Blending Reality:

cartoon looking renders

of 3D scenes

Judit Escoda
Msc Computer Animation 2006

Masters Project

Table of Contents

L= INEFOAUGCTION oo e e e e e e e e e e e, 1
= PreVIOUS WOTK ..t e e e e e e e e 6

[l.i.- Object space methodsccceiiiii i e eenee,. O

[Lii.- Image space Mmethods ... e 8
[1l.- Edge detection from iIMagES.viiei it 10
1T TR O £ [T T 4= o £ 10
[Lii.- Canny’s algorithm ... e, 12
[Liii.- Cartoon shading ... e 13
IV.- Implementation of Canny’s algorithm ..., 14
[V.i.- Derivative OPEratOrSocuuieiue et e e e e e e een e 14
[V.ii.- Noise and the Guassian functioncccooiiiiiiiiinennnvennn. 16
[V.iii.- Non-Maxima SUPPreSSIONc.uieiieiie e e e e e ie e ee e 17
IV.iv.- Hysteresis thresholding...........cooiiiii i 19
V.- Cel shading MOGEIS e e 21
V.i.- Standard shading models ..o e 21
V.ii.- Gooch shading modelocoiii i, 22

V.iii.- Cartoon shadingcoooiiiiiiiiii e 23
REIEIENCES ... et e e e 24
Appendix I: Code for Canny implementationcooeiivicecie e e i, 30

Appendix Il: Code for cel shading models.............cooooiiiiiiiiii i 40

|.- Introduction

The emergence of computer graphics techniquesid¥0s completely revolutionized
the way animated characters and imaginary objeete wreated. Up until that time, any
form of non-realistic animation had to be drawn lignd, performed by artists in
celluloid tablets. This traditional style of aninwet has been evolving over time so as to
incorporate computers and computer graphics irdo ffroduction pipeline. Computer
graphics have however been considered a complergend®l providing wider
flexibility to changes in the late stages of th@duction process. Nonetheless, the
influence of computer graphics in traditional aniima has been gaining strength over
the past decade.

On the first place, two dimensional animation systdhave been developed in order to
facilitate the creation of characters and backgdo@econdly, it has been observed that
certain particularities of animation can now be @ifired by the use of three
dimensional computer graphics. As such, camera mewe can be performed more
coherently in three dimensional space, as welhaseusability of characters designed
in a three dimensional environment. Such incorpomabas been used in a variety of
applications, ranging from games suchDaagon Ball Zto feature films such as the
Lion KingandSpirited Away

The incorporation of 3D computer graphics into 2@nztion does not come along
without giving rise to certain considerations. Fio$ all, complexity is reduced at the
expense of loosing aesthetic control over the fimaEge. Secondly, 3D techniques are
still used as a, now more important, complementagy. This means that the style of
the animation is still driven at the artist’s wishd, ideally, the human eye should not be
capable of distinguishing those parts of the anonathat are two dimensionally drawn
from those that arise as the render of a threertBiogal scene.

The above problems can be addressed by developahgitjues that will render a 3D
scene into a particular 2D style. The questionherdfore to gain control over those
specificities that distinguish a final image argsiinom one or other environment. Two

main distinctions have been addressed here. lmaaanimations, objects appear as

bounded regions filled with a particular colour. Asconsequence, objects appear
flattened by the influence of light. The first dmsttion is addressed as an edge detection
problem, whereas the second embraces the develvmhepecific shaders so as to
achieve the desired look. We shall explore in naetail the above specificities in the

following sections.

Il.- Previous work

In order to overcome the distinction between objecbgnition in 2D animations and
3D, the problem has been reduced to that of fintiiegoutlines of objects composing a
three dimensional scene. This is known in thediteme as thedge detectioproblem,
and its applications range from computer generatechnical illustrations to
architecture. The methods developed over the yassnow being applied to other
fields of non-photorealistic rendering (NPR), irdihg our subject of study here, that is
cartoon looking renders of 3D scenes. While theeagiment of a cartooripon or cel
shaded look has been considered a major partoptbject, special attention has been
paid to the edge detection problem due to its cerigyl. We shall overview here
previous work in this field. Any technical specificrelevant to our approach will be

described in the next section.

I.i.- Object space methods

In a broad sense, edge detection techniques assifidd into object space and image
space methods. Image space algorithms extracttobjgiines from rendered images,
whereas object space algorithms do so at rendes. tivhile a lot of geometrical

information is lost in the first approach, it haket advantage of being less
computationally expensive, easier to implement amdependent of the surface
representation employed for the objects. Howeuse, gerformance of image space

algorithms is highly dependent on the bites stangtie image buffer.

One of the major problems facing object space eekjeaction is the hidden line
removal problem. This is an important fact abougeedietection: visible silhouette
edges can potentially be occluded by model geom#trpractice, this implies testing
each edge from a geometrical model for existenegerthine whether it is a silhouette
edge- and visibility -so that only edges that avé atcluded by existing geometry are
rendered- every time the viewpoint is changed. Care readily see that, for complex

objects, this can be extremely expensive in contjouial time.

Markosian et al. [1] approached this problem byeligping a real-time probabilistic
method for large polygonal meshes. Their methot$ teercentage of the edges of a
model at each time step to determine if any oftélséed edges compose the silhouette of
the object. The set of edges for testing is ch@gerandom. Once a silhouette edge is
found, the algorithm traces out a silhouette cusyerecursively testing neighbouring
edges. Using this method, the most visually impuréaiges are detected, but it does not

guarantee that all silhouette edges are found.

An alternative method was developed by Buchanan Sousa in [2]. Their method

introduces the concept etige bufferThis is defined as a data structure containirggeed
information extracted from a polygonal mesh. Theaids to identify each edge by the
two vertices defining it. Each vertex is then tddie see if it is shared by a front-facing
and a back-facing polygon. If this is the casenthiee two vertices are marked as
defining a silhouette edge. This data structuré vélread back at render time in order

to produce an image containing silhouette edges.

Vertex | VFB | VFB { VFB | VFB
200 | 300 | 400 | 500
300 | 500 | x00 [x00
400 | 500 | x00 | x00
500 | x00 | x00 [x00
x00 x00 | x00 x00

wnd | W DI =

Figurel: edge buffer structure

Raskar [3] proposed a method consisting on the igigbmh of a scene in different
layers. Then, using a depth buffer, the renderirazgss computes the intersection of
the two layers in order to determine edge silh@sefThe scene is thus subdivided in a

layer containing visible polygons and another ometa&ining those behind them.

A method that is off the scope of this project bt has been considered in its
simplified version is that developed by Meier [8f fendering animations in a painterly
style. The idea is to model surfaces as 3D parsiets which are rendered as 2D paint
brush strokes in screen space. Her method allowaatixg information from the 3D

model such as stroke direction and intensity. Thethod was studied as a way of

extracting edge curvature, allowing only partidgeg on the surface boundary to be

rendered.

Il.ii.- Image space methods

Saito and Takahashi [5], on the other hand, praviaenethod based on image space
that allowed extracting geometry information forgeddrawing and curve hatching.
Their method computes profile edges from the dé@ptge, whereas internal edges are
computed from its second derivative. Their approhes been further enhanced by
Decaudin [7]. Decaudin’s method augments the defap information by using normal

maps.

Figure2: curve hatched window using methods desdrib [6]

The reason why we can extract edge information ftbendepth and normal maps is
because edges appear in an image as luminancetifistties. In a depth map, objects
appear at different intensities depending on tbhetance from the viewpoint. On the
other hand, interior edges are defined as discaitigis in surface orientation. For
example, a human face profile can be easily exddafitom a z-map. However, if we

were to look at the face from the front, detailehsas nose and mouth would only

! The normal map uses the same principle as the deggthwith the difference that the values stored in
each pixel correspond to the x, y and z comporgritse normal to the surface.

appear as revealed by surface orientation disaaties. Decaudin proposes the

following method in order to obtain discontinuitiessurface orientation:

- set all the objects to white

- place a red light along the positive x directiangreen light along the positive y
direction, and a blue light along the positive diion

- use the same light colour but with negative istiées for the negative x, y and z
directions

- output the rendered scene as an n-map

(e)
(c) (d)

Figure3: Outline drawing with image processing.dapth map. (b) Edges of the depth map. (c) Normal
map. (d) Edges of the normal map. (e) The combéuegk images. (f)

Because of the object white colour, each surfaddénscene will reflect one or other
colour depending on its orientation. Where thera discontinuity in luminosity, there

is an interior edge. The approach taken here fallthe lines of [5] and [7].

lll.- Edge detection from images

According to the discussion above between objemteand image space algorithms for
silhouette edge extraction, one can readily obstredifficulties arising from one and
the other. First of all, a distinction needs tontede in object space methods according
to the surface representation of the model. We htediscussed here methods for
extracting edge information from NURBS and subdonssurfaces, but a detailed
explanation may be found in [8]. Secondly, mostitedse methods require a special
purpose raytracer capable of performing the reduiggerations. Finally, the hidden line

removal problem gives rise to computationally exgpemrenders.

It has thus been considered more suitable to fohowmage space approach. The lost
of information from the three dimensional model Ima$ been considered of primary
importance. If we were to shade the objects usurgechatching or stroke textures, an
object space approach would have been considered swtable. However, for a
cartoon looking rather than illustrative or paiferender, edge detection with no
information about curvature has been considereficgrit. Curve information should
be considered an extension of the method develbpexiso as to achieve a more hand-

drawn look.

l1l.i.- Using Y-maps

In our approach, Y-mapsare considered as an alternative to z- and n- naaps
described by [5] and [7]. The reason for that iatth-maps alone do not suffice to
extract all the required edge information. It iquiged to use n-maps at least for interior
edges, as proposed by Decaudin. However, the usegdftive light intensities is not
always permitted. Whereas rendering systems su€pasGl allow the use of negative
light intensities, a rendering system such as Remale or mentalray do not. In such
cases, two separate passes are required: onergogtaurface normal information in

the positive x-, y- and z- directions, and onehia hegative x-, y- and z- directions. This

2 Y-maps contain the grey scale component in NTSGdioates.

10

would give rise to a minimum of four passes: one ¢olour, one for z-depth
information, and two for surface normal informatidnstead, a grey scale image might

be used, and this information is provided in then#p of the rendered scene.

Edges might then be extracted from the z-, n- om¥p using convolutichmethods. A
differential operator is usually convolved with thendered pass in order to obtain a
binary image containing edge information. Sevedijeeoperators in differential form
have been described in the literature [9], eachadritbem having its own purpose and
different performances. The performance of a gieege operator does not depend
however so much on its efficiency as on the imdge convolved with. It has been
suggested in [5] to use a Sobel differential oerfr the extraction of silhouette edges
from the z-map, and using second derivatives f& detection of interior edges.
Because of the use of a Y-map in our approach)tamative general purpose method
acting on grey scale images has been preferred.mathod was developed by Canny
[10] in 1986 and it is considered to be the optialgbrithm for edge detection. For this
reason, Canny’s algorithm has been studied in rdetail. The motivations for this
choice have been further enhanced by the criteglaind Canny’s purpose. When

developing his algorithm, Canny set up the follogvamietaria:

Canny’s algorithm creteria

- low error rate: it is important that edges ocimgrin images should
not be missed and that there are no responsesitedges
- good localization: the distance between the quigel as found by

the detector and the actual edge is to be at a nmimi

% In mathematics, convolution is the result of takiwo functiond andg to produce a third functiom
that represents the amount of overlap betwWesrtg.

11

It has been considered that low error rate wouldrbeial for ensuring frame to frame
coherence, whereas good localization would endwaietihe outlines define in a precise

way the shaded object.

lll.ii.- Edge detection and Canny’s algorithm

The basic idea behind Canny’s algorithm is to dettee zero-crossings of the second

derivative of the smoothed image. Canny seeksenaterossing of

(G * 1)

o°n

wheren is the direction of the gradier® * | is the convolution of the Gaussian filter
with the imagd. Effectively, this is implemented as taking thadjent of a smoothed
image and then seeking local maxima along the gnaddirection. A correct

implementation of Canny’s algorithm can be sumneatias follows

Canny’s algorithm

A1%

- Gaussian filter: smooth the image with a Gausslter to reduce noise
and unwanted details and textures
- Gradient operator: compute the gradient magnitafiehe smoothed
image using a gradient operator
- Non-maxima suppression: set to zero any magniuadige that is not a
local maxima in the direction of the gradient
- Hysteresis thresholding: select pixels formingroected contours using

edge linking

12

I11.iii.- Cartoon shading

We shall describe in more detail in the next sect@anny’s algorithm and its
implementation. Although edge detection has beemsidered the major focus of
attention in this project because of its complexitie should not forget that we are
seeking to achieve a cartoon looking animation. théxefore must overlay the edge
image with a coloured render of the objects indgtene. This has been our second focus
of attention, that is, how to shade 3D objectshst they appear as belonging to a two
dimensional scene. As we mentioned earlier, objett2D animations appear flat-
painted. This effect can be simulated by creating tanges of colours for a same
object, one for its shadowed regions and one ®tighted ones. Based on observations
from hand-drawn technical illustrations, Gooch [Mgveloped a shading model in
which a warm yellow-like colour is used for lightadeas and a cool blue-like one for
the shadowed ones. This cool-to-warm colouring isech with the real colour of the
object, giving rise to a flattened but still rathétree dimensional look. A similar
approach has been used here, extending existiringhenodels such as matte, plastic

or metallic.

13

V.- Implementation of Canny’s Algorithm

As mentioned earlier, edge detection is an arela mvany applications, including image
processing and computer vision. It has been thgesulof study for many years,

principally due to the assumption of its importare® a low level task for shape
recognition. This is one of the processes at worgartoon animation, in which objects
are primarily identified by the outlines definingetm. How we draw outlines from three
dimensional objects has thus been the main subjestudy in this project. We have
explained in the previous section that this problsmeduced to finding edges from a
rendered Y-map. We shall explain now how this pssde carried out by first looking

into the theory behind image processing and thaerdeng the implementation of the
Canny edge detector.

IV.i.- Derivative operators

In order to understand how edges can be extractmd &n image, consider the
following figure. Figure 4 shows a functional repeatation of the visual signal arising
from an image. The appearance of edges in an imagdown in (a) gives rise to an

image intensity function (b) spatially distributeder its pixels.

Figure4: a) edge as it appears in an image, b)enrggnsity function,
and its first c) and d) second derivatives.

14

A very intuitive way to analyse the image intensityction is using mathematical
functional analysis and differential calculus. Usdarivative operators can then be
applied on a pixel basis for a given intensity fimt. Areas of constant intensity will
have derivative zero, whereas areas of changimsity such as those defined by an
edge will produce a point of extrema in the firgtridative and zero-crossing in the

second derivative, as one can see in figurgahd d).

In this way, it suffices to locate points of exti@imr zero-crossings in the derivative or
second derivative respectively of an image in otdeextract edge information. The
derivative of an image is performed by convolvihg briginal image with anaskthat
approximates a differential operator. The convolwedge is a sharpened version of the

original one where detail is emphasized.

Conceptually, a mask is a window of small size ikatcreened over the image, a bit
like a usual mask will be overlaid with a face twegrise to a personalized yet
undistinguishable appearance. The mask will prooasspixel at a time in the original

image, replacing the value of the given pixel by areraged sum of the pixels

surrounding it. A mask can be represented as urdi®, where the letteesh represent

the weights of the neighbours pf that is each pixel contribution to the final sfion

pixel p.

Figure 5: template mask

The gradient approximation of an imalge,y) for pixel with coordinategx,y) can thus
be expressed as a functifga, b, c, d, e, f, g, h, pyvherea is the weight for pixe(x-1,
y-1), b for (x-1, y) etc. Depending on the gradient approximation, fthmetion f may
take different forms. A common requirement thouglthiat the weights sum to zero so
that if we place the mask over a region of constairiow varying intensity, the output
of the convolution will be zero or significantly ath The performance of a mask will
depend on the edge contrast. In practice, tworéiffiedifferential masks are used: one
along rows and one along columns, the x- and y-kmasspectively. The y-mask is

15

usually obtained with a 90° rotation of the x-malsk[5], the use of a Sobel mask is

suggested. The Sobel gradient mask is given ifolleving figure

W[
)
=lr
|
o
o

0

Sx Sy

Figure 6: The Sobel gradient mask along the x adidections

IV.il.- Noise and the Gaussian function

Because the digital approximation to the gradiehtwo image has the property of
sharpening the image by emphasizing its detathénpresence of noise, certain aspects
that should not be emphasized could appear asibiegcan edge. In order to overcome
this problem, the original image is often convolwedh a smoothing filter prior to

convolution with a gradient mask. Canny makes tise@aussian smoothing function

G(x,y)= ex{ (¢+y?)]
20°
where ¢ is the standard deviation of the Gaussian digiobhu When applied to an
image, the Gaussian filter., shown in figurevdl spread out all the values in the image
by the shape of the filter. In theory, the Gaussletribution is non-zero everywhere,
which would require an infinitely large convolutiomask, but in practice it is
effectively zero more than about three standardatiems from the mean, and so we
can truncate the mask at this point. Hencesffectively controls the width of the

Gaussian mask.

ot}

oA

1 ks 1 Z d

Figure 7: the Gaussian distribution function

16

The commutative and associative properties of thesSian filter, together with its
separability, make it very appealing for convolatjpurposes: as a result, the filter can
be implemented as a sequence of convolutions vilthmhsks. As a consequence, we
have considered a one-dimensional Gaussian mask implementation, whose kernel
dimension is controlled by the valuegfconvolved with a one dimensional differential

Prewitt operator, being the simplest and the fastes
dx=[-101] andly=[-10 1]

We have described so far the first two steps in ithplementation of the Canny
detection algorithm, that is, how to take the datiixe of a smoothed image. Whereas
the first two steps are widely employed in imagedgon algorithms, the last two steps
are specific to Canny’s algorithm.

IV/.iii.- Non-maxima suppression

By defining an edge pixel as one with a large cleaimgintensity, we often get edges
greater than one pixel thick. That is, there migbt wide ridges around the local
maxima in the magnitude image. It is sometimes earent to restrict edges to exactly
one pixel. Canny developed a thinning techniquet tha termed non-maxima
suppression. Applying this method, edge pixelsdafined as those for which we have

a local gradient maxima in the direction perpenidicto the edge.

(M

_/ N

edge magnitude edge profile result of NMS

Figure8: Thinning wide contours in edge magnitudagas by non-maxima suppression.

The intensity profile along the indicated line i®aim resized for better visibility.

17

The gradient of a 2D function indicates the dir@ettin which the function is changing
most rapidly, so to determine if a given point Ire tgradient magnitude image is a
maximum, we need to check surrounding points indinection of the gradient. The

algorithm to perform non-maxima suppression is sanzed here

- for each positionxy), step in two directions perpendicular to the eddgentation
o(x,y).

- denote the initial pixeb(y) by C, the two neighbouring pixels in the perpendicular
direction byA andB (see Figure9)

- if G(A) > G(C) or G(B) > G(C), discard the pixebqy) by settingG(x,y) = 0

Figure9: edge direction (doted lines) and edge ab(mdicated by an arrow)

In practice, interpolation between the four closesghbours in the direction normal to
the edge is used in order to obtain more accumdelts. In order to estimate the
magnitude at a given poidton the normal direction, the two closest pointscresen,

say at pixePxy-1andPx+1y-1in figure 10.

Pl-l,rﬂ Pl, ¥el A Pl-!. ¥el
(-]

g T
I

Edge Direction

Figurel0: pixels chosen for interpolation for estiron of the magnitude value at A

18

The three pointxy, Pxy-1 and Px+1y-1 define a plane from which we can locally
approximate the gradient magnitude surface to estirthe value at the poidt The

interpolated magnitude Atis given by
Ga = (Ux/uy) Gx+1y+1 + ((Uy — Ux)/Uy) Gx, y+1

Similarly, in the magnitude value at a point Bl topposite side is given by
Ge = (ux/uy) Gx-1,y-1 + ((Uy — ux)/uy) Gx, y1

ThenPxy is at a maximum i6Gxy > Ga andGx,y > Gs.

IV.iv.- Hysteresis thresholding

Once the non-maxima suppression is applied to thgnitude image, edge strength
may be different in different points of a contounrdasome pixels may be marked as
local maxima but still not belonging to a contoQareful thresholding oBx,y is needed

to remove weak pixels while still preserving thengectivity of the contours. Canny
suggested the selection of two thresholds, an uapéra lower one, by which a pixel

xy) In the outputted non-maxima suppression image N&tSbe marked as

- strong: if NMS(x,y) > thigh
- weak: if NMS(x,y) < tlow

All other pixels are called candidate pixels. Agliis then selected as an edge pixel if it
is either greater than the upper threshold, ortgrethan the lower threshold and
connected to a pixel which is greater than the ugpeshold. This technique is known
as hysteresis thresholding and it can be appliedrsevely once a strong edge pixel is
found by looking into its eight neighbours and deti@ing weather they are candidate
pixels. If one of them is a candidate pixel, theis set to a strong edge and we look for

neighbouring pixels. This process is continuedlumgi find a candidate pixel for which

19

no neighbours are candidates. In his 1986 papennyCauggested to use a high
threshold three times the lower.

Q_:J' Q»;c:f (a) original image
<O eemd | (b) threshold at T1
Wizl -

="y (¢) thresholded at 2
T1
| (d)image
thresholded with
hysteresis using
both (b) and (c).

Figurell: different ouputs for the same image #¢@int thresholds

The hysteresis threshold explanation concludesdmgoussion about edge detection
procedures and, in particular, about the knowledgguired for a complete
implementation of the Canny edge detection, whidy e found in the AppendiXVe

shall next turn our attention to the developmentastoon looking shading models.

20

V.- Cel shading models

V.i.- Standard shading models

As we have mentioned in previous section, the nmapbrtant thing to consider for
achieving a cartoon looking render is that objeqtpear flattened. In standard shading
models, such the Phong or Lambert models, lightutaions are performed over a
cone defined by an angle of 90° about the facingiabof the surface.

Nn = normalize(N);
i1l um nance(P, Nn, Pl/2)

Ln = normalize(L);
Ci+=Cs* Cl* Ln.Nn;

These light calculations are performed in Rendermtin theilluminance construct
specified above. Th#luminance construct loops through all the lights in the scene
and calculates their contribution to the point be surface being shaded. Since it is
sensible not to consider lights behind the poinhdpeshaded, only light falling on the

hemisphere defined at pointwill be considered.

This implies that points on the surface lying aegion where no light influence falls in
the hemisphere defined by its facing normal wiNdao illumination whatsoever. The
result is that they will appear black in a renderadge. Those points lying between an
area of full absence of light and an area of perfigiht influence will be shaded
gradually according to their proximity to one oretlother. This effect reproduces
lighting conditions in real life and is precisehetshading characteristic that allow us to
acquire a perception of three-dimensionality frdre tendered object. For a cartoon

looking render, this effect should be avoided.

21

Figurel2: Phong shaded sphere rendered with maya

V.ii.- Gooch shading model

The area where we should focus here is that ofpimterealistic rendering, NPR. As
mentioned in previous sections, Gooch developebdaalisg model in which a warm
yellow-like colour is used for lighted areas andoml blue-like one for the shadowed

ones. The effect obtained by applying a Gooch shémlea skeleton is shown in
figurel3.

Figure13: Gooch shading model applied to a skeleton

The overall look of the surface appears now matdhed than with traditional shading
models. The development of cartoon looking shadefsere has been inspired by the
Gooch shading model. Instead of using cool-to-waatours, surface colour has been
modified by considering a darker colour for shaddveeeas and a lighter colour for
lighted ones. The following statement shows thealsway of assigning colour to a

surface point in a realistic shader:

22

Ci=0s * Cs * (Ka * ambient() + Kd * diffus e(Nf) +
Ks * specular(Nf, V , roughness));

In the simplest version of the Gooch shading matthelspecular function is ignored
and thediffuse function is replaced by aifluminance statement of the following

form

normal Nf = faceforward(normalize(N),),
illuminance(P,Nf,PI) {

Idotn = (normalize(L)).Nf;

blendval = 0.5*(1+Idotn);

finalcolor += mix(cool,warm,blendval);

The effect of this model was shown in figurel3. Tinst thing to notice is that the
illuminance construct is considered over a whole sphere orptiat being shaded.
Thus, any light, whether is behind or in front ¢ tpoint, will be considered during the
shading process, thus cool colouring areas thatidvappear black with a standard
shading model. The second thing to notice is thextet is no light colour contributiati

to the output colouci. This has the implication that the object beingdsgd will
actually not receive shadows from other objects¢esithere is no way of telling the
light colour at this point as specified with a sbadmap. Gooch’s shading model is
mostly used in technical illustrations, where akrlight is used and no other objects
are present in the scene. In more elaborated Gooatiels, white highlights are
incorporated so as to give some information abdyead orientation (notice the
highlights in figurel3).

V.iii.- Cartoon shading

For a cartoon looking render, it is important tovelep a shading model that
incorporates shadowed areas arising from objedtsg) @aced between the light source
and itself. In this way, Gooch model has been nedli§o as to incorporate light colour
Cl. A second modification has been made on the acuplut colour. Instead of using
cool-to-warm tones, the output colatir has been given a value that is proportional to

the input coloucs in two different ways: a darker tone for shadoweehs and a lighter

23

tone for lighted ones. Furthermore, we seek a rabrapt transition between shadowed

and lighted regions.

color lightedcolor = Cligh * Cs;
color shadowedcolor = Cshad * Cs;
color brightness = color(0,0,0);
normal Nf = faceforward(normalize(N),l),
illuminance(P,Nf,PI) {
dot = (normalize(L)).Nf;
val = 0.5*(1+dot);
lightcolor = Kl * ClI;
in = smoothstep(0.49, 0.51, val);
brightness += mix(shadowedcolor,lightcolor* lightedcolor,in);

Once the dot product between the normalized lighttar and the forward facing
normal vector is calculated, it is normalized sat tits value lies betweenand1. This
means that points in the dark, where the dot produtegative, will now lie between
ando.5 . We can use this new valug as in thenix statement in Gooch’s model, this
time considering the light colow . In order to achieve the sharp transition, buttoot
much, a smooth transition is applied to the valiueab between the value it should take
in dark regions and that in lighted regions. Theref as smoothstep function between
0.45 ando.55 is used in order to acquire a new vaiuethat will determine the final
colour contribution tarightness . Note a new light coloulightcolor is used as a
fraction ofCl in order to gain control over the contributionlight to the colour surface.
The light contribution is then added to tlghtedcolor only, producing different
layers of luminosity in the presence of severahtbgwhile still keeping a fairly
darkened colour for the shadowed regions. Fin#lg,surface colour computed in the

illuminance loop is passed onto the output colauras a diffuse contribution.

Ci=0s * (Cs * (Ka * ambient()) + Kd * br ightness);

These specifications have been applied to eachlafae shader. For a metallic and
plastic look, two more statements have been addbaayhlight is created by considering

those points facing directly the light source. Foe plastic shader, the highlighted

24

colour is a fraction of the surface colour, whereasmetallic objects this colour has
been given a value daf,white. This kind of effect is observed in two dmsenal
animations, where metallic objects appear white revha highlight should be

encountered.

In order to enhance the scene, two specific shdders been developed, which can be
found in the Appendix. A brick wall pattern has bessed for the building, and a wood
floor pattern for the floor in order to further emtte the final animation. Inspiration for

the development of these two shaders has been fiakaralready existing ones.

25

V.- Conclusion

This project has been focused on the study of@hdering of three-dimensional scenes
into a cartoon looking style. It is observed in 2Dimations that objects appear as
defined by outlines filled with a flattened coloium. order to achieve a similar look for

the render of objects from a three dimensional scémo main questions have been

addressed: how to draw object outlines and hoveldieae such a flattened colouring.

We have seen that the first question can be s@sezh edge detection problem, where
existing algorithms defined in either object spand image space methods present both
advantages and disadvantages. While image spagstlags are easier to implement,
they also give rise to a loss of geometrical infation that cannot be recovered from
the two dimensional image. This loss of informati@s not been considered important
for the chosen style of cartoon looking render thatwanted to achieve here. However,
for a more hand-drawn oriented and style-flexiblekl, a way for retrieving geometrical

information from the two dimensional scene is neede

Although the motivations for choosing Canny’s algon for our implementation was
its well known reputation as an optimal edge deted¢he results were not as expected.
The low error rate that was thought to ensure frapterence did not output the same
edges in each frame. Supposedly, this is due tdatiethat the edges that will be
discarded or picked during hysteresis highly depemdhe used threshold but also on
the actual detail of the image, which is obsereedhange from frame to frame possibly
due to the presence of image textures and the fuseminimal s in order not to wash
out the animation. This unexpected result has hewgiven to the animation a stronger
hand-look than the one we would have obtained hyepeedge localization. It is
therefore considered that the waviness on edgelidatan from frame to frame

enhances the final animation.

Finally, the objects for the scene were modelletiaya and shaded using developed
cartoon looking Renderman shaders. A major probleas encountered at a late
development stage, where shaded objects appealfeshagowed but not receiving

shadows cast by objects surrounding them. Thisl@molvas overcome by the addition

26

of light colour contribution to the final shadinglour. Overall, a fairly cartoon looking

animation has been produced and this should beidayed the achievement of this

project.

| believe a more flexible cartoon looking styleieslon the geometrical information that
is lost in the rendered image. | therefore consitlat one interesting subject of study
would be to develop a method by which this georoakrinformation could be kept in

the renders.

27

Refrences

[1] Lee Markosian, Michael A. Kowalski, Samuel Xydhin, Lubomir D. Bourdev, Daniel
Goldstein and John F. Hughe&é€al-Time Nonphotorealistic Renderingomputer Graphics
(Proc. Siggraph), ACM SIGGRAPH, ACM Press, 1997.

[2] John W. Buchanan,The edge buffer: a data structure for easy silhtmue¢ndering. In
Proceedings of the first international symposium Non-photorealistic animation and
rendering, ACM SIGGRAPH.

[3] Ramesh Raskar and Michael Cohelmdge Precision Silhouette Edgesn Proc. 1999
ACM Symposium on Interactive 3D Graphics, April 899

[4]Barbara Meier, “Painterly Rendering for Animatip Computer Graphics (Proc.
Siggraph), 1996

[5] Takafumi Saito and Tokiichiro TakahashGdmprehensible Rendering of 3D
Shape§ Computer Graphics (Proc. Siggraph), Vol. 24, MoACM SIGGRAPH,
ACM Press, August 1990.

[6] Winkenbach, G. and Salesin, D.H. (1994)0mputer generated pen-and-ink illustration

In SIGGRAPH 94 Conference Proceedings.

[7] Philippe Decaudin. Cartoon-Looking Rendering 3D-Scenes. Technical Report 2919,
INRIA, June 1996.

[8] Amy, Bruce Gooch, and Mass NaticiNdn-photorealistic renderirigA K Peters 2001.
[9] Alan Watt, ‘The computer imageAddison-Wesley, 1998.

[10] John Canny.A computational approach to edge detectidBEE Transactions on Pattern

Analysis and Machine Intelligence., Vol.8, No.6EEE Computer Society, 1986.

[11] Amy Gooch, Bruce Gooch, Peter Shirley, andridaCohen. A Non-photorealistic
Lighting Model for Automatic Technical lllustratiSrComputer Graphics (Proc.
Siggraph), ACM SIGGRAPH, July 1998.

28

[12] Steve Upstill. The Renderman companion: a programmer’s guide abstc computer
graphics. Addison.Wesley, 1990.

[13] lan StephensonEssential RenderMan fdsSpringer, 2002.

[14] “Digital image processing and analysi¥ol. 2. IEEE Computer Society Press, 1985.

[15] Thomas Strothotte Non-photorealistic computer graphics: modellingadering and

animatiori, Morgon Kaufmann, 2002.

[16] Jerry Beck, Animation art: from pencil to pixel, the world cdréoon, animé and CG|
Flame Tree, 2004.

[17] Anthony Apodaca, Larry GritzZAdvanced Renderman: creating CGI motion pictires
Morgan Kauffman, 1999.

Appendix I: Code for Canny implementation

e Canny's Algorithm implementaton ~ —m-meemee-
1) Convolve the image with a separable gaussian filter.

2) Take the dx and dy the first derivatives usin g [-1,0,1] and

[1,0,-1].
3) Compute the magnitude: sqrt(dx*dx+dy*dy).
4) Perform non-maximal suppression.
5) Perform hysteresis.

*

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <signal.h>
#include <assert.h>
#include <NCCAPixmap.h>
#include <PixFilelO.h>

#define STRONG 0.0

#define CANDIDATE 0.5

#define WEAK 1.0

void stepl_smooth_with_gaussian();

void step2_compute_gradient();

void step3_compute_magnitude();

void step4_non_maxima_suppression();
void step5_perform_hysteresis();

void edge_linking(short int lowval, intr, int c);

/IGLOBAL VARIABLES

NCCAPixmap image;

NCCAPixmap edge;

unsigned char **nms; //non-maxim suppression

short int **smoothedim, //image after gaussian smoo thing
**xderiv, //first devivative image, x-direction
**yderiv, //first derivative image, y-direction
*magnitude; //magnitude of the gadient image

int rows, cols; /limage dimensions and rows and col umns counters
float sigma, //standard deviation of the gaussian k ernel

tlow, //low threshold for hysteresis

thigh; //high threshold for hysteresis

main(int argc, char *argv[])

NCCAPixmap orig;
NCCAPixmap final;

NCCAPixel p;
float grey;
int convert;

intr, c;
if(argc < 6){
fprintf(stderr,"\nCanny usage %s image sigma tlow
edge\n“,argv[0]);
fprintf(stderr,"\timage:\tAn image to process An");

thigh

fprintf(stderr,"\tsigma:\tStandard deviation
gaussian.\n");

fprintf(stderr,"\ttlow:\tHigh threshold.\n");

fprintf(stderr,"\tthigh:\tLow threshold");

30

of the

fprintf(stderr,"\tedge:\tThe edge image to ob tain.\n");

exit(1);
}

orig = loadPixmap(argv[1]);
rows = orig.height;
cols = orig.width;

/lconvert image to greyscale
image =newPixmap(cols,rows,1,8);
for(r=0; r<rows; r++){
for(c=0; c<cols; c++){
p = getPixel(orig,c,r);
grey = p.r;
setPixelGrey(image,c,r,grey);

}

sigma = atof(argv[2]);
tlow = atof(argv[3]);
thigh = atof(argv[4]);

edge = newPixmapLike(image);

/lallocate space for the smoothedim data
smoothedim = (short int**)calloc(rows,sizeof(short
if(smoothedim == NULL){
fprintf(stderr, "Error allocating the smoothed ro
image.\n");
exit(1);

else{
for(r=0; r<rows; r++){

smoothedim[r] = (short int*)calloc(cols,sizeof(s
int));

if(smoothedim[r] == NULL)

fprintf(stderr, "Error allocating the smoothed c
image.\n");

exit(1);

}

stepl_smooth_with_gaussian();

/lallocate space for gradient images
xderiv = (short int **) calloc(rows,sizeof(short i
if(xderiv == NULL){
fprintf(stderr, "Error allocating the x derivativ
image.\n");

}

else{
for(r=0; r<rows; r++){
xderiv[r] = (short int*) calloc(cols,sizeof(shor

exit(1);

int));
if(xderiv[r] == NULL){

int*));

WS

hort

ols

nt));

31

fprintf(stderr, "Error allocating the X
derivative image.\n");

exit(1);

}

yderiv = (short int **) calloc(rows,sizeof(short i nt*));
if(yderiv == NULL){
fprintf(stderr, "Error allocating the y derivativ

image.\n");
exit(1);
else{
for(r=0; r<rows; r++){
yderiv[r] = (short int*) calloc(cols,sizeof(shor
int));

if(yderiv[r] == NULL){
fprintf(stderr, "Error allocating the vy
derivative image.\n");
exit(1);

}
step2_compute_gradient();

/lallocate space for the magnitude image
magnitude = (short int **) calloc(rows,sizeof(shor tint*));
if(magnitude == NULL)
fprintf(stderr, "Error allocating the magnitude
image.\n");
exit(1);
}
elsef
for(r=0; r<rows; r++){
magnitude[r] = (short int*) calloc(cols,sizeof(s hort
int));
if(magnitude[r] == NULL){
fprintf(stderr, "Error allocating the
magnitude image.\n");

}

exit(1);
}
}
step3_compute_magnitude();

/[allocate space for the non-maxima output

nms = (unsigned char **) calloc(rows,sizeof(unsign ed char¥));
if(nms == NULL){
fprintf(stderr, "Error allocating the magnitude
image.\n");
exit(1);
else{
for(r=0; r<rows; r++){
nmsr] = (unsigned char*)

calloc(cols,sizeof(unsigned char));
if(nms[r] == NULL){
fprintf(stderr, "Error allocating the
magnitude image.\n");

exit(1);

}
step4_non_maxima_suppression();
step5_perform_hysteresis();
savePixmap(edge, argv[5]);

/[free the pointers
for(r=0; r<rows; r++){
free(smoothedim|r]);
free(xderiv[r]);
free(yderiv[r]);
free(magnitude[r]);
free(nmsJr]);
}
free(smoothedim);
free(xderiv);
free(yderiv);
free(magnitude);
free(nms);

}

void stepl_smooth_with_gaussian()
{
intr, c, rr, cc,//counters
dimension, //dimension of the gaussian mask
center; //center of gaussian mask
float **tempim,//buffer to separate gaussian mask
directions
greyval,
prod,
sum,
X,
Gx,
*gaussmask;
/lcompute the gaussian kernel
/Iset dimensions accorind to the value of sigma
dimension = 1 + 2 * ceil(2.5 * sigma);

gaussmask = (float*)calloc(dimension,sizeof(float)
if(gaussmask == NULL)
fprintf(stderr, "Error allocating the Gaussian ma
exit(1);
}

center = dimension/2;
sum = 0.0;
for(r=0;r<dimension; r++){
x = (float)(r - center);
/l[gaussian function in one dimension
Gx = pow(2.718281828, -0.5*x*x/(sigma*sigma))
sqrt(6.2831853));
gaussmask|r] = Gx;
sum += Gx;

}

/

in x and y

sk.\n");

(sigma

*

32

33

for(r=0;r<dimension;r++) gaussmask][r] /= sum;

/lallocate space for the temporary buffer
tempim = (float**)calloc(rows,sizeof(float*));
if(tempim == NULL){
fprintf(stderr, "Error allocating the buffer rows

image.\n");
exit(1);
else{
for(r=0; r<rows; r++){
tempim|[r] = (float*)calloc(cols,sizeof(float));
if(tempim[r] == NULL){
fprintf(stderr, "Error allocating the buffer col S
image.\n");
exit(1);
}
}
}

/[smooth in the x direction
for(r=0;r<rows;r++){
for(c=0;c<cols;c++){
prod = 0.0;
sum = 0.0;
for(cc=(-center);cc<=center;cc++){
if(((c+cc) >= 0) && ((c+cc) < cols))
greyval = getPixelGrey(image,c+cc,r);
prod += greyval* gaussmask[center+cc];
sum += gaussmask[center+cc];

}

tempim|r][c] = prod/sum;

}

/[smooth in the y direction
for(c=0;c<cols;c++){
for(r=0;r<rows;r++){
prod = 0.0;
sum = 0.0;
for(rr=(-center);rr<=center;rr++){
if(((r+rr) >= 0) && ((r+rr) < rows)){
prod += tempim[r+rr][c] *
gaussmask[center+rr];
sum += gaussmask[center+rr];

}

smoothedim[r][c] = prod/sum;

}

for(r=0; r<rows;r++)
free(tempimlr]);
free(tempim);
free(gaussmask);

}

/luse 1D Prewitt operator for caluclating gradient image

34

void step2_compute_gradient()

t
intr, c, pos;
/[gradient along x direction
for(r=0;r<rows;r++){
xderiv[r][0] = smoothedim][r][1] - smoothedim[r][0 1
for(c=1;c<(cols-1);c++){
xderiv[r][c] = smoothedim[r][c+1] - smoothedim][r J[c-
1];
xderiv([r][cols-1] = smoothedim]r][cols-1] -

smoothedim|r][cols-2];

/l[gradient along y direction
for(c=0;c<cols;c++){
yderiv[0][c] = smoothedim[1][c]-smoothedim[0][c];
for(r=1;r<rows-1;r++){
yderiv[r][c] = smoothedim[r+1][c] - smoothedim[r

1][c];

yderiv[rows-1][c] = smoothedim[r-1][c] - smoothed im[rows-
2][c];

}

/lcompute magnitude
void step3_compute_magnitude()
{
intr, c, pos, gx, gy;
for(r=0;r<rows;r++){
for(c=0;c<cols;c++){
gx = xderiv[r][c] * xderiv[r][c];
gy = yderiv[r][c] * yderiv[r][c];
magnitude[r][c] = sqrt(gx + gy);

}

/lapply non-maxima suppression
void step4_non_maxima_suppression()
{
int rowcount, colcount,count;
intr, c;
short mag,gx,gy, ux, uy;
float p1, p2, magA,magB,xperp,yperp;

/lassign zeros to the borders of the final image
for(c = 0; c<caols; c++){
nmsJ[0][c] = (unsigned char) 0;
nms[rows-1][c] = (unsigned char) 0;

}

for(r=0; r<rows; r++){
nmsJr][0] = (unsigned char) O;
nmsJr][cols-1] = (unsigned char) 0O;

}

for(r=1; r<rows-2; r++){
for(c=1; c<cols-2; c++){

pl)*uy;

pl)*uy;

mag)*uy;

mag)*uy;

p2)*uy;

p2)*uy;

pl)*uy;

- pl)*uy;

mag = magnitude]r][c];

if(mag == 0){
nmsJr][c]= WEAK;
else{
gx = xderiv[r][c];
ux = -gx/mag;
gy = yderivr][c];
uy = gy/mag;
}
/ldeal with each case
if(gx >= 0){
if(gy >= 0){
if (gx >={ ay)

pl = magnitude[r][c+1];

else

pl = magnitude[r][c-1];
p2 = magnitude[r-1][c-1];
magA = (mag - pl)*ux + (p2 -

p2 = magnitude[r+1][c+1];
magB = (mag - pl)*ux + (p2 -

}
else
{
pl = magnitude[r-1][c];
p2 = magnitude[r-1][c-1];
magA = (pl - p2)*ux + (p1 -
pl = magnitude[r+1][c];
p2 = magnitude[r+1][c+1];
magB = (pl - p2)*ux + (p1 -
}
i{f (gx >=-gy)
pl = magnitude[r][c-1];
p2 = magnitude[r+1][c-1];
magA = (mag - pl)*ux + (pl -
pl = magnitude[r][c+1];
p2 = magnitude[r-1][c+1];
magB = (mag - pl)*ux + (pl -
}
else
{ pl = magnitude[r+1][c];
p2 = magnitude[r+1][c-1];
magA = (pl - p2)*ux + (mag -
pl = magnitude[r-1][c];
p2 = magnitude[r-1][c+1];
magB = (pl - p2)*ux + (mag
}

35

}
else
{

pl)*uy;

pl)*uy;

mag)*uy;

mag)*uy;

p2)*uy;

p2)*uy;

pl)*uy;

pl)*uy;
}

gy = yderiv[r][c];
if (gy >=0)
{

else

if (-gx >= gy)
{

else

p]_ = magnitude[l’][C"'l]?
p2 = magnitude[r-1][c+1];
magA = (p1 - mag)*ux + (p2 -

pl = magnitude[r][c-1];
p2 = magnitude[l""l][c'l];
magB = (p1 - mag)*ux + (p2 -

pl = magnitude[r-1][c];
p2 = magnitude[r-1][c+1];
magA = (p2 - p1)*ux + (pl -

p]_ = magnitude[l""l][c];
p2 = magnitude[r+1][c-1];
magB = (p2 - p1)*ux + (pl -

if (-gx > -gy)
{

else

p]_ = magnitude[l’][C"'l]?
p2 = magnitude[r+1][c+1];
magA = (p1 - mag)*ux + (p1 -

pl = magnitude[r][c-1];
p2 = magnitude[r-1][c-1];
magB = (p1 - mag)*ux + (p1 -

pl = magnitude[r+1][c];
p2 = magnitude[r+1][c+1];
magA = (p2 - p1)*ux + (mag -

pl = magnitudel[r-1][c];
p2 = magnitude[r-1][c-1];
magB = (p2 - p1)*ux + (mag -

/lis the current point a maximum point?
if ((magA > 0.0) || (magB > 0.0){
nms[r][c] = WEAK;

else

36

{
if (magB == 0.0){
nmsir][c] = WEAK;}
else{
nms|r][c] = CANDIDATE;}
}

}

/Ihysteresis
void step5_perform_hysteresis()

int r, ¢, pos, numedges, lowcount, highcount, lowt
highthreshold,
i, hist[32768], rr, cc;
short int maximum_mag, sumpix;
float p;
int pint;

/linitialise the edge image
for(r=0; r<rows; r++){
for(c=0; c<cols; c++){
if((r==0)||(c==0)||(r==(rows-1))||(c==(cols-1)))
p = WEAK;
setPixelGrey(edge,c,r,p);

else{
if(nmsJr][c] == CANDIDATE)
p = CANDIDATE;
setPixelGrey(edge,c,r,p);
}
elsef
p = WEAK;
setPixelGrey(edge,c,r,p);
}
}

}

for(r=0;r<rows;r++){
for(c=0;c<cols;c++){
p = getPixelGrey(edge,c,r);
if((pint==CANDIDATE) && magnitude[r][c]>=thigh){
p = STRONG;
setPixelGrey(edge,c,r,p);
edge_linking(tlow,r,c);

}

/Iset all the edges that are not connected to oher
for(r=0; r<rows; r++){
for(c=0;c<cols;c++){
p = getPixelGrey(edge,c,r);
if(p!=STRONG){
p = WEAK;
setPixelGrey(edge,c,r,p);

37

hreshold,

edges to weak

}
/ledge linking

void edge_linking(short int t, intr, int c)

{
float p;

intu, v;
for(u=-1;u<l;u++){

for(v=-1; v<1; v++){

(magnitude[r+u][c+v]>t)X

if((ul=0)&&(v!=0)){
p = getPixelGrey(edge,c+v,r+u);
if((p == CANDIDATE) &&

p = STRONG;
setPixelGrey(edge,c+v,c+u,p);
edge_linking(t, r+u, c+v);

Appendix II: Code for cel shading models

A celBrick.sl --------------- *

/*

Surface shader for a cartoon looking wall brick pat tern.
Params:

Ka, Kd: standard ambient and diffuse components

Kl: fraction of Cl contributing to lighted color

Cshad: fraction of Cs contributing to the shadowed color
Cligh: fraction of Cs contributing to the lighted color
Y: grey component of Ci used in edge detection

irregularity: how dented or uneven the brick surfa ce appears
brickwidth: width of the brick

brickheight: height of the brick

mortarwidth: with of the mortar

mortardepth: the bumpiness of the mortar

texturescale: overall scale of the applied pattern

brickcolor: standard color for the brick

mortarcolor: standard color for the mortar

colorvariation: deviation from the standard color from brick to
brick*/
surface
celBrick(
/[standard variables
float Ka =1,
Kd =1,
Kl=1,
Cshad = 0.25,
Cligh =0.5;

output varying float Y = 0;
/Iphysical variables
float irregularity = 0.06,
brickwidth = 0.25,
brickheight = 0.12, //give always even values he
for it to work
mortarwidth = 0.05,
texturescale = 2;
/[color variables
color brickcolor = color "rgb" (0.83,0.01,0.12),
mortarcolor = color "rgbh" (0.5,0.5,0.5);

39

re

float colorvariation = 0.5;

#define snoise(x) (2 * noise((x)) - 1)

normal Nf = faceforward(normalize(N), 1);
vector V = -normalize(1) ;

/Ibrick shape variation

point PP = point noise (u/brickwidth, v/brickheig
float ss = s + irregularity * xcomp (PP);

float tt = t + irregularity * ycomp (PP);

/[divide by brick dimensions so that ss and tt var
within a single brick.

ss = (texturescale * ss)/brickwidth;

tt = (texturescale * tt)/brickheight;

/lidentify which brick contains the point being sh
float brickrow = floor(tt);

/loffset even rows by half a row
if(mod(tt,2)>1)
ss +=0.5;

/lidentify which brick contains the point being sh
float brickcol = floor(ss);

/ltexture coords within brick
ss -= brickcol;
tt -= brickrow;

/lchoose brick color that varies from brick to bri

color Ct = brickcolor * (1 + colorvariation * (n
(brickcol * brickrow)/2.3 + 3.7)));

/ldetrmine if in mortar for mortar color

if(ss < mortarwidth || tt < mortarwidth)

Ct = mortarcolor;

/[cartoon shading color declaration and initialisa
color lightedcolor = Cligh * Ct;

40

ht);

yfromOto 1

aded

aded

ck

oise(

tion

color shadowedcolor =Cshad * Ct;
color brightness = color(0, 0, 0);
color lightcolor = color(0, 0, 0);

llauxiliary variables for illuminance loop

float dot, val, instep;

41

/lilluminance loop at P with a cone of 360 degrees , considering
Nf for illumination
illuminance(P){
//see difference in angle
dot = (normalize(L)).Nf;
/Inormalize so that it lies between 0 and 1
val=0.5* (1 +dot);
/lconsider lightcolor a fraction of the light col or
lightcolor = KI * ClI;
/lincrease brightness after increasing the lighte dcolor by
the lightcolor
[laccumulate light by mixing shadowedcolor and
lightedcolor depending on the angle between the fac ing normal vector

Nf and the light vector L
brightness += mix(shadowedcolor, lightcolor

lightedcolor, val);

}

//detrmine if in mortar for mortar color
/if(ss < mortarwidth || tt < mortarwidth)
1 Ct = mcolor;

Oi =0Os;
Ci=0i* (Ct*(Ka*ambient())
+ Kd * brightness);

//detrmine if in mortar for mortar color
/if(ss<mortar || tt<mortar)
/ICi = mcolor;

/I -- Second method for colouring --

*

/*

*

float smwidth=smoothstep(0,mortar/2,ss);
float tmwidth=smoothstep(0,mortar/2,tt);
float mwidth=smwidth*tmwidth;

color brick=mix(mcolor,bcolor,mwidth);

/[calculate final color for the brick
/ICi = brick*Os * (Ka*ambient() + Kd*diffuse(Nf));
Y = comp(ctransform("yiq", Ci), 0) ;

42

43

/*
------------ celMatte.s| ---------------
*
/*
Params:
Ka, Kd: ambient, diffuse coefficients
Kl: fraction of Cl contributing to lighted color
Cshad: fraction of Cs contributing to the shadowed color
Cligh: fraction of Cs contributing to the lighted color
Y: grey component of Ci used in edge detection
*/
surface
celMatte (
float Ka = 1,
Kd =1,
Kl=1,
Cshad = 0.25,
Cligh = 0.5;
output varying float Y = 0;
)
{

normal Nf = faceforward(normalize(N), 1);

/[cartoon shading color declaration and initialisa tion
color lightedcolor = Cligh * Cs;

color shadowedcolor = Cshad * Cs;

color brightness = color (0, 0, 0);

color lightcolor = color(0, 0, 0);

/fauxiliary variables for illuminance loop
float dot, val, instep;

/lilluminance loop at P with a cone of 360 degrees , considering
Nf for illumination
illuminance(P){ //same as illuminance(P,Nf,PI)
/Isee difference in angle
dot = (normalize(L)).Nf;
/Inormalize so that it lies between 0 and 1
val=0.5* (1 +dot);
/lconsider lightcolor a fraction of the light col or
lightcolor = KI * ClI;
instep = smoothstep(0.49, 0.51, val);

/llincrease brightness after increasing the lighte dcolor by
the lightcolor

[laccumulate light by mixing shadowedcolor and
lightedcolor depending on the angle between the fac ing normal vector
Nf and the light vector L

brightness += mix(shadowedcolor, lightcolor *

lightedcolor, val);

/lopacity

Oi = Os;

/[color: Cs contribution to ambient only, since br ightness
contains already Cs. brightness contribution to dif fuse, since diffuse

has been replace essentially by the loop above

Ci=0i *(Cs * (Ka * ambient())
+ Kd*brightness);
/IY1Q component 0 component - grey
Y = comp(ctransform("yiq", Ci), 0) ;

44

e celMetalic.s| --------------- */
[* cartoon looking surface shader simulating the ef
metalic object
Params:
Ka, Kd: ambient, diffuse coefficients
Kl: fraction of Cl contributing to lighted color
Cshad: fraction of Cs contributing to the shadowed
Cligh: fraction of Cs contributing to the lighted
Y: grey component of Ci used in edge detection
*/

surface
celMetalic(
float Ka=1,
Kd =1,
Kl=1,
Cshad = 0.25,
Cligh =0.5;
output varying float Y = 0;

{

normal Nf = faceforward(normalize(N), 1);

/[cartoon shading color declaration and initialisa
color lightedcolor = Cshad * Cs;

color shadowedcolor = Cligh * Cs;

color brightness = color(0, 0, 0);

color lightcolor = color(0, 0, 0);

color white = color(1, 1, 1);

/linitial specularity

float spec = 0;

llauxiliary variables for illuminance loop
float dot, val, instep;

/lilluminance loop at P with a cone of 360 degrees
Nf for illumination
illuminance(P){
/Isee difference in angle
dot = (normalize(L)).Nf;
/Inormalize so that it lies between 0 and 1
val=0.5* (1 +dot);

/Ispecular highlight if dot product very close to

if(val > 0.975) spec +=val * val;
/lconsider lightcolor a fraction of the light col
lightcolor = KI * ClI;

/lincrease brightness after increasing the lighte

the lightcolor

45

fect of light on a

color
color

tion

, considering

one
or

dcolor by

[laccumulate light by mixing shadowedcolor and

lightedcolor depending on the angle between the fac
Nf and the light vector L

brightness += mix(shadowedcolor,

lightedcolor, val);
/lopacity
Oi = Os;

/Iproduce white specular highlight imitating carto
if(spec!=0){

ing normal vector

lightcolor *

on technique

float instep = smoothstep(0.97, 0.99, spec);
Ci = Oi * mix(brightness, white, instep);

}

else
Ci=0i* (Cs*(Ka*ambient()) + Kd * bright

Y = comp(ctransform("yiq", Ci), 0) ;

ness);

46

e celPlastic.s| --------------- */
[* cartoon looking surface shader simulating the ef
plastic object
Params:
Ka, Kd: ambient, diffuse coefficients
Kl: fraction of Cl contributing to lighted color
Cshad: fraction of Cs contributing to the shadowed
Cligh: fraction of Cs contributing to the lighted
Y: grey component of Ci used in edge detection
*/

surface
celPlastic(
float Ka=1,
Kd =1,
Kl=1,
Cshad = 0.25,
Cligh = 0.5,
Cspec =1;
output varying float Y = 0;

normal Nf = faceforward(normalize(N), 1);

/[cartoon shading color declaration and initialisa
color lightedcolor = Cligh * Cs;

color shadowedcolor =Cshad * Cs;

/Imake the specular color the same as Cs

color specularcolor = Cspec * Cs;

color brightness = color(0, 0, 0);

float highlight = 0;

color lightcolor = color(0, 0, 0);

llauxiliary variables for illuminance loop
float dot, val, instep;
float count = 1;

/lilluminance loop at P with a cone of 360 degrees
Nf for illumination
illuminance(P }{
/Isee difference in angle
dot = (normalize(L)).Nf;
/Inormalize so that it lies between 0 and 1
val=0.5* (1 +dot);

/Ispecular highlight if dot product very close to

if(val>0.925) highlight += val * val,
lightcolor = KI * ClI;

specularcolor += Cspec * lightcolor;
instep = smoothstep(0.49, 0.51, val);

/lincrease brightness after increasing the lighte

the lightcolor

47

fect of light on a

color
color

tion

, considering

one

dcolor by

/laccumulate light by mixing shadowedcolor and

lightedcolor depending on the angle between the fac
Nf and the light vector L

brightness += mix(shadowedcolor,

lightedcolor, val);

}

/lopacity
Oi =Os;

ing normal vector

lightcolor *

if(highlight!=0){
instep = smoothstep(0.94, 0.985, highlight);
Ci = mix(brightness, specularcolor, instep);

}

else
Ci=0i*(Cs*(Ka*ambient()) + Kd * bri

Y = comp(ctransform("yig", Ci), 0) ;

ghtness);

48

49

¥ e celWood.| --------------- */
[* cartoon looking surface shader simulating a tile d wooden floor
Params:

Ka, Kd: ambient, diffuse coefficients

KI: fraction of Cl contributing to lighted color

Cshad: fraction of Cs contributing to the shadowed color

Cligh: fraction of Cs contributing to the lighted color

plankwidth: width of the plank

spacewidth: width of the space between planks

texturescale: overall scale factor for the pattern

ringfactor: multiplicative factor for the ringsize

wavefactor: multiplicative factor for the waviness on the
distribution of the rings

Y: grey component of Ci used in edge detection

*
surface
celWoodShadows(
/lusual attributes
float Ka =1,
Kd =1,
Kl=1,
Cshad = 0.25,
Cligh = 0.5;
/Iphyical attributes
float plankwidth = 0.2,
spacewidth = 0.02,
texturescale = 8,
ringfactor = 25,
wavefactor = 0.8;
/[color attribute
color woodcolor = color "rgb" (0.57, 0.292, 0.12 5),
ringcolor = color "rgh" (0.275, 0.15, 0.06),
spacecolor = color(0, 0, 0);
float colorvariation = 0.5;
/loutput
output varying float Y = 0O;
)
{

float width = plankwidth;
float height = plankwidth;

#define snoise(x) (2 * noise((x)) - 1)
#define MINFILTERWIDTH 1.0e-7

normal Nf = faceforward(normalize(N), 1);

/[divide by plank dimensions so that ss and tt var yfromOto 1l
within a single brick.

float ss = (texturescale * s)/width;

float tt = (texturescale * t)/height;

/lidentify which plank contains the point being sh aded
float plankrow = floor(ss);
float plankcol = floor(tt);

/ltwist the planks so that they are alternatively in horizontal
or vertical direction

tt/4);

if(mod(plankrow + plankcol, 2) >= 1){
float tmp;
ss = (‘texturescale * t)/width;
tt = (texturescale*s)/height;
plankrow = floor(ss);
plankcol = floor(tt);

}

[ltexture coords within plank
ss -= plankrow;
tt -= plankcaol,

/lwork out the ring adding several layers of noise
float nnoise = tt/4 + plankcol + wavefactor * nois

float r = ringfactor * noise (ss - plankcol, nno
r -=floor(r);

r = 0.5 + 0.5 * smoothstep(0.2, 0.55, r) * (1

0.8, r);

/Imix between ringcolor and woodcolor
color Ct = mix(ringcolor, woodcolor, r);

/et the color change from plank to plank
Ct *= (1 - colorvariation/2 + colorvariation * (sn

* plankcol + 0.7)));

if(ss < spacewidth/width || tt<spacewidth/height)
Ct = spacecolor;

color lightedcolor = Cligh * Ct;
color shadowedcolor = Cshad * Ct;
color brightness = color(0, 0, 0);
color lightcolor = color(0, 0, 0);

/lauxiliary variables for illuminance loop
float dot, val, instep;

/lilluminance loop at P with a cone of 360 degrees

Nf for illumination

illuminance(P){ //same as illuminance(P,Nf,PI)
//see difference in angle
dot = (normalize(L)).Nf;
/Inormalize so that it lies between 0 and 1
val=0.5* (1 +dot);
/lconsider lightcolor a fraction of the light col
lightcolor = KI * ClI;

/lincrease brightness after increasing the lighte

the lightcolor

50

e(8 * ss,
ise);

- smoothstep(0.75,

oise(plankrow

, considering

or

dcolor by

[laccumulate light by mixing shadowedcolor and
lightedcolor depending on the angle between the fac
Nf and the light vector L

brightness += mix(shadowedcolor,

lightedcolor, val);

Ci=

Oi = Os;
Oi * (Ct* (Ka * ambient())
+ Kd * brightness);

ing normal vector

lightcolor *

/IY1Q component 0 component - grey
Y = comp(ctransform("yiq", Ci), 0) ;

51

