS as it will be �lled
up with data that is calculated from other �elds in DOPS. To quickly create an
empty �eld based upon the properties such as the dimensions and resolution of
another �eld, a Gas Match Field microsolver can be used.

A scalar volume �eld such as density will contain a single primitive, whereas
a vector �eld such as velocity will contain 3 primitives, one for each component.
By convention the velocity �eld is named �vel�, the components are vel.x, vel.y
and vel.z.

4.2.2 Naming volume primitives

It is important to give the correct names to scalar �elds before merging them
into a single vector �eld. Some �elds are recognised by the preset shaders, such
as the color �eld (Cd), but are not yet supported by the preset �uid solvers.
By modifying the preset shaders you can have custom �elds in�uence the look
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and create extra output variables that can be rendered to separate image planes
for greater control in a compositing application. Another useful �eld to have
as part of the simulation is the rest �eld, which basically carries a set of uv
coordinates that can be used to map textures to the �uid.

Fields can be given any name, but only certain speci�c �elds will be picked
up by the Mantra render engine, for example if the �vel� �eld is detected and
motion blur for rendering is turned on, the information of the velocity �eld will
be used to apply motion blur on a fast moving �uid simulation.

4.2.3 Rest �eld interpolation

In the preset smoke solver a single rest �eld is advected along with the other
�elds. This rest �eld is then used inside a volume shader to map various kind
of noise to the �uids and increase the detail of the smoke as is also described
in [17]. When this rest �eld is advected far away from the initial position, the
textures will become distorted which can give undesirable results. In the new
pyrosolver in Houdini 10 a second rest �eld (rest2) is introduced to solve this
issue. The initialization of both �elds (rest and rest2) is staggered in time and
the pyro shader continually interpolates between them. For example if the reset
value on the pyrosolver is set to 50, the �rest� �eld will be re-initialized every
50 frames, starting at the �rst frame. The �rest2� �eld will also be re-initialized
every 50 frames, but will start at frame 25 (half of the reset value). The pyro
shader has a corresponding Reset Rate parameter that should be set to the
same value. This will cause the shader to interpolate between the two rest �elds
without showing any popping when the rest �elds are reinitialized.

r e s t : +−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−− ( e t c )
r e s t 2 : −−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−− ( e t c )

At each + in that graphic, the �eld resets. The pyro shader then constantly
cross-fades between the two �elds, such that a given �eld has full contribution
only at the reset frame [12].

4.2.4 Volume �eld viewport visualization

Within DOPS there are di�erent way to visualize the information stored in
a �eld. This visualization can greatly help to visually debug the values of a
�eld. To be able to enable this visualization for a speci�c �eld, a Scalar/Vector
Field Visualization node needs to be attached to the data input of a �eld. This
visualization can consist of:

• showing the �eld as smoke (useful for density),

• as straight lines depicting both length and direction of the values of a
vector �eld (generally useful for a static or dynamic velocity �eld),

• as streamers, which are curves depicting the �ow of a vector �eld, (useful
for viewing the interpolation of the velocity between voxels)
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• as an axis aligned plane that shows a coloured slice in the volume, mapping
the values of the �eld to the colours on the plane. (useful for temperature)

Within SOPS a volume will generally be visualized as smoke when the values of
the �eld are positive. This means as well that when you are trying to visualize
a �eld that has negative values, such as velocity or temperature, nothing will
be shown in the viewport in SOPS, even though the data is actually there. A
quick check can be performed by taking the absolute value of the data inside
a volumevop just for visualization purposes to make sure the data exists. At
this point visualizing your custom �elds in dops will give you more options as
described above. The reason why this section on visualizing volumes in SOPS is
included is because it is not in DOPS, which means no solving needs to happen
to visualize the �eld which makes it faster to shape volume �elds independent
of the previous frames. Also it is important to understand negative values are
not displayed in the viewport as this clari�cation will hopefully avoid confusion
later on when the tool is used and there �seems to be no output�.

4.2.5 Houdini speci�c training

Sidefx, the creators of Houdini, provide a great set of masterclass tutorials on
�uids and the pyrotools on their website which will help when learning how to
use microsolvers and understand volume �elds in Houdini [15].

4.3 The equations of �uids

A signi�cant amount of research has already been done in the area of compu-
tational �uid dynamics (CFD) for simulating smoke, �re or various types of
liquids. A few of the equations will be covered to help explain the components
that make up a simple smoke solver in Houdini.

4.3.1 The incompressible Navier Stokes equations

There is a consensus among scientists that the Navier Stokes equations are a
very good model for �uid �ow [17]. That is why they tend to be used as a
foundation for a lot of solvers, that will then in some way modify or extend
these equations:

∂~u

∂t
+ ~u · ∇~u+

1
ρ
∇ρ = ~g + v∇ · ∇~u (1)

∇ · −→u = 0 (2)

Where:

~u velocity

t time
ρ pressure
g body forces
v viscosity
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And (1) is called the momentum equation and tells us how the �uid acceler-
ates due to the forces acting on it and can be derived from Newton's equation−→
F = m−→a as explained in [4]. And (2) is the incompressibility condition and
states that the divergence of the velocity must always be equal to zero. This
constraint ensures that the sum of all velocities entering and leaving at a point
in space is zero. When this is conserved, the total mass is conserved over the
entire simulation [18].

4.3.2 The steps to solve the Navier Stokes equations

Three main steps will be required to solve the Navier Stokes equations, these
steps are very well described in [18] but will be included here again for com-
pleteness and some of the explanations of the terms summarized.

1. Advection

2. Di�usion and External forces (Body forces)

3. pressure/incompressibility

Advection
(−→u · ∇)−→u

Advection represents the fact that the motion of the �uid causes motion
of the entities within it. This can be thought of as the velocity of the �uid
moving itself along, and is sometimes referred to as self-advection because of
that property. The advection part of the equations can also be used to model
motion of other entities inside the �uid [18].

Within Houdini the Gas Advect microsolver can be used for advecting one or
several �elds at the same time. For more advanced interactions between �elds,
other actions can be performed at this step that will update the �elds. This can
be seen in the node tree for the �elds_updates section inside the preset smoke
solver in Figure (7). For instance:

• A Gas Blur is used to di�use the temperature �eld,

• A Gas Calculate is used to cool the temperature �eld or to copy informa-
tion from a source �eld into a heat �eld.

• Fields are not the only thing that can be advected, geometry can as well,
such as vorticle geometry which is explained in the external forces step.

Di�usion and External forces
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Figure 7: The node tree for the update �elds section in the preset smoke solver
in Houdini as described in (4.3.2)
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Di�usion
v∇ · ∇~u

The di�usion allows the velocity to propagate outwards from its current
location, with the viscosity parameter controlling how fast this happens. High
viscosity yields thick and slow �uids while, while a low viscosity yields lively
�uids [18].

Within Houdini the viscosity can be implemented using a Gas Di�use mi-
crosolver. This outwards going velocity is a modi�cation to the velocity �eld.

External forces
~g

This is considered as the sum of all external forces. Some typical forces
are wind, drag or gravity, but also include more advanced forces that require
separate simulations, such as the forces generated by temperature di�erences.
These external forces can be extended and provide a lot more control by adding
user de�ned volumetric �elds. This is one of the areas that will be extended with
custom �elds de�ning them in SOPS with the custom tool that is developed.

Within Houdini these forces can be represented by a variety of Gas Micro-
solvers, that create the total resulting force when merged together. Typical
microsolvers that are part of the preset smoke solver for the forces component
are the following and can be seen in the node tree of the forces section of the
preset smoke solver in Figure (8):

• Gas Vortex Con�nement: to re-introduce some of the lost velocity due to
numerical dissipation, a high vortex con�nement force will introduces a
lot of swirling motion in the simulation,

• Gas External Forces: both for external forces relative to density or ab-
solute. When relative it will scale the velocity by another �eld, masked
by the density, when absolute it will simply scale the velocity by another
�eld without the mask,

• Gas Buoyancy: to calculate an approximate buoyancy force dependent on
a temperature �eld,

• Gas Di�use: for the viscosity force, as explained in the di�usion step
above,

• Gas Vorticle Forces: for introducing extra swirling motion around each
vorticle, according to the vorticle attributes. By default when adding
vorticles, the vorticles are particles that exist throughout the entire volume
and that are advected by the velocity,

• Gas Calculate: for setting minimum and maximum speed limits if re-
quired.
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Figure 8: The node tree showing the body forces inside the preset smoke solver
in Houdini as discussed in (4.3.2)

Pressure and Incompressibility (non-divergence)

Pressure
p
The pressure can be considered as the �uid from the area with high pressure

that will be pushed by the pressure towards the area with lower pressure. This
force is represented by the gradient of the pressure �eld, p [18].

The incompressibility condition
∇ · −→u = 0
Another way to think about pressure is that it is whatever it takes to keep

the velocity divergence-free so the incompressibility condition is satis�ed [4].
Within Houdini these terms come in the shape of a Gas Project Non Diver-

gent microsolver that removes any divergent portions of a velocity �eld. These
are parts of the velocity �eld that represent expansion or contraction. This
is done by computing a pressure �eld that counteracts any compression and
applying that pressure �eld instantaneously [16].

4.3.3 Vorticity Con�nement

When simulations of stable �uids are run, some of the velocity is lost due to
numerical dissipation which is the results of a necessary weighted averaging step
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during the advection term. It has the e�ect of unintentionally adding viscous
behavior to the �uid, which can damp down some of the intricate turbulent
behavior seen in natural smoke and �re[13]. In [8] a method is described for
detecting the vorticity and adding the rotational forces back in. Each small
piece of vorticity can be thought of as a paddle wheel trying to spin the �ow
�eld in a particular direction. Arti�cial numerical dissipation damps out the
e�ect of these paddle wheels and the key idea is to simply add it back.

The vorticity con�nement calculation is a good example in Houdini of how
some of the microsolvers and �elds can be used together. A Vortex Con�ne-
ment microsolver exists, but it is really a digital asset made out of smaller
microsolvers.

These are the steps that are executed within the Vortex Con�nement micro-
solver and the accompanying node tree can be seen in Figure (9):

1. Create the �elds for temporary results: curl (vector), curl magnitude
(scalar) and vortex direction (vector) using Gas Match Field microsolvers.

2. Calculate the curl of the velocity �eld with a Gas Analysis microsolver
and store the result in the curl �eld.

3. Calculate the length of the curl �eld and store it in the curl magnitude
�eld using a Gas Analysis microsolver.

4. Calculate the gradient of the curl magnitude �eld and store it in the vortex
direction �eld using a Gas Analysis microsolver.

5. Normalize the vortex direction �eld using a Gas Analysis microsolver.

6. Calculate the cross product between the vortex direction �eld and the curl
�eld with a Gas Cross microsolver and store the result back in the vortex
direction �eld.

7. Multiply the vortex direction �eld by a scalar to increase the amount of
con�nement using a Gas Calculate microsolver.

8. Multiply the vortex direction �eld by a con�nement �eld to increase the
amount of con�nement only at speci�c location within the �eld using a
Gas Calculate.

9. Update the velocity by adding the vortex direction �eld to it using a Gas
Calculate microsolver.

10. Clear the temporary �elds by copying 0 into them using a Gas Calculate
microsolver.

From the above steps it becomes clear that the Gas Calculate, the Gas Analysis
and the Gas Match Field are very useful microsolvers, and will come back all
the time. They are some of the mathematical building blocks to build more
complex operations. While developing these operations the visualization of the
resulting steps can be very helpful as shown in Figure (10).
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Figure 9: The node tree in Houdini for the Vortex Con�nement microsolver
showing all the steps as described in (4.3.3)
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Figure 10: The geometric representation of the steps inside the Vortex Con�ne-
ment microsolver as described in (4.3.3). Red represents the curl �eld after step
2, green represents the gradient of the curl magnitude �eld after step 5, blue
represents the vortex direction after step 8.
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4.4 Up Res technique

In Houdini 10 a new technique was introduced were a low resolution simulation
can be used as the basis for a higher resolution simulation. The key concept
is that you get the general motion from the lower resolution simulation and
introduce high frequency noise into the velocity �eld, but only where there is
a high curvature. The introduced noise has a low amplitude so it does not
interfere with the general motion coming from the low resolution velocity �eld.
A cut down version of the pyrosolver is used for the Up Res phase as a lot of the
information is coming from the low res �elds rather than having to be calculated
from scratch. Because it is still a high resolution simulation it can take a long
time. The foundations for this Up Res technique were initially built in Houdini
9.5 based on [11]. It then became a fully integrated tool supporting Constant,
Wavelets and Curl noise. The Gas Up Res solver is also a digital asset, which
means it can be modi�ed to support custom user de�ned �elds coming from the
low res simulation or added in to support a certain type of control or new type
of noise. Those �elds can then be up-ressed and written to disk at the end of
each simulation step.

4.5 Distributed simulations

Running high resolution simulations can take a lot of time. Therefore the func-
tionality has been built in to be able to split a heavy �uid container into slices.
These slices represent partitions of the volume. The amount of overlap between
the slices that is required for a good distributed simulation depends on the speed
of the �uid and needs to be set by the user. There are several ways the slices
can be de�ned, but by default they will partition the space inside the container
similarly to a binary tree. Each slice can then be calculated on a di�erent
machine that is connected to a host machine that is running a tracker. The
machines share the data between them in the overlapping regions through inter
process communication. The speed gains are signi�cant, but not linear as the
extra overlap and communication between machines takes up a bit of additional
processing power. The simulation generally runs as fast as the slowest machine.
If all the machines have the same speci�cations this is not a problem, but if one
of them is signi�cantly slower than the others, the faster machines will not be
used as e�ciently.

Sidefx has provided Hqueue, a python based renderfarm software to help
with this distribution. However HQueue was not tested for this project due to
limited administrative permissions. Instead a few shell scripts were written that
remotely start a tracker and the simulations and make use of the exact same
distribution techniques. Again it is convenient that open access is provided to
the distribution techniques without forcing users to use HQueue.
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5 A work�ow for using and creating custom vol-

ume �elds in Houdini.

5.1 Introduction

The aim of this project was to get more and better control over �uid simulations
using custom �elds. To be able to have this kind of control the problem is
approached from two sides. The �rst side is by de�ning custom �elds inside of
SOPS, the second side is by using microsolvers to integrate those custom �elds
with existing solvers and perform certain mathematical calculations to solve the
required needs inside of DOPS.

These custom �elds are de�ned in SOPS and brought into DOPS. In order
for them to work correctly they need to be inserted in a �uid solver at the
right place, some of this has been covered in section (4). Custom �elds can
add any kind of data to the simulation. For example: add color, temperature,
velocity, fuel, density, etc. Some of these attributes are already supported by the
preset solvers and can be easily modi�ed. Others will need extra implementation
through the use of microsolvers. There has already been done a lot of work in the
�eld of computational �uid dynamics and some of the preset solvers in Houdini
cover a lot of this functionality. The aim of this project is not to create a full
�uid solver with a combustion model from the ground up, but rather to be able
to modify and augment existing solvers.

By controlling the �uid simulation through custom �elds, depending on what
exactly is modi�ed, some of the physical accurateness of the simulation will be
lost, but that is the whole point as by introducing custom �elds (art-)directable
simulations are possible. The goal of this project is not to build a physical
simulator, but rather to understand a physical simulator and then insert extra
�elds into it to augment the possibilities of the solver. Ideally the �uid �ow and
turbulent behaviour is maintained within the modi�cations, but if certain �elds
will be overwriting other �elds because this provides better visual results then
this is considered an improvement.

5.2 The implementation of an attribute transfer tool in

SOPS to help de�ne custom volume �elds.

There are a few microsolvers inside DOPS that will allow to bring data from
SOPS into DOPS already:

• The Sop Scalar/Vector �eld microsolver which can bring in a fog volume
that has been de�ned in SOPS through an iso-o�set sop.

• The Gas Particle To Field microsolver allows point attributes from parti-
cles to be copied into a �eld, after the particle geometry has been de�ned
inside a SOP Geometry dop. This microsolver allows for most of the re-
quired functionality, but it is in dops which requires the simulation to cook
up to the current frame as soon as a change is made.
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• The �nal option is with a Gas Field Vop which provides all the functional-
ity from vops so you can reference in any object from a di�erent context,
or from a �le on disk.

In SOPS however this attribute transfer from points to volumes does not exist
and is a welcome addition as it does not have the requirement to simulate all the
previous frames to de�ne the �eld. Also the resulting custom volume �elds can
easily be used to advect particles inside of a pop network by using an Advect By
Volumes pop without even going near DOPS. The reason that this just works is
because the tool follows the standards used by Houdini to de�ne volume �elds
as described in (4.2).

5.2.1 A pointcloud based approach

The �rst approach to transferring point attributes from a number of points
makes use of pointcloud functionality inside of a volumevop in sops. The un-
derlying technicalities are hidden away behind an easy to use interface. I de-
liberately kept this digital asset compact as it needed to perform only a single
function. The �rst input requires an empty volume, the second input requires at
its lowest level a number of points. The volume �eld name can be speci�ed, as
well as the attribute to transfer and the attribute type. The attribute type will
also de�ne the type of volume that is created (either a scalar or vector �eld).
The distance threshold de�nes how big the in�uence radius of each point is. In
the pcloud tab a maximum search radius is provided to prevent voxels looking
up values from points outside this radius. Also the maximum number of points
to use when performing the �ltering operation can be set here. Generally the
default values work for most scenarios.

Internally the asset creates a box that matches the position and divisions of
the voxel grid. Then an attribute transfer sop is used to transfer the attribute to
the grid of points. The grid is used instead of using the points directly because
the attribute transfer sop uses a metaball kernel inside to de�ne the fallo� of
the attributes and give softer results around the edges of a shape. These points
are then referenced by a volume vop which will read them as if they were a
pointcloud from disk. For each voxel it will then �lter the attribute value and
assign it to the output density. The output density is just a name inside the
volume vop, it could just as well be the x component of a velocity �eld. The real
naming of the volume occurs before or after the volume vop assigns the values
to the �eld. In case of a vector �eld and a vector attribute each individual
component is handled at a time and then the resulting scalar �elds are merged
together to form the resulting vector �eld.

This gives quite accurate results, but can get slow for high resolution vol-
umes, as the attribute transfer sop can take a while to cook. Bypassing the
attribute transfer and using the points directly will de�nitely speed it up, but
does not give as nice results, this bypass is triggered by turning on the Use Raw
Points checkbox on the digital asset interface in the pcloud tab. Also this ap-
proach does not allow a way to de�ne a transfer radius per point, only a global
radius can be used.
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Figure 11: The parameters of the metaball-based volume attribute transfer tool.

5.2.2 A metaloop based approach

The original way of de�ning volumes through metaballs involves copying meta-
balls onto the points, converting them to a fog volume using an iso-o�set with
the Mode set to Meta Balls. The problem is that this only uses the density of
the metaballs and none of the potential other attributes.

The volume attribute transfer tool is based upon this work�ow but again
makes use of vops functionality to perform the lookup of the attributes man-
ually. Similar controls are provides as with the pointcloud approach, although
this tool was further developed and presets were added to make it easy for users
to transfer popular attributes that can be used from a drop down menu. The
interface of the tool can be seen in Figure (11). This tool also allows the possi-
bility to de�ne a per point transfer radius by using the pscale attribute if it is
present on the template geometry.

Inside of the digital asset, expressions are used to help de�ne the preset
settings. Metaballs are copied onto the template points and are then referenced
by a volumevop. Inside of the volumevop a while loop is created that will loop
through all the metaballs, lookup the value of each one at a given position and
add the result together. This is the default density calculation. When trying to
add a di�erent attribute together the results were very blocky, the reason why
this was happening was because the attribute would be de�ned as a solid box of
a constant value within the bounding box of a metaball. This is a problem very
similar to 2d sprites that have not had there alpha channel premultiplied. So
the solution was to multiply the attribute with the density value of the metaball,
this problem is represented in Figure (12). The density needs to be multiplied
inside the deepest level of the metaloop, just before the attribute is added to the
result of the previous metaball, not as a post multiplication operation because
in overlapping areas the masking will be incorrect, the post multiplication e�ect
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Figure 12: Premultiplication problems: The image on the left shows the at-
tribute in grey and the density of the metaball in white.The image on the right
shows the correct premultiplied values.

is shown in Figure (13), the artifacts are not that visible in a still frame but will
cause jittering during animation.

At this point the values are simply added together, which works well for
density, but not so well for velocity or color. For example in the case of particles
being emitted from a single point in space and then spreading out from that
point over time, what would happen is the density would be accumulated and
look good, but because of the dense number of particles at that single point, the
velocity �eld would grow extremely large and when this entire resulting volume
is then rendered by mantra with motion blur turned on, huge streaks are created
due to the high velocity accumulation.

So more control was needed to de�ne the kind of mathematical calculation
that takes place. Therefore an averaging operation and a switch is added, so the
user can choose whether to accumulate the values or to average them. This is not
trivial and this choice should be provided to the user. A temperature �eld for
instance might require either accumulation or averaging, both could work and
will give di�erent results. The presets try to alleviate this issue for some of the
popular attributes based upon what works better for those attributes in most
scenarios so the user does not need to worry too much about this. However if
the accumulation of velocity attribute were required, the user can set the preset
to �other� and de�ne �v� as the attribute, �vector� as the type and �add� as the
blend operation as the �other� preset allows any custom attribute to be used.

Because the copy sop inside of the asset transfers the template point at-
tributes, the special attribute �pscale� can be used. When a pscale attribute is
de�ned on the template points, the metaballs will be scaled based on the pscale
value. This tends to give good results, however when the pscale goes to zero,
jittering in the volume might occur if the points are moving. It would be as if
the small metaball would only occasionally be picked up by a voxel when it is in
close enough proximity. A better way of dealing with this problem is by using
the weight attribute instead of the pscale. This will not modify the radius, but
will instead result in more of a fading e�ect. The best results can be achieved
when both are used together.
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Figure 13: Incorrectly post-multiplying of the attribute (temperature) by the
density will cause artifacts, note the banding in the brighter areas, that become
more apparent in an animation.
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Figure 14: The preset smoke solver with the color �eld added to it, as described
in (5.3.1)

5.3 Examples of custom �elds

The next sections will talk about how some setups can be created and what is
required to implement the custom �elds in dops for each example.

5.3.1 Colour �eld addition

Once the colour (Cd) attribute is transferred onto a volume in SOPS using the
volume attribute transfer tool, the necessary �elds can be added in DOPS, the
node tree can be seen in Figure (14) :

1. A Sop Vector Field, Cd, is de�ned to bring in the newly de�ned Cd �eld
from SOPS. This �eld will contain the color information throughout the
simulation.

2. Another Sop Vector Field, Cd_source, is de�ned using the Cd �eld from
SOPS. This �eld will be used to add color information to the Cd �eld at
the beginning of every frame. If this �eld is animated, it is required that
the �Time� and �SOP Path� are always evaluated. The �Time� parameter
should be set to $T.

3. Using a Gas Calculate with a the calculation set to �Maximum�, the des-
tination �eld set to �Cd� and the source �eld set to �Cd_source� will copy
information from the source into the destination �eld at the start of every
frame using a maximum operation.

4. Advect the color �eld by the velocity, using a Gas Advect microsolvers
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Figure 15: Two spheres emitting density and color with a vortex force applied.

5. Di�use the color �eld using a Gas Di�use microsolver, the di�usion rate
should match the density di�usion rate. For fast mixing of the color, this
value can be increased.

In Figure (15) two spheres can be seen emitting density and color information
into a simulation. This simulation has the color �elds de�ned as copies of the
density values for either the red or the blue component of the Cd vector �eld
and does not actually require the transfer tool in SOPS. In Figure (16) you can
see a helix curve emitting density, colour and the temperature �eld is driven by
the red values of the colour which causes the red smoke to rise quicker. The hue
of the colour is mapped to the parametric u value of the curve.

5.3.2 Advect by curve

In this example the tangent vectors of a curve are used as an extra force that
is continuously added to the velocity �eld. A relatively large amount of force is
applied. Also the density �eld is temporarely blurred, the gradient is taken from
this blurred density, then normalized and applied as an additional force. The
combined force points towards the density of the curve and along the tangent
of the curve. A sphere is placed at the bottom of the helix and is emitting
density into the simulation. The density and tangent velocity �elds can be seen
in Figure (17).

The node tree can be seen in Figure (18) and consists of the main following
areas:
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Figure 16: A helix curve emitting density, colour and temperature into the
simulation. The red component of the colour is driving the temperature, that
is why the red smoke is rising quicker.

Figure 17: The density �eld and tangent velocity �eld de�ned by a helix curve
and used to advect smoke.
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Figure 18: The node tree for the di�erent steps for the advect by curve simula-
tion as described in (5.3.2).

1. De�ne a few custom sop vector �elds to hold to custom de�ned volumes
from sops, such as the density source (the little sphere), the custom density
of the curve, the tangent velocity and the gradient velocity (which will be
calculated at a later step).

2. Calculate noise by de�ning new custom �elds with the Gas Match Field
microsolver, a scalar �noise_�eld� and a vector �noise_vel� �eld and de�ne
the noise in the �noise_�eld� inside of a Gas Field Vop using an Anti-
Aliased Flow Noise vop. By using a Gas Analysis microsolver we can
calculate the gradient of the �noise_�eld� and store it in the �noise_vel�.

3. Calculate the gradient of the blurred density of the curve. Create a new
temporary �eld to store the blurred_custom_density using a Gas Match
Field, matching the custom density �eld of the curve. Copy the cus-
tom_density into the blur_custom_density using a Gas Calculate. Blur
the blur_custom_density �eld using a Gas Blur. Calculate the gradient
of the blur_custom_density and store the result in the gradient_velocity.
Finally normalize the gradient_vel using a Gas Analysis. The resultant
force will appear to be always pointing towards the helix shape.

4. Add the forces to density. By using Gas Calculate nodes, the various
custom velocity �elds can be premultiplied by higher values for a more
powerful e�ect and added to the velocity �eld.

The simulation can get unstable when too much force is added, so it can be
useful to add a low velocity damp on the pyrosolver, or even turn on speedlimits.
A few stages of the simulation can be seen in Figure (19).
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Figure 19: A few stages of the advection by curve. These images were �ipbooked
from the viewport.

5.3.3 Custom fuel and heat injection

The following examples all make use of the combustion model inside the py-
rosolver. By providing fuel and adding temperature, smoke and �ames can be
generated from the resulting density and heat �elds. Some of these simulations
will have vorticle geometry in them to add more turbulent motion.

Fuel from curve In this example the helix curve was used to de�ne an initial
fuel �eld inside of the pyro object. A fuel �eld is a default �eld and does not
need a custom �eld unless you want to have an animated fuel �eld, for this
example however the fuel �eld is static. Only one custom �eld is added to add
temperature to the bottom part of the fuel �eld. The buoyancy direction on the
pyrosolver is set to a negative y direction to avoid the heat from rising through
the helix and igniting other parts before it is supposed to get there even though
that is visually quite interesting as well. The only step during the advection
process that is added is to add temperature from the custom source temperature
�eld to the temperature �eld that will then be used by the combustion model
and start the ignition. The burn rate on the pyrosolver is set to 2, so it burns
quite fast and the temperature output is set to 6, so a lot of heat is generated
which will keep the simulation going. The di�erent �elds at di�erent stages can
be seen in Figure (20).

Fuel from animated geometry In this example an animated model of a
tree is used as a source geometry to de�ne animated volumes of both fuel and
temperature. The animated model was provided by Nick Hampshire, who cre-
ated the animation through a real-time spring solver that he programmed for
his Master thesis [9]. As the geometry represents a moving point cloud at its
lowest level it works will with the attribute transfer tool. The fuel �eld has
the appearance of spreading out through the branches which was achieved by
copying an animated attribute from a static mesh of the tree to the animated
mesh of the tree. The attribute simply spreads in a radial fashion, although it
will spread faster at the outer points of the branches and slower at the root of
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Figure 20: The purple �eld represents the fuel, the yellow �eld is the burn and
the white �eld is the density resulting from the combustion in the fuel from
curve example.

the tree where the branches are thicker, the animated geometry with the spread-
ing attribute is then baked to disk to speed up the rest of the network. This
attribute is then transferred using the volume transfer tool. The temperature
�eld is the same as the fuel �eld. The tree geometry came with point velocities
on it but those could alternatively be calculated with a trail sop as the topology
does not change over time. These velocities are also transferred into a custom
�eld.

In DOPS those three custom �elds are brought in with Sop Scalar/Vector
�elds and their SOP path and Time ($T) parameters are set to Always evaluate.
During the simulation step the �elds are added to their respective target �elds
using Gas Calculate microsolvers. The fuel �eld is not added with a maximum
operation as this added too much fuel into the simulation which resulted in a
massive explosive reaction, so instead it is copied every frame and overwrites
the old fuel data from the previous frame. A Gas Dissipate is also added to
slowly dissipate the density. The various stages can be seen in Figure (21).

Fuel from particles In this example a simple terrain is modeled and particles
fall down from above the terrain and collide with it. A particle that is colliding
is added to a collision group. Outside of the particle network in sops, the points
that are not in the collision group are deleted. The amount of collisions can
easily be increased or decreased depending on the birthrate parameter of the
source pop inside the pop network. At each frame there are generally between
one and three particles in the collision group. By using an attribute transfer,
the normal from the collision surface is transferred to the particle. Now the
volume attribute transfer tool is used to de�ne the fuel and temperature �elds
based upon the metaball density. A custom velocity �eld will also be generated
with the tool, using the normal attribute from the particles which has just been
transferred from the surface.
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Figure 21: Top: The stages of the animated fuel �eld, Bottom: The stages of
the rendered burning tree.

In DOPS the setup is very similar to the �fuel from animated geometry�
setup. Because fuel, temperature and velocity are only added where the particles
are currently colliding and a low number of particles is colliding per frame,
not too much fuel is added each frame. Therefore in the Gas Calculate the
maximum between the custom_fuel_source and the fuel is calculated. The
custom_fuel_source �eld is premultiplied by a factor of 5 to introduce more
fuel into the simulation. The transferred custom_velocity_source is heavily
premultiplied by a factor of 150 before being added to the velocity �eld. Since
the velocity direction is coming from the surface, the explosions are not directed
straight at the sky. On the pyrosolver the ine�ciency in the combustion model
is set to 0.6 which causes some of the fuel to not be fully burnt. The burn rate
is set to 0.8 which will cause the fuel to take longer to be consumed. This can
give good results combined with the initial velocity as the burning fuel will be
advected by the velocity and will continue to be burn as it is lifted up into the
sky. A small amount of velocity damp is also introduced so the velocity wears
o� after the initial boost. The di�erent �elds can be seen in Figure (22).

6 Conclusion

The control Houdini o�ers over manipulating dynamics and performing more
advanced mathematical calculations is extensive and there are many more mi-
crosolvers to study. Also �uid dynamics for computer graphics is a popular
topic of research and new developments are happening all the time. A signi�-
cant amount of time for this project went into researching existing ideas in �uids
for computer graphics and in how volume �elds and the microsolvers work to-
gether in Houdini. Gaining a complete understanding of how the preset smoke
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Figure 22: Fuel, temperature and velocity are transferred from colliding particles
and set o� small explosions. The fuel is purple, the heat is yellow, and the
density is white. The initial velocity upon collision is shown as the big red lines.
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and pyrosolver work took time. This research only started to become more ap-
plicable half way through the project as various experiments were developed. A
lot more experiments can be done, especially by modifying the velocity �eld, but
it seemed more valuable to focus on a wider range of di�erent types of custom
�eld implementations to show a broad use of the tool and the possibilities by
using custom �elds. The aim was to gain control over �uids by using custom
�elds and this has been achieved through the prototype experiments. These
experiments are by no means production ready, as higher resolution simulations
could have given much more detailed results. But that would also have taken a
lot more time.

The main strength of this project is that the tool that was built is easy to
use with a variety of applications, yet enables users to use all the functionality
of sops, from creating geometry such as curves or particles to de�ning speci�c
animated point attributes through expressions or vops to create those artistic
volume �elds. And because the tool follows conventions for de�ning volume
�elds, the �elds can be used in other context besides dops, like pops or for
rendering with Mantra. Within the metaball tool there is still an optimization
that could be made when dealing with vector �elds, because the volume vop
is used separately for each component and ideally would only be used once for
all the components in one go. This would speed up the tool signi�cantly as
the metaball loop only needs to be executed once instead of three times. The
problem lies with the output of the volume vop in SOPS, which seems to allow
only a single scalar �eld to be exported and what is needed is a vector �eld
export option.

The microsolvers within Houdini are powerful mathematical building blocks
that are able to build bigger structures like vortex con�nement or entire solvers,
however since the author was quite new to the �eld of �uid dynamics a good
understanding and knowledge base needed to be built up �rst before more in-
teresting experiments could be set up. By following the mathematical equations
alongside the microsolver networks and being able to visualize the outcome of
a given calculation in the viewport so it would make sense on a geometric level,
the author was able to get a good understanding of �uid solvers and how to
modify them. The author recommends learning Houdini �uids this way as you
get information from both sides. Overall this project has been an interesting
experience even though it was biased more towards the research side than the
production side than was originally planned. By putting the equations next to
the microsolver node networks the author hopes to have been able to create a
better understanding for other Houdini users or perhaps opened up the door
for researchers who would want to use Houdini for development of �uid solvers.
By not focusing on the implementation of one big digital asset performing one
speci�c e�ect, but instead building a small and comparatively light, very useful
building block to help de�ne custom �elds, a much broader application of the
tool is possible. The tool is like a microsolver in SOPS.
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