Donald J. Macleod

MSc Computer Animation 2006

Masters Project

Skeletal Character Animation within a Virtual

Environment

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ...ttt ettt eaaeee s 2
1.1 Background...........ccoeeiiiiiiiiece e e 2
1.1.1 MOotion EdItingccccverieiiieiieiiecie ettt 3

1.1.2 Character Deformation..............cooeuviiieeiiiieeeieee e 9
CHAPTER 2: PROJECT OVERVIEW ...ttt 15
2.1 PrOJECT ATMIS.....eivieieiieieeiecie ettt rte et eae e s e e saeeesbeesseesseesaseessaesseennns 15
2.2 TOOIS anNd LIDTATIEScoooevveeiiiiiiieeeeeeeeeeee e 15
CHAPTER 3: SOLUTIONooiiiiiiie ettt 17
3.1 Constructing Dynamic Time-Warp Curve........cccceevveeveeeevveencreeernreesneeenens 17
3.2 Alignment and Blending of MOtiOnN........c.ccccveevciieiiiie e 23
33 TTANSIEIONS. ...veveviiieiee ettt e e e e e e ee e e e e e e e eesaaareeeeeeeeeesasnrrreeeeas 29
CHAPTER 4: CONCLUSIONS ...ttt s 31
4.1 Results and FUture WOrKoovviiiiiiiiiiiie et 31
4.2 ACKNOWLEDGEMENTS ...ttt eanee e 32
RETETEICES ..ottt e e e e e ettt e e e s s e ettt e e e e e e s essansaaes 33

CHAPTER 1: INTRODUCTION

1.1 Background

With the significant advances in the computer graphics and animation field over the
years, greater demands have been placed on the quality and realism of character

animation within today’s interactive graphical environments.

Two main goals for providing better quality character animation are to provide
realistic motion of the character’s inherent structure, and to apply realistic

deformation of the character’s surface in response to these motions.

For interactive applications these two goals also must be balanced against processing
and memory limitations so that the application can run at a sufficiently high frame-

rate for the user to interact with when it is carrying out the character animation.

The complexity of capturing sets of realistic character motion has significantly
reduced with improvements and advances being made in character simulation within

commercial animation software packages and technologies such as motion capture.

However the nature of many virtual environments (such as environments within
today’s video-games, or training simulations) can require characters to assume a
possibly infinite number of possible poses in its animation within the environment
(for example a walking motion may need to be adapted to rough terrain requiring the
walk motion to be modified to ensure the feet do not move through the ground).
Attempting to capture all the animation poses for every possible scenario within such

rich virtual environments would be an infeasible task.

In order to tackle such issues a great deal of research has been carried out on real-
time motion editing techniques to apply pre-existing motion data to individual
situations requiring specific needs, with the goal of having the edited motion maintain
the integrity of the original motion as much as possible. Similarly, a number of

methods and techniques have been developed to apply realistic deformation of
2

characters according to their motion. The following two sections in this chapter give a
general overview of some of the key aspects of on-line character motion editing and

character deformation.

1.1.1 Motion Editing

We shall give a general overview of the following important areas of motion editing
in this section - motion blending/interpolation, applying motion data to new
environments and characters, and the application of constraints. The specific
techniques discussed in this section that have actually been used in this project are

also discussed in more detail in Chapter 2.

In order to create streams of motion within the virtual environment current
applications generally assemble clips of motion which have been sourced from either
motion capture data or key-framed animation sequences generated in commercial

software packages (such as Softimage|XSI, Maya, Houdini, Endorphin etc.).

The assembly process generally requires generating a directed graph structure to
represent the possible flows of sequential motion within the virtual environment
where the graph edges represent particular segments of motion and the graph nodes

represent the choice points connecting the motion segments.

A common approach in computer games is to create such a directed graph manually.
These graphs are typically referred to as move trees [4]. Commonly, rather than
procedurally transitioning between the motions in the move tree, an animator will

author transition animation sequences for the transitions between motions.

Using motion editing techniques however transition sequences can be generated
procedurally for smoothly transitioning between motions that can validly be
transitioned between within the virtual environment. The difficulty of transitioning
between two motions depends on the similarities between the two motions. In
practice if the two motions are quite similar we can use simple blending techniques

such as linear blends on the joint orientations between relative stages of the motions
3

to generate these transitions. For particularly difficult transitions (or if a transition is
to be carried out in a particular style) sometimes it may be required for an animator to
hand-craft a transition motion sequence or have a transition sequence motion captured

(which itself will require a motion editing process to be applied to it).

There are a number of existing techniques that allow for the motion graph structure to
be generated automatically from just the motion data. Techniques such as Motion
Graphs [1] and Snap-Together Motion (STM) [3] automatically create graphs from
the original motion capture data by carrying out comparisons between frames within
the motion data to automatically detect transition points (with some user input such as

a threshold on the difference between matched transition frames).

In comparing two frames for whether they match or not the system generates a
character pose point cloud for a neighbourhood of frames centred at the particular
frame being checked and calculates a 2D translation along the floor plane and a
rotation in the vertical axis to be applied to the second frame neighbourhood so that
the two frame neighbourhoods are as closely matching as possible. A neighbourhood
of frames is used rather than just the single frames to incorporate derivative
information into the match comparison. As a result similar motions captured in
different positions and orientations can be paired as transition points and the motions
can be sequenced together. Figure 1 below illustrates two running motions in

different directions being matched using the algorithm in these techniques.

Figure 1: Comparing frames from similar motions in different directions by
applying a translation along the floor plane and a rotation around the
vertical axis and subsequently carrying out an optimal sum of least

squared distances between corresponding points [3].

Before discussing the creation of new animation sequences (including transitional

sequences) we shall distinguish between motion blending and motion interpolation.

We use the term motion blending here for skeletal animation to specify any motion
editing technique whereby frames for new motions are generated from multiple
existing motions using time-varying weights for each motion contribution. Motion
interpolation similarly involves the blending of multiple motions to create new
motions but with the weights being specified explicitly (as opposed to being defined

by a function of time) to create “in-between” motion sequences.

Motion blending is useful for generating smooth transition sequences and to apply

adjustments to motions in a smooth continuous fashion. Motion interpolation
5

techniques are useful for combining two or more existing motions together to create
individual new motions. For example a walk motion on flat terrain could be
combined with a severe limping motion to produce a walk animation with a slight
limp, or an arm’s motion from a waving sequence could be transplanted onto a

running motion sequence to create a waving run motion [5].

Note that the motion weight values can be assigned individually at the joint level but
generally the weights are assigned at the skeleton level so that joint transform
contributions from a particular motion frame are the same throughout the skeleton.
Assigning weights at the joint level can be useful when we wish to take separate
motions of individual segments of the skeleton (such as an arm) from some of the
motions in the blend. Unless otherwise stated when we refer to blend weights in this

paper we shall be referring to weights assigned at the skeleton level.

The quality of new motion sequences generated from blending/interpolation are
largely dependant on how much information about the motions is supplied to the
blending algorithm. If no information other than the raw motion parameters
(translations and orientations of joints) is supplied then, unless the motions being
blended are closely matched and in sequence with each other, poor results will be
generated from simply blending the frames from the same time period within the

motion sequences.

Generally for blending and interpolation between motions, information on how the
motions correspond to each other in timing terms is required so that we can retrieve
transform data from roughly equivalent times in the motions (e.g. leg cross-over

times for walk, run and sneak motions)

This information may be specified manually by user input or calculated by an

automatic process (as with Kovar et al’s Registration Curves [6], for example).

Generating streams of motion in an interactive environment will generally require
motion to be edited based also on additional environmental data rather than solely
generating motion using the raw animation data. For example we may want to apply a

6

punch motion that has been captured but need to redirect the punch to a specific
location within the environment (e.g. the face of an opponent) or we may in fact be
applying the same motion data to a number of characters within the environment
which have differences in their skeletal structure (and hence different geometric

reactions to joint rotations).

Solving such issues requires an Inverse Kinematics (IK) solver in one form or another
to solve the geometric constraints on a character pose at the specific time instances

(e.g. ensuring feet land on ground properly for each step).

The methods for IK solvers in graphics fall into two categories; geometric or analytic,

or numeric or iterative solutions.

Analytic methods use closed-form geometric constructions to compute configurations
for end-effector position directly. When analytic methods are used on an under-
constrained system the methods must be carefully constructed for the particular type
of joint structure that the solver is used for. (Note by under-constrained here we are
referring to an IK system where the DOF of the joints are greater than the DOF of the
end-effector solutions. Usually for a single end-effector solution there are 3 or 6

DOF, 3 for world-space translation and a possible additional 3 for the orientation).

Analytic solvers for 7 DOF [7] and 12 DOF [8] joint chains have been developed

which can be incorporated to separately solve for individual limbs of a skeleton.

Numeric solvers use equation solving or optimisation techniques to solve the IK
problem and provide a more general IK solution for skeletal structures. In contrast to
analytic solvers, numeric solvers can be applied to under-constrained skeleton
structures with many DOF. Because of the general non-linear nature of the equations,
numerical solvers generally require the solving process to be carried out iteratively
until the end-effector is sufficiently close to the target (or as an exit strategy, exit
when either a maximum number of iterations have been executed or the end-effector

adjustments reach a certain lower error limit toward the desired solution).

The advantages of analytic IK methods are that they find solutions more quickly than
numerical solutions and they are guaranteed to find a solution if it exists. They do
however lack flexibility in how they choose solutions and have the drawback that a
solver of this type can generally only be applied to a particular type of joint structure

(such as having a 7 DOF solver for arms and legs).

Some IK solvers use a hybrid of analytic and numeric methods, using analytic
methods to solve separate joint chains such as arms and legs where a closed form
solution is available and using numeric methods to solve the computation of body

posture (such as with [9] and [10]).

Numerous IK solving techniques have been developed such as Cyclic Coordinate
Descent (CCD) (and a damped CCD variant), pseudo-inverse, Jacobian transpose,
damped-least-squares (DLS), selectively damped-least-squares (SDLS) among others.
For details of these techniques the reader is referred to [11], [12], [13], and [14].

In addition to the spatial constraints motion editing techniques must also take
temporal properties into consideration. For example the high frequency snap of a
punch motion should not be dulled on editing to redirect a punch. There are numerous
different approaches taken by constraint-based motion editing methods for handling
the temporal constraints of motion. We refer the reader [15], which discusses some of
the available methods such as Motion Warping, Per-Frame Inverse Kinematics
(PFIK), Per-Frame Inverse Kinematics plus Filtering (PFIK+F), and Spacetime

Constraints.

Figures 2 and 3 below shows results from work done by Micheal Gleicher [16] that
solves the spatial and temporal constraints of a motion, using a Spacetime Constraints
solver, to adapt the motion to characters of different size and skeletal shape

preserving the frequency characteristics and special features of the original motion.

Figure 2: Results from using Spacetime Constraints motion editing method on
a pick-up motion for different sized characters. Left shows the motion
frame on the original actress, centre shows the motion frame for a
character 60% of the size of the original, and right shows the motion
frame for a character with very short legs and arms and a long body sized

characters picking up an object [16].

Figure 3: Results from using Spacetime Constraints retargeting a dancing

motion to a variety of Characters [16].

1.1.2 Character Deformation

In addition to applying realistic motion to the character models an important aspect of
the character animation is the deformation of the character’s body in relation to its

motion. Generally it is not plausible for an animator to sculpt entire meshes by hand
9

for every possible pose of a character. Techniques such as skeletal-based animation
are used to aid the process of creating large numbers of mesh variations for animation
purposes. For certain cases such as facial animation non-skeletal-based techniques
such as blend shapes (also known as Shape Interpolation) are also commonly used but
they are not as well suited to the deformation of entire character meshes as the

skeletal-based techniques.

Within skeletal-based deformation systems an underlying hierarchical skeleton is
attached to the mesh of the character so that as the skeleton is manipulated the mesh
of the character is automatically modified accordingly. This attachment of the
character mesh to an underlying skeletal hierarchy is called a skin and can be viewed
as a function that maps the skeleton parameters (or degrees of freedom) to a

deformation field of the mesh vertices.

There are two fundamental aspects of skin creation — authoring and computation.
Skin authoring refers to the process of an animator using tool sets to describe the
deformation of the skin as the underlying skeleton moves. Skin computation refers to
the method by which the character skin is evaluated in terms of the position of the
underlying skeleton. For off-line creation of high-end character animation authoring
methods are used for the skin creation process, whilst for interactive applications
computational methods are used. We will therefore concentrate only on the

computational methods that are available.

Due to its relatively fast computation speed and low memory requirements the most
commonly used skeletal-based deformation technique within interactive applications
such as videogames is a technique known as vertex blending (other commonly used
names for the technique are linear blend skinning, Skeletal Subspace Deformation

(SSD), enveloping, and smooth skinning).

The process involves assigning a list of joint weights to each vertex, each joint weight
representing how much influence a specified joint has on the position of the vertex.
The weights are typically assigned according to the vertex distance from the joint in
the bind pose position. The number of weights per vertex is usually limited to an

10

upper bound value (usually 1 to 4) and an upper bound may be set on the distance
between vertex and joint where a weight may be assigned. The weights for each
vertex are then normalised to sum up to 1 and the vertex position and normal are
updated according to the current pose joint transforms relative to the joint transforms

in the bind pose position.

We denote v as the vertex position in the bind pose position, v’ the position of the
corresponding vertex for the adjusted current character pose, Mi the homogenous 4x4
matrix local to world transformation for joint i in the current pose, Bi and wi the

weight assigned to the vertex for joint i. Then we calculate v’ as:

v =(Yiw M; Biv (Equation 1)

We can similarly calculate the normals of the current pose by taking the inverse
transform of the above summed matrix with the translation elements removed, and

applying it to the corresponding normal in the bind pose position.

Figure 1 below shows how the process affects the positioning of the vertices on joint
rotation. The example on the left shows the vertex positions before rotation. In the
centre example the blue vertices are fully associated with the parent joint and the
green and white vertices fully associated with the child joint. The result of the
rotation creases badly on the inside of the elbow even with this relatively small
amount of rotation. The vertex blending example is shown on the right where the
vertices have a weighted association with each of the joints. The white vertex in this
example has an equal weighting of 0.5 with each joint, the red circles show the
positions found by transforming the original vertex position by each of the joint
transforms. The final vertex position is found by carrying out a weighted average of
the red positions (the weighting of the average in this case being 50-50). The result
using the vertex blending method is much smoother and aesthetically pleasing than

the example in the centre.

11

@ @
q = @
¢ D
T T @
g
o ®

Figure 4: Vertex Blending: (Left) Vertices before rotation. (Centre) Result after

rotation without vertex blending. (Right) Result after rotation with vertex
blending.

The vertex blending method is a relatively very fast method and it does produce good
results for reasonably small rotations. However larger angles can cause serious
artifacts. One well known artefact that can occur with this method is the “candy-
wrapper” effect when a twist near 180 degrees is applied to a joint. Figure 2 below
illustrates this example. On applying the child rotation the vertices are on the opposite
side of the bone and so the vertices with a 50-50 weighting are averaged equally

between the two opposing positions resulting in the vertex being positioned toward

the joint.

10000 75125 5050 2575 0HOO
& S = S @

parert child
@ @ @ @ @

Figure 5: Effect of twisting child joint 180 degrees using vertex blending

method resulting in “candy-wrapper” artifact.

12

Similar displeasing artifacts occur when rotating near 180 degrees around the other

two axes. Figure 6 below shows such artifacts on the skin of an arm.

Figure 6: Common artifacts using vertex blending. Left image shows shrinkage
around bent elbow. Right image shows twisting rotation on elbow causing

collapse of elbow.

When joints may go through such extreme rotations artifacts with the vertex blending
method can be alleviated by adding additional joints near the problem joints. In some
cases problems may be fixed just by careful re-assignment of vertex weights (for

example chest vertices may bulge out on raising arms, lowering the weights assigned

to the shoulder joint can alleviate this problem).

Some techniques rely on using more than one sculptured reference pose for their
deformation calculations. More and Gleicher [17] extend the vertex blending
technique to take in a number of example sculpted poses paired with a corresponding
skeleton pose. Their system uses the multiple poses to calculate the weights and
vertex positions for the bind pose by finding the values that minimize the least-
squares difference between the skin and the examples at all the example skeletal
configurations. The system also allows for automatic creation of joints to help solve
artifacts such as collapsing with linear vertex blending. Figure 7 below results from

using their system on an arm model.

13

Figure 7: Top row shows typical candy-wrapper artifact using normal vertex
blending technique. Bottom row shows the results of using the system
proposed by More and Gleicher [17] on the same model.

Other notable techniques include Pose Space Deformation (PSD) and Eigenskin

which shall not be discussed here but the reader is referred to [18] and [19] for
details.

14

CHAPTER 2: PROJECT OVERVIEW

2.1 Project Aims

The project aims to develop an interactive application that allows the user to control a

virtual character with seamless transitioning between a set of motions.

It was decided at an early stage that the application would make use of motion
captured data and use this motion data to provide continuous streams of motion that

the user can interact with.

The specific aims of the project have gone through some modifications since the
initial proposal. The initial proposal was to incorporate linear blending of the motions
with a pseudo-inverse Jacobian IK solver for applying particular constraints to the

motion such as adjusting the hit point of a punch or kick.

After more research was carried out in the area of motion editing it was decided
however to attempt to incorporate the techniques described in the Registration Curves
work carried out by Kovar and Gleicher[6]. Depending on progress of implementing
this another goal that was set was to incorporate the 7-DOF analytic IK solver used
by Kovar, Schreiner and Gleicher to maintain foot constraints and avoid footskate on

blended and interpolated motions[2].

2.2 Tools and Libraries

The application was developed in C++ using OpenGL and the freeglut library for the
rendering and user interaction processing. The incorporation of a graphical user
interface was not set out as a specific goal for the project so the freeglut library was

chosen as it was sufficient for the simple interface incorporated.

15

After discussions with the staff at the Bournemouth University AccessMocap motion
capture studio, regarding file formats for the motion capture data, it was decided to
import the FBX motion data files into Maya and use the existing Maya API exporter
that was part of the Major Animation project carried out earlier in the year. The Maya
API exported text files were parsed with existing C++ code written for this previous

project.

The geometry of the character was donated by an MA Computer Animation student
Xian Li who provided an .obj file containing the vertex, normal, and texture data for
the t-pose of a relatively low resolution character mesh. This mesh was rigged and
skinned in Maya, and it was necessary for this project to add extra locked joints to the

skeleton to reduce artifacts on some of the extreme motions such as high kicks.

In addition to the text parsing to import the Maya API exported character data it was
clear that a number of additional text files would be required to be imported for this
project and it was decided that rather than writing numerous C++ parsers for each
specific task, an XML parser would be used for the data import. An open-source
light-weighted C++ XML parser written by Frank Vanden Berghen was chosen for
this task [20].

16

CHAPTER 3: SOLUTION

This chapter shall discuss the main algorithms used for matching the set of motions,
calculating the alignment and blending of motion generated from multiple
animations, and transitioning from blended/interpolated motion to non-matched

dissimilar motions (e.g. jog to high kick).

3.1 Constructing Dynamic Time-Warp Curve

The first step in the construction of the time-warp curve, where each point on the
curve specifies matching times for each motion, is to use a suitable distance metric
for calculating the similarity between any two frames of motion on different

animations.

It is important for the distance metric not only to incorporate body posture similarities
between frames but also take into account joint velocities and accelerations and

higher order derivatives.

The distance metric should also take into account that equal joint orientation changes
may have significantly different affects on the pose of the model depending on the
orientation of other joints in the skeleton. For example Figure 8 below shows the
different affect that the same small shoulder rotation has on the position of the arm of

a model where the elbow is oriented differently.

17

Figure 8: Twisting the shoulder by 30 degrees has a significantly different

impact on the posture of the model when the arm is straight (left) and the
arm is bent (right).

Another important factor for the distance metric is that motions are fundamentally
unchanged by translation along the floor plane and rotation in the vertical axis, the
distance metric should therefore be invariant under such 2D transformations of

motions.

The distance metric involving frame neighbourhood point clouds mentioned in
section 1.1.1 used by Gleicher et al [1], [3], [6] satisfies these requirements and this
was the metric used in this project's application. Figure 1 in section 1.1.1 illustrates
point clouds being used in the matching of 2 run motions that are similar under a 2D

translation along the floor plane and rotation in the vertical axis.

The simpler case of generating point clouds with points located at joint positions
rather than located on parts of the skin was chosen in order to save calculation time.
Each joint was given a particular weighting (some of which may be zero but none of
which were negative), with this information being specified in an XML file that the

application imported.

18

If there are nm marked joints for each pose then each neighbourhood of size 2L + 1
has n, = ny,(2L + 1) marker points each. The distance between two point clouds is
defined as the sum of the squared Euclidean distances between corresponding points
on the two point cloud, minimized by all translations along the floor plane and

rotations in the vertical axis:

np

D(M;. M;) = min ZR‘A-HPk — ToxpaoPil’

0,20,z
+L0 0k:1

(Equation 2)

where py and pi' denote the k'th point in the clouds for the motions Mi and M,;
respectively and T represents a rigid 2D transform of a rotation theta in the vertical
axis followed by a translation of (x0, z0) along the floor plane. The wy values are

used to preferentially weight certain markers.

A closed form solution for the optimal 2D rigid transformation minimising the sum of
the squared distances exists and the theta, x0 and z0 values for this transformation are

given as below:

> o Wkl Thzy, — Tpok) — (O, Wk D g We2, — 3 WkTy D g Whkk)
3 r WelTeay, + 2623,) — (O Wk) el + D W2k Y, WE2L)

f = arctan

(Equation 3)

T = E wyx), — cosf E Wy, — sin 6 E W2
k k

k
(Equation 4)

19

Fy= E Wz + sin f E wyT), — cos 6 E Wy, 2},
k k

ke y
(Equation 5)

Using this distance metric we compute distances between each pair of frames in a
pair of motions. This gives us a matrix of distance values with each cell representing
the distance between two specific frames within the two motions. On specifying a
specific frame pair to be included on a curve we can use dynamic programming to
calculate the least cost path to span at least one of the motions. In the application for
this project it is desired for looping that the path starts at some matched pair of frames
and ends meeting back at those pair of frames. Once the start match frames are
imported into the application the matrices are generated so that the start frame
matches are at the bottom left and top right corners of the distance matrix and the
dynamic programming implementation ensures that the cost path starts and ends at

these corners finding the least cost path in between.

As well as the start and end constraints applied to the calculation of the least cost

path, three other constraints are imposed. These are as follows:

Continuity -The path must join from the start cell to the end cell without any gaps in

the links in between.

Monotonicity - A path is not allowed to go back in time. This is equivalent to not
allowing the path to move down or left when traversing from lower left corner at path

start to upper right corner at path end.

Slope Limit — At most W}, consecutive horizontal steps may be taken and at most W,
consecutive vertical steps may be taken. The Wy, and W, values are calculated
depending on the ratio of number of frames in one motion against the number of

frames in the other motion (i.e. The ratio of rows to columns in the distance matrix)

20

Dynamic Timewarping Example

Walking

Sneaking

Legal and lllegal Paths

- 1]
1 .

|
Ty

Mot continuous Mot causal Breaks slope
limit (L = 2)

Figure 9: Twisting the shoulder by 30 degrees has a significantly different
impact on the posture of the model when the arm is straight (left) and the

arm is bent (right).

In the implemented application we allowed three types of steps from a cell on moving
toward the end cell, each step can only move one cell horizontally, one cell vertically
or one cell diagonally. Other steps (that don't move down or left) could have been

added but it was decided to use just those three steps and if required additional steps

could have been added at a later date.

The slope limits were defined as:
Wi =min(1.5 * matrixWidth/matrixHeight, 2)
W, =min(1.5 * matrixHeight/matrix Width, 2)

(Equation 6)

21

The frame neighbourhood size chosen for the point cloud comparison of frames was
chosen as 5 for the application, so that on checking two frames we generate two point
clouds with each point cloud generated from the particular frame being checked, its
two previous frames and its two next frames. This neighbourhood size incorporates

velocity and acceleration into the frame and out of the frame.

Now with a large number of motions to be timewarped together rather than creating a
dynamic timewarp curve for each pair of motions which would cause a large number
of distance matrices and timewarp curves to be calculated, we use the approximation
that if frame Fm1 of motion 1 is matched with frame Fm2 of motion 2, and frame
Fml of motion 1 is matched with frame Fm3 of motion 3 then frame Fm2 of motion 2
should be approximately matched with frame Fm3 of motion 3. Therefore for n
motions say, rather than creating (n-1)! dynamic timewarp curves for each pair of
motions we create n-1 timewarp curves by choosing one reference animation (which
is chosen as a motion that is most similar to the other motions, e.g. choosing walk
rather than an extreme motion such as sprinting). Then we create a dynamic timewarp

curve for every other motion in the set paired with this reference animation.

Once all these timewarp curves have been created we fit a clamped uniform B-Spline
to each least cost path adjusting the consecutive horizontal and consecutive vertical

points on the path to ensure the curve is strictly monotonic.

Following this we sample the reference animation at regular intervals and gather the
corresponding times of the other animations from the spline curves and these times
are gathered into a single n-dimensional vector (for n motions) to create a single
clamped uniform B-Spline curve whose points are n-dimensional vectors specifying
the corresponding times for the set of motions. A sampling interval of 5-10 frames of

the reference animation for this stage was found to work quite well.

22

3.2 Alignment and Blending of Motion

In order to create smooth weight adjustment of motions a weight handling class was
implemented to maintain and adjust cubic Bezier Splines for the time dependant
weight functions of the motions. This manager class could then be used to take in the
current timer time and return the motion weights for the animation handling classes to
use. These weights are then used in the calculation of the current local to world

transforms of the skeletal joints.

The non-root joints were not given degrees of freedom for scale and translate (which
were fixed to the bind pose values) so only the joint rotation for the

blended/interpolation had to be calculated for each frame update.

With the exception of the root joint the blended/interpolated joint transform relative
to it's parent joint coordinate system could be calculated by a weighted averaging of

the quaternion orientation of the weighted motions.

The case of the root joint is more complex in that it has more degrees of freedom with
3 DOF for translate and 3 DOF for orientation. Care must be taken in the calculation
of the joints new alignment position and orientation in order to correctly produce

smooth continuous blending/interpolation of a set of motions.

The majority of the alignment process described in the Registration Curves technique
[6] was originally implemented but due to problems arising with implementing the
“Positioning and Orienting of Frames” section of this paper, the method was

abandoned and a different iterative solution was constructed.

The main process of alignment in the new method was as follows:

1) User/Program specifies where on the x-z plane the projected root joint
is to be positioned (i.e. (x, z) world translate) and the y-axis (vertical)
orientation of the root in terms of a Euler YZX ordered orientation. The

blend/interpolation pose of the first frame of continuous motion is then

23

calculated with the root position placed at the (x, z) position, the
desired root y-orientation set, and the ZX Euler values extracted from
the root transforms for each motion and a weighted average of this ZX
orientation is then applied to the root positioned and oriented in the y-
axis as above. The final root world transform (denote by
PrevRootTransform) is stored as is the root world transforms for each

motion with a non-zero weight (denote by PrevRootFiTransform).

For each consecutive frame the following algorithm is carried out:

SET weightedAvgXZTranslation = 0

SET weightedYWorldTranslation = 0

FOR each motion LOOP

i) Calculate the current non-aligned root transform for the

motion. Extract the z-x components of the Euler YZX
representation of the orientation of the root, and store
them along with the motion weight for processing after

loop.

i) Calculate the incremental transform transforming from the
motion's root transformation stored in previous frame to the
current root transform of the motion (i.e. PrevRootFiTransform™

* CurrRootFiTransform), denote this transform by F;.

iii) Calculate the blended transform of previous frame post-
multiplied by the incremental transform in step ii) above (i.e.
PrevRootTransform * F;), denote this transform M;. Store this

transform and the motion weight for processing after loop.

iv) Extract world y translation component from transform M;,

denote this translation by Y;

v) SET weightedYWorldTranslation =
weightedYWorldTranslation + (motion weight * Y;)
24

vi) Extract the world x-z translate from transform Mi and subtract
the extracted world x-z transform from PrevFrameTransform to

get the world incremental x-z translate.

vii) Extract the y-rotation transform component of the Euler YZX

orientation of transform M.

viii) Transform the world increment translate in step vi) above by
the inverse of this y-rotation transform in 5, to get the
translation local to the coordinate system with y-orientation of
M; transformed coordinate system. Denote this localised

translate by L.

ix) SET weightedAvgXZTranslation =
weightedAvgXZTranslation + (motion weight) * L,

END LOOP
3) Calculate weighted average of M, orientations stored in step iii) of loop
and denote by YRotCurr the transform y-rotation of this averaged

orientation.

4) Calculate weighted average of z-x orientations stored in step i) of loop,

we denote this transform as ZXRotCurr.

5) Extract (x,z) translation from PrevRootTransform, denote this

translation transform XZTranslatePrev.
6) Calculate new local to world transform of root as:
XZTranslatePrev * YRotCurr * weightedAvgXZTranslation *

weightedYWorld TranslationMatrix * ZXRotCurr

25

Quaternions were used to carry out weighted averaging of the orientations and

extracting the Euler YZX components of the orientations.

The reason for transforming the incremental x-z translations to the local space of a
coordinate system with y-orientation of the Mi transform was to reduce the effect of

collapsing on weighted average of the translations.

For example if we have two motions where the translation from the previous frame of
the first motion moves forward and left and the translation from the previous frame in
the other motion moves forward and right then averaging the vectors in terms of even
the local y-oriented coordinate system of the previous frame will result in a reduction
of the translation vector compared to the two vectors that were averaged. By
averaging vectors transformed to the y-oriented coordinate system of their respective
M; transform then as the increment in the character's y-orientation is generally in
accordance with the incremental x-z translate, the collapsing issue is reduced. Using
this technique we would still get collapsing of translations in some cases where
translation increment and y-orientation are not in accordance, but this collapse may
sometimes be desired, for example with two side-stepping motions where the y-
orientation doesn’t change, a 50-50 blend would have no translation and no y-

orientation change.

For the straight/left/right walk, sneak, limp, and run motions in the dynamic timewarp
curve of this application, the above method for calculating the new root position and
orientation worked reasonably well (see Chapter 4 for conclusions) in maintaining
continuous and correct alignment in the application. Figures 10, 11, and 12 show
some frames captured from the application on changing between a sneak and run

motion.

26

Figure 10: Application playing a running motion cycle of the character.

27

Figure 11: Application playing a sneak motion cycle of the character.

Figure 12: Application playing a more crouched running action on transitioning

between run and sneak motion cycles.

28

3.3 Transitions

In addition to the motions that were grouped for blending/interpolation there were
also kick and punch transition motions that could be transitioned to with motion

blending.

A finite state machine was implemented to handle the management of transition
between blended/interpolated motions and transition motion clips, and to handle the
generation of cubic Bezier curves defining the weight transitions between the
timewarped blend/transition motion and the non-timewarped transition motion clips.
Figures 13 and 14 below show captured frames from the application playing the kick

and punch transition motion clips respectively.

Figure 13: Application running a transition to a karate-kick motion.

29

Figure 13: Application running a transition to a punching motion.

An XML file containing all the transitional data between these motions such as the
frame windows for blending were imported with the transitions to/from the
timewarped motion set being in terms of the reference animation. Depending on the
current weights of the timewarped motions the duration for transition is altered
depending on the speed of the motion relative to the reference animation (for example
if the motion has a shorter time span than the reference anim between matched frames
such as a run compared to a walk then the transition duration was lengthened). A
simplified linear blending method was used for calculating the time increments along
the transition motion clip animations, with the time scaling factor based on the
current motion weight and the ratio between the actual transition time and the

transition motion frame window duration.

30

CHAPTER 4: CONCLUSIONS

4.1 Results and Future Work

The project did achieve the main goal of providing interactive streams of motion.
Unfortunately there was not time to apply constraints to the motion due to an
underestimation of the problems that would be encountered during the

implementation of the application.

There are many areas where the application could be improved. The most immediate
improvement being to fix a bug which seems to be in the finite state machine logic
causing a time-blip on transitioning back from a transition clip to the previously
running blended motion. This glitch causes the character to rotate a large amount in

one frame and motion is continued from the newly oriented position.

The other main bug for which there was no time remaining to debug was in the
weight adjustment for weight interpolation and this aspect was removed prior to the
hand-in, leaving just the transitions within the timewarp-matched animations and the
transitions to the non-timewarped transition clips (repeated timewarped motion
transition requests during transition phase of timewarped motions does play motion
with more than two non-zero motion blending weights so it may be a trivial fix to the

application).

It would also be beneficial to tidy up a couple of the animations which have a slight
discontinuity on the re-looping, some of the animations were fixed but the turning run

motions in particular require adjustment.

One other issue with the turning run animations regards the non-uniform turning
motion which resulted in matched phases of opposing run turns having relative
differences in banking and rate of turning (as the animations are matched with

corresponding leg movement). These differences caused variable acceleration of

31

banking and rate of turning on transitioning between two opposing turns of the run

motion.

The user interface is also an area which can be improved upon, a graphical user
interface would be ideal for adjusting the weights with sliders to produce interpolated

sequences of motion.

It would also be interesting to see how the application works with more uncommon
motions, say a character following curved paths with variable spinning orientations,

moving backwards and so on and see how the motions blend together.

In terms of the addition of applying constraints it would be interesting to have the
application adjusting actions such as kicks and punches to particular targets and using
a footplant constraint solver such as Kovar et al's [6] system and attempt to apply the

captured motion to uneven terrain.

4.2 ACKNOWLEDGEMENTS

The author would finally like to thank Andy Cousins of Access Mocap, Bournemouth
University in addition to James Whitworth and Jonathan Macey for their advice and

guidance throughout the project.

32

References

Kovar L., Gleicher M., and Pighin F., Motion Graphs, ACM
International Conference on Computer Graphics and

Interactive Techniques 2002, p473-482.

Kovar L., Gleicher M., and Shreiner J., Simulation, Motion Capture,

Editing : Footskate Cleanup for Motion Capture Editing. ACM

SIGGRAPH/Eurographics Symposium on Computer
Animation 2002, p97-104.

Gleicher M., Shin H. J., Kovar L., and Jepson A., Snap-Together
Motion : Assembling Run-Time Animations, ACM
Symposium on Interactive 3D Graphics 2003, p181-188.

Menache A., Understanding Motion Capture for Computer
Animation and Video Games, Morgan Kaufmann Publishers

Inc, 1999.

Ikemoto L. and Forsyth D. A., Enriching a Motion Collection by
Transplanting Limbs, ACM SIGGRAPH/Eurographics
Symposium on Computer Animation 2004, p99-108.

Kovar L and Gleicher M., Flexible Automatic Motion Blending with
Registration Curves. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation 2003, p214-224.

Tolani D., Goswami A. and Badler N. 1., Real-time inverse

kinematics techniques for anthropomorphic limbs. Graphical

Models 62, 2000, p353-388.

33

[8] Wu X.,Ma L., Chen Z., Gao Y., 4 12-DOF Analytic Inverse
Kinematics Solver for Human Motion Control. Journal of

Information and Computational Science 2004, p137-141.

[9] Lee J. and Shin S. Y., 4 Hierarchical Approach to Interactive
Motion Editing for Human-Like Figures, ACM International
Conference on Computer Graphics and Interactive

Techniques 1999, p39-48.

[10] Shin H. J., Lee J., Gleicher M., and Shin S. Y., Computer Puppetry:
An Importance Based Approach, ACM Transactions on
Graphics (TOG) 2001, p67-94.

[11] Watt A., Watt M, Advanced Animation and Rendering Techniques,
Addison Wesley. 1992

[12] Welman C., Inverse Kinematics and Geometric Constraints for
Articulated Figure Manipulation, Masters Thesis, Simon

Fraser University. 1993

[13] Buss S. R., Introduction to Inverse Kinematics with Jacobian
Transpose, Pseudoinverse and Damped Least Squares
methods. Unpublished survey article. 2004.
Available at
http://www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods
(Accessed 03-Aug-20006).

[14] Buss S. R. and Kim J. S., Selectively Damped Least Squares for
Inverse Kinematics, Journal of Graphics Tools, 2005, vol. 10, no. 3,
p37-49.
Available at:
http://www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods
(Accessed 03-Aug-20006).
34

[16]

[17]

[18]

Gleicher M., Comparing Constraint-Based Motion Editing Methods,
Graphical Models, 2001, 63(2):p107-134.

Gleicher M., Retargetting Motion to New Characters, ACM
International Conference on Computer Graphics and

Interactive Techniques 1998, p33-42.

More A, and Gleicher M., Building Efficient, Accurate Character
Skins from Examples. Proceedings of ACM SIGGRAPH 2003,
p562-568.

Lewis J. P., Cordner M., and Fong N., Pose Space Deformation: A
Unified Approach to Shape Interpolation and Skeleton-
Driven Deformation. ACM International Conference on
Computer Graphics and Interactive Techniques 2000,
pl65-172.

Kry P. G., James D. L., Pai D. K., EigenSkin: Real Time Large
Deformation Character Skinning in Hardware. ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation 2002, p153-159.

Kranf Site : Frank Vanden Berghen C++ XML Parser.
Available at:
http://www.applied-mathematics.net/tools/xmlParser.html

(Accessed 10-Sep-2006).

35

