
 1

Blending Reality:

cartoon looking renders

of 3D scenes

Judit Escoda

Msc Computer Animation 2006

Masters Project

 2

Table of Contents

I.- Introduction ………………………………………………………....…………… 1

II.- Previous work ………………………………………………………................... 6

 II.i.- Object space methods …………………………………………………… 6

 II.ii.- Image space methods ………………………………………………….. 8

III.- Edge detection from images ………………………………………………….. 10

 III.i.- Using Y-maps ………………………………………………………..... 10

 III.ii.- Canny’s algorithm …………………………………………………….. 12

 III.iii.- Cartoon shading ……………………………………………………… 13

IV.- Implementation of Canny’s algorithm ……………………………………….. 14

 IV.i.- Derivative operators …………………………………………………… 14

IV.ii.- Noise and the Guassian function ……………………………………… 16

IV.iii.- Non-Maxima Suppression …………………………………………… 17

IV.iv.- Hysteresis thresholding ……………………………………………… 19

V.- Cel shading models ………………………………………………………........... 21

V.i.- Standard shading models ……………………………………………….. 21

V.ii.- Gooch shading model ………………………………………………….. 22

V.iii.- Cartoon shading ………………………………………………………. 23

References ………………………………………………………………………….. 24

Appendix I: Code for Canny implementation .…………………… ………………... 30

Appendix II: Code for cel shading models………………………………………… 40

 3

I.- Introduction

The emergence of computer graphics techniques in the 1980s completely revolutionized

the way animated characters and imaginary objects were created. Up until that time, any

form of non-realistic animation had to be drawn by hand, performed by artists in

celluloid tablets. This traditional style of animation has been evolving over time so as to

incorporate computers and computer graphics into their production pipeline. Computer

graphics have however been considered a complementary tool providing wider

flexibility to changes in the late stages of the production process. Nonetheless, the

influence of computer graphics in traditional animation has been gaining strength over

the past decade.

On the first place, two dimensional animation systems have been developed in order to

facilitate the creation of characters and background. Secondly, it has been observed that

certain particularities of animation can now be simplified by the use of three

dimensional computer graphics. As such, camera movement can be performed more

coherently in three dimensional space, as well as the reusability of characters designed

in a three dimensional environment. Such incorporation has been used in a variety of

applications, ranging from games such as Dragon Ball Z to feature films such as the

Lion King and Spirited Away.

The incorporation of 3D computer graphics into 2D animation does not come along

without giving rise to certain considerations. First of all, complexity is reduced at the

expense of loosing aesthetic control over the final image. Secondly, 3D techniques are

still used as a, now more important, complementary tool. This means that the style of

the animation is still driven at the artist’s wish and, ideally, the human eye should not be

capable of distinguishing those parts of the animation that are two dimensionally drawn

from those that arise as the render of a three dimensional scene.

The above problems can be addressed by developing techniques that will render a 3D

scene into a particular 2D style. The question is therefore to gain control over those

specificities that distinguish a final image arising from one or other environment. Two

main distinctions have been addressed here. In cartoon animations, objects appear as

 4

bounded regions filled with a particular colour. As a consequence, objects appear

flattened by the influence of light. The first distinction is addressed as an edge detection

problem, whereas the second embraces the development of specific shaders so as to

achieve the desired look. We shall explore in more detail the above specificities in the

following sections.

 5

II.- Previous work

In order to overcome the distinction between object recognition in 2D animations and

3D, the problem has been reduced to that of finding the outlines of objects composing a

three dimensional scene. This is known in the literature as the edge detection problem,

and its applications range from computer generated technical illustrations to

architecture. The methods developed over the years are now being applied to other

fields of non-photorealistic rendering (NPR), including our subject of study here, that is

cartoon looking renders of 3D scenes. While the achievement of a cartoon, toon or cel

shaded look has been considered a major part of this project, special attention has been

paid to the edge detection problem due to its complexity. We shall overview here

previous work in this field. Any technical specificity relevant to our approach will be

described in the next section.

II.i.- Object space methods

In a broad sense, edge detection techniques are classified into object space and image

space methods. Image space algorithms extract object outlines from rendered images,

whereas object space algorithms do so at render time. While a lot of geometrical

information is lost in the first approach, it has the advantage of being less

computationally expensive, easier to implement and independent of the surface

representation employed for the objects. However, the performance of image space

algorithms is highly dependent on the bites stored in the image buffer.

One of the major problems facing object space edge extraction is the hidden line

removal problem. This is an important fact about edge detection: visible silhouette

edges can potentially be occluded by model geometry. In practice, this implies testing

each edge from a geometrical model for existence -determine whether it is a silhouette

edge- and visibility -so that only edges that are not occluded by existing geometry are

rendered- every time the viewpoint is changed. One can readily see that, for complex

objects, this can be extremely expensive in computational time.

 6

Markosian et al. [1] approached this problem by developing a real-time probabilistic

method for large polygonal meshes. Their method tests a percentage of the edges of a

model at each time step to determine if any of the tested edges compose the silhouette of

the object. The set of edges for testing is chosen at random. Once a silhouette edge is

found, the algorithm traces out a silhouette curve by recursively testing neighbouring

edges. Using this method, the most visually important edges are detected, but it does not

guarantee that all silhouette edges are found.

An alternative method was developed by Buchanan and Sousa in [2]. Their method

introduces the concept of edge buffer. This is defined as a data structure containing edge

information extracted from a polygonal mesh. The idea is to identify each edge by the

two vertices defining it. Each vertex is then tested to see if it is shared by a front-facing

and a back-facing polygon. If this is the case, then the two vertices are marked as

defining a silhouette edge. This data structure will be read back at render time in order

to produce an image containing silhouette edges.

Figure1: edge buffer structure

Raskar [3] proposed a method consisting on the subdivision of a scene in different

layers. Then, using a depth buffer, the rendering process computes the intersection of

the two layers in order to determine edge silhouettes. The scene is thus subdivided in a

layer containing visible polygons and another one containing those behind them.

A method that is off the scope of this project but that has been considered in its

simplified version is that developed by Meier [4] for rendering animations in a painterly

style. The idea is to model surfaces as 3D particle sets which are rendered as 2D paint

brush strokes in screen space. Her method allows extracting information from the 3D

model such as stroke direction and intensity. This method was studied as a way of

 7

extracting edge curvature, allowing only particles lying on the surface boundary to be

rendered.

II.ii.- Image space methods

Saito and Takahashi [5], on the other hand, provided a method based on image space

that allowed extracting geometry information for edge drawing and curve hatching.

Their method computes profile edges from the depth image, whereas internal edges are

computed from its second derivative. Their approach has been further enhanced by

Decaudin [7]. Decaudin’s method augments the depth map information by using normal

maps1.

Figure2: curve hatched window using methods described in [6]

The reason why we can extract edge information from the depth and normal maps is

because edges appear in an image as luminance discontinuities. In a depth map, objects

appear at different intensities depending on their distance from the viewpoint. On the

other hand, interior edges are defined as discontinuities in surface orientation. For

example, a human face profile can be easily extracted from a z-map. However, if we

were to look at the face from the front, details such as nose and mouth would only

1 The normal map uses the same principle as the depth map, with the difference that the values stored in
each pixel correspond to the x, y and z components of the normal to the surface.

 8

appear as revealed by surface orientation discontinuities. Decaudin proposes the

following method in order to obtain discontinuities in surface orientation:

- set all the objects to white

- place a red light along the positive x direction, a green light along the positive y

direction, and a blue light along the positive z direction

- use the same light colour but with negative intensities for the negative x, y and z

directions

- output the rendered scene as an n-map

Figure3: Outline drawing with image processing. (a) Depth map. (b) Edges of the depth map. (c) Normal

map. (d) Edges of the normal map. (e) The combined edge images. (f)

Because of the object white colour, each surface in the scene will reflect one or other

colour depending on its orientation. Where there is a discontinuity in luminosity, there

is an interior edge. The approach taken here follows the lines of [5] and [7].

 9

III.- Edge detection from images

According to the discussion above between object space and image space algorithms for

silhouette edge extraction, one can readily observe the difficulties arising from one and

the other. First of all, a distinction needs to be made in object space methods according

to the surface representation of the model. We have not discussed here methods for

extracting edge information from NURBS and subdivision surfaces, but a detailed

explanation may be found in [8]. Secondly, most of these methods require a special

purpose raytracer capable of performing the required operations. Finally, the hidden line

removal problem gives rise to computationally expensive renders.

It has thus been considered more suitable to follow an image space approach. The lost

of information from the three dimensional model has not been considered of primary

importance. If we were to shade the objects using curve hatching or stroke textures, an

object space approach would have been considered more suitable. However, for a

cartoon looking rather than illustrative or painterly render, edge detection with no

information about curvature has been considered sufficient. Curve information should

be considered an extension of the method developed here so as to achieve a more hand-

drawn look.

III.i.- Using Y-maps

In our approach, Y-maps2 are considered as an alternative to z- and n- maps as

described by [5] and [7]. The reason for that is that z-maps alone do not suffice to

extract all the required edge information. It is required to use n-maps at least for interior

edges, as proposed by Decaudin. However, the use of negative light intensities is not

always permitted. Whereas rendering systems such as OpenGl allow the use of negative

light intensities, a rendering system such as Renderman or mentalray do not. In such

cases, two separate passes are required: one containing surface normal information in

the positive x-, y- and z- directions, and one in the negative x-, y- and z- directions. This

2 Y-maps contain the grey scale component in NTSC coordinates.

 10

would give rise to a minimum of four passes: one for colour, one for z-depth

information, and two for surface normal information. Instead, a grey scale image might

be used, and this information is provided in the Y-map of the rendered scene.

Edges might then be extracted from the z-, n- or Y- map using convolution3 methods. A

differential operator is usually convolved with the rendered pass in order to obtain a

binary image containing edge information. Several edge operators in differential form

have been described in the literature [9], each one of them having its own purpose and

different performances. The performance of a given edge operator does not depend

however so much on its efficiency as on the image it is convolved with. It has been

suggested in [5] to use a Sobel differential operator for the extraction of silhouette edges

from the z-map, and using second derivatives for the detection of interior edges.

Because of the use of a Y-map in our approach, an alternative general purpose method

acting on grey scale images has been preferred. This method was developed by Canny

[10] in 1986 and it is considered to be the optimal algorithm for edge detection. For this

reason, Canny’s algorithm has been studied in more detail. The motivations for this

choice have been further enhanced by the criteria behind Canny’s purpose. When

developing his algorithm, Canny set up the following crietaria:

Canny’s algorithm creteria

- low error rate: it is important that edges occurring in images should

not be missed and that there are no responses to non-edges

- good localization: the distance between the edge pixel as found by

the detector and the actual edge is to be at a minimum

3 In mathematics, convolution is the result of taking two functions f and g to produce a third function h
that represents the amount of overlap between f and g.

 11

It has been considered that low error rate would be crucial for ensuring frame to frame

coherence, whereas good localization would ensure that the outlines define in a precise

way the shaded object.

III.ii.- Edge detection and Canny’s algorithm

The basic idea behind Canny’s algorithm is to detect the zero-crossings of the second

derivative of the smoothed image. Canny seeks out zero-crossing of

∂
2(G * I)

∂
2n

where n is the direction of the gradient, G * I is the convolution of the Gaussian filter

with the image I. Effectively, this is implemented as taking the gradient of a smoothed

image and then seeking local maxima along the gradient direction. A correct

implementation of Canny’s algorithm can be summarized as follows:

Canny’s algorithm

- Gaussian filter: smooth the image with a Gaussian filter to reduce noise

and unwanted details and textures

- Gradient operator: compute the gradient magnitude of the smoothed

image using a gradient operator

- Non-maxima suppression: set to zero any magnitude value that is not a

local maxima in the direction of the gradient

- Hysteresis thresholding: select pixels forming connected contours using

edge linking

 12

III.iii.- Cartoon shading

We shall describe in more detail in the next section Canny’s algorithm and its

implementation. Although edge detection has been considered the major focus of

attention in this project because of its complexity, we should not forget that we are

seeking to achieve a cartoon looking animation. We therefore must overlay the edge

image with a coloured render of the objects in the scene. This has been our second focus

of attention, that is, how to shade 3D objects so that they appear as belonging to a two

dimensional scene. As we mentioned earlier, objects in 2D animations appear flat-

painted. This effect can be simulated by creating two ranges of colours for a same

object, one for its shadowed regions and one for the lighted ones. Based on observations

from hand-drawn technical illustrations, Gooch [11] developed a shading model in

which a warm yellow-like colour is used for lighted areas and a cool blue-like one for

the shadowed ones. This cool-to-warm colouring is mixed with the real colour of the

object, giving rise to a flattened but still rather three dimensional look. A similar

approach has been used here, extending existing shading models such as matte, plastic

or metallic.

 13

IV.- Implementation of Canny’s Algorithm

As mentioned earlier, edge detection is an area with many applications, including image

processing and computer vision. It has been the subject of study for many years,

principally due to the assumption of its importance as a low level task for shape

recognition. This is one of the processes at work in cartoon animation, in which objects

are primarily identified by the outlines defining them. How we draw outlines from three

dimensional objects has thus been the main subject of study in this project. We have

explained in the previous section that this problem is reduced to finding edges from a

rendered Y-map. We shall explain now how this process is carried out by first looking

into the theory behind image processing and then describing the implementation of the

Canny edge detector.

IV.i.- Derivative operators

In order to understand how edges can be extracted from an image, consider the

following figure. Figure 4 shows a functional representation of the visual signal arising

from an image. The appearance of edges in an image as shown in (a) gives rise to an

image intensity function (b) spatially distributed over its pixels.

Figure4: a) edge as it appears in an image, b) image intensity function,
and its first c) and d) second derivatives.

 14

A very intuitive way to analyse the image intensity function is using mathematical

functional analysis and differential calculus. Usual derivative operators can then be

applied on a pixel basis for a given intensity function. Areas of constant intensity will

have derivative zero, whereas areas of changing intensity such as those defined by an

edge will produce a point of extrema in the first derivative and zero-crossing in the

second derivative, as one can see in figure 4 c) and d).

In this way, it suffices to locate points of extrema or zero-crossings in the derivative or

second derivative respectively of an image in order to extract edge information. The

derivative of an image is performed by convolving the original image with a mask that

approximates a differential operator. The convolved image is a sharpened version of the

original one where detail is emphasized.

Conceptually, a mask is a window of small size that is screened over the image, a bit

like a usual mask will be overlaid with a face to give rise to a personalized yet

undistinguishable appearance. The mask will process one pixel at a time in the original

image, replacing the value of the given pixel by an averaged sum of the pixels

surrounding it. A mask can be represented as in figure 5, where the letters a-h represent

the weights of the neighbours of p, that is each pixel contribution to the final sum for

pixel p.

a b C

d p E

f g H

Figure 5: template mask

The gradient approximation of an image I(x,y) for pixel with coordinates (x,y) can thus

be expressed as a function f(a, b, c, d, e, f, g, h, p), where a is the weight for pixel (x-1,

y-1), b for (x-1, y) etc. Depending on the gradient approximation, the function f may

take different forms. A common requirement though is that the weights sum to zero so

that if we place the mask over a region of constant or low varying intensity, the output

of the convolution will be zero or significantly small. The performance of a mask will

depend on the edge contrast. In practice, two different differential masks are used: one

along rows and one along columns, the x- and y- masks respectively. The y-mask is

 15

usually obtained with a 90º rotation of the x-mask. In [5], the use of a Sobel mask is

suggested. The Sobel gradient mask is given in the following figure

Figure 6: The Sobel gradient mask along the x and y directions

IV.ii.- Noise and the Gaussian function

Because the digital approximation to the gradient of an image has the property of

sharpening the image by emphasizing its detail, in the presence of noise, certain aspects

that should not be emphasized could appear as describing an edge. In order to overcome

this problem, the original image is often convolved with a smoothing filter prior to

convolution with a gradient mask. Canny makes use of a Gaussian smoothing function

G(x,y) = exp[(x2+y2)]

2σ2

where σ is the standard deviation of the Gaussian distribution. When applied to an

image, the Gaussian filter., shown in figure 6, will spread out all the values in the image

by the shape of the filter. In theory, the Gaussian distribution is non-zero everywhere,

which would require an infinitely large convolution mask, but in practice it is

effectively zero more than about three standard deviations from the mean, and so we

can truncate the mask at this point. Hence, σ effectively controls the width of the

Gaussian mask.

Figure 7: the Gaussian distribution function

 16

The commutative and associative properties of the Gaussian filter, together with its

separability, make it very appealing for convolution purposes: as a result, the filter can

be implemented as a sequence of convolutions with 1D masks. As a consequence, we

have considered a one-dimensional Gaussian mask in our implementation, whose kernel

dimension is controlled by the value of σ, convolved with a one dimensional differential

Prewitt operator, being the simplest and the fastest

dx = [-1 0 1] and dy = [-1 0 1]

We have described so far the first two steps in the implementation of the Canny

detection algorithm, that is, how to take the derivative of a smoothed image. Whereas

the first two steps are widely employed in image detection algorithms, the last two steps

are specific to Canny’s algorithm.

IV.iii.- Non-maxima suppression

By defining an edge pixel as one with a large change in intensity, we often get edges

greater than one pixel thick. That is, there might be wide ridges around the local

maxima in the magnitude image. It is sometimes convenient to restrict edges to exactly

one pixel. Canny developed a thinning technique that he termed non-maxima

suppression. Applying this method, edge pixels are defined as those for which we have

a local gradient maxima in the direction perpendicular to the edge.

edge magnitude edge profile result of NMS

Figure8: Thinning wide contours in edge magnitude images by non-maxima suppression.

The intensity profile along the indicated line is shown resized for better visibility.

 17

The gradient of a 2D function indicates the direction in which the function is changing

most rapidly, so to determine if a given point in the gradient magnitude image is a

maximum, we need to check surrounding points in the direction of the gradient. The

algorithm to perform non-maxima suppression is summarized here

- for each position (x,y), step in two directions perpendicular to the edge orientation

θ(x,y).

- denote the initial pixel (x,y) by C, the two neighbouring pixels in the perpendicular

direction by A and B (see Figure9)

- if G(A) > G(C) or G(B) > G(C), discard the pixel (x,y) by setting G(x,y) = 0

Figure9: edge direction (doted lines) and edge normal (indicated by an arrow)

In practice, interpolation between the four closest neighbours in the direction normal to

the edge is used in order to obtain more accurate results. In order to estimate the

magnitude at a given point A on the normal direction, the two closest points are chosen,

say at pixel Px,y-1 and Px+1,y-1 in figure 10.

Figure10: pixels chosen for interpolation for estimation of the magnitude value at A

 18

The three points Px,y, Px,y-1 and Px+1,y-1 define a plane from which we can locally

approximate the gradient magnitude surface to estimate the value at the point A. The

interpolated magnitude at A is given by

GA = (ux/uy) Gx+1 y+1 + ((uy – ux)/uy) Gx, y+1

Similarly, in the magnitude value at a point B in the opposite side is given by

GB = (ux/uy) Gx-1, y-1 + ((uy – ux)/uy) Gx, y-1

Then Px,y is at a maximum if Gx,y > GA and Gx,y > GB.

IV.iv.- Hysteresis thresholding

Once the non-maxima suppression is applied to the magnitude image, edge strength

may be different in different points of a contour and some pixels may be marked as

local maxima but still not belonging to a contour. Careful thresholding of Gx,y is needed

to remove weak pixels while still preserving the connectivity of the contours. Canny

suggested the selection of two thresholds, an upper and a lower one, by which a pixel

(x,y) in the outputted non-maxima suppression image NMS can be marked as

- strong: if NMS(x,y) > thigh

- weak: if NMS(x,y) < tlow

All other pixels are called candidate pixels. A pixel is then selected as an edge pixel if it

is either greater than the upper threshold, or greater than the lower threshold and

connected to a pixel which is greater than the upper threshold. This technique is known

as hysteresis thresholding and it can be applied recursively once a strong edge pixel is

found by looking into its eight neighbours and determining weather they are candidate

pixels. If one of them is a candidate pixel, then it is set to a strong edge and we look for

neighbouring pixels. This process is continued until we find a candidate pixel for which

 19

no neighbours are candidates. In his 1986 paper, Canny suggested to use a high

threshold three times the lower.

Figure11: different ouputs for the same image at different thresholds

The hysteresis threshold explanation concludes our discussion about edge detection

procedures and, in particular, about the knowledge required for a complete

implementation of the Canny edge detection, which may be found in the Appendix. We

shall next turn our attention to the development of cartoon looking shading models.

 20

V.- Cel shading models

V.i.- Standard shading models

As we have mentioned in previous section, the most important thing to consider for

achieving a cartoon looking render is that objects appear flattened. In standard shading

models, such the Phong or Lambert models, light calculations are performed over a

cone defined by an angle of 90º about the facing normal of the surface.

 Nn = normalize(N);

 illuminance(P, Nn, PI/2)

 {

 Ln = normalize(L);

 Ci += Cs * Cl * Ln.Nn;

 }

These light calculations are performed in Renderman with the illuminance construct

specified above. The illuminance construct loops through all the lights in the scene

and calculates their contribution to the point on the surface being shaded. Since it is

sensible not to consider lights behind the point being shaded, only light falling on the

hemisphere defined at point P will be considered.

This implies that points on the surface lying on a region where no light influence falls in

the hemisphere defined by its facing normal will have no illumination whatsoever. The

result is that they will appear black in a rendered image. Those points lying between an

area of full absence of light and an area of perfect light influence will be shaded

gradually according to their proximity to one or the other. This effect reproduces

lighting conditions in real life and is precisely the shading characteristic that allow us to

acquire a perception of three-dimensionality from the rendered object. For a cartoon

looking render, this effect should be avoided.

 21

Figure12: Phong shaded sphere rendered with maya

V.ii.- Gooch shading model

The area where we should focus here is that of non-photorealistic rendering, NPR. As

mentioned in previous sections, Gooch developed a shading model in which a warm

yellow-like colour is used for lighted areas and a cool blue-like one for the shadowed

ones. The effect obtained by applying a Gooch shader to a skeleton is shown in

figure13.

Figure13: Gooch shading model applied to a skeleton

The overall look of the surface appears now more flattened than with traditional shading

models. The development of cartoon looking shaders in here has been inspired by the

Gooch shading model. Instead of using cool-to-warm colours, surface colour has been

modified by considering a darker colour for shadowed areas and a lighter colour for

lighted ones. The following statement shows the usual way of assigning colour to a

surface point in a realistic shader:

 22

 Ci = Os * Cs * (Ka * ambient() + Kd * diffus e(Nf) +

 Ks * specular(Nf, V , roughness));

In the simplest version of the Gooch shading model, the specular function is ignored

and the diffuse function is replaced by an illuminance statement of the following

form

 normal Nf = faceforward(normalize(N),I),

 illuminance(P,Nf,PI) {

 ldotn = (normalize(L)).Nf;

 blendval = 0.5*(1+ldotn);

 finalcolor += mix(cool,warm,blendval);

 }

The effect of this model was shown in figure13. The first thing to notice is that the

illuminance construct is considered over a whole sphere on the point being shaded.

Thus, any light, whether is behind or in front of the point, will be considered during the

shading process, thus cool colouring areas that would appear black with a standard

shading model. The second thing to notice is that there is no light colour contribution Cl

to the output colour Ci . This has the implication that the object being shaded will

actually not receive shadows from other objects, since there is no way of telling the

light colour at this point as specified with a shadow map. Gooch’s shading model is

mostly used in technical illustrations, where a single light is used and no other objects

are present in the scene. In more elaborated Gooch models, white highlights are

incorporated so as to give some information about object orientation (notice the

highlights in figure13).

V.iii.- Cartoon shading

For a cartoon looking render, it is important to develop a shading model that

incorporates shadowed areas arising from objects being placed between the light source

and itself. In this way, Gooch model has been modified so as to incorporate light colour

Cl . A second modification has been made on the actual output colour. Instead of using

cool-to-warm tones, the output colour Ci has been given a value that is proportional to

the input colour Cs in two different ways: a darker tone for shadowed areas and a lighter

 23

tone for lighted ones. Furthermore, we seek a more abrupt transition between shadowed

and lighted regions.

 color lightedcolor = Cligh * Cs;

 color shadowedcolor = Cshad * Cs;

 color brightness = color(0,0,0);

 normal Nf = faceforward(normalize(N),I),

 illuminance(P,Nf,PI) {

 dot = (normalize(L)).Nf;

 val = 0.5*(1+dot);

 lightcolor = Kl * Cl;

 in = smoothstep(0.49, 0.51, val);

 brightness += mix(shadowedcolor,lightcolor* lightedcolor,in);

 }

Once the dot product between the normalized light vector and the forward facing

normal vector is calculated, it is normalized so that its value lies between 0 and 1. This

means that points in the dark, where the dot product is negative, will now lie between 0

and 0.5 . We can use this new value val as in the mix statement in Gooch’s model, this

time considering the light colour Cl . In order to achieve the sharp transition, but not too

much, a smooth transition is applied to the value of val between the value it should take

in dark regions and that in lighted regions. Therefore, as smoothstep function between

0.45 and 0.55 is used in order to acquire a new value in that will determine the final

colour contribution to brightness . Note a new light colour lightcolor is used as a

fraction of Cl in order to gain control over the contribution of light to the colour surface.

The light contribution is then added to the lightedcolor only, producing different

layers of luminosity in the presence of several lights while still keeping a fairly

darkened colour for the shadowed regions. Finally, the surface colour computed in the

illuminance loop is passed onto the output colour Ci as a diffuse contribution.

 Ci = Os * (Cs * (Ka * ambient()) + Kd * br ightness);

These specifications have been applied to each developed shader. For a metallic and

plastic look, two more statements have been added: a highlight is created by considering

those points facing directly the light source. For the plastic shader, the highlighted

 24

colour is a fraction of the surface colour, whereas for metallic objects this colour has

been given a value of 1,white. This kind of effect is observed in two dimensional

animations, where metallic objects appear white where a highlight should be

encountered.

In order to enhance the scene, two specific shaders have been developed, which can be

found in the Appendix. A brick wall pattern has been used for the building, and a wood

floor pattern for the floor in order to further enhance the final animation. Inspiration for

the development of these two shaders has been taken from already existing ones.

 25

V.- Conclusion

This project has been focused on the study of the rendering of three-dimensional scenes

into a cartoon looking style. It is observed in 2D animations that objects appear as

defined by outlines filled with a flattened colour. In order to achieve a similar look for

the render of objects from a three dimensional scene, two main questions have been

addressed: how to draw object outlines and how to achieve such a flattened colouring.

We have seen that the first question can be solved as an edge detection problem, where

existing algorithms defined in either object space and image space methods present both

advantages and disadvantages. While image space algorithms are easier to implement,

they also give rise to a loss of geometrical information that cannot be recovered from

the two dimensional image. This loss of information has not been considered important

for the chosen style of cartoon looking render that we wanted to achieve here. However,

for a more hand-drawn oriented and style-flexible look, a way for retrieving geometrical

information from the two dimensional scene is needed.

Although the motivations for choosing Canny’s algorithm for our implementation was

its well known reputation as an optimal edge detector, the results were not as expected.

The low error rate that was thought to ensure frame coherence did not output the same

edges in each frame. Supposedly, this is due to the fact that the edges that will be

discarded or picked during hysteresis highly depend on the used threshold but also on

the actual detail of the image, which is observed to change from frame to frame possibly

due to the presence of image textures and the use of a minimal σ in order not to wash

out the animation. This unexpected result has however given to the animation a stronger

hand-look than the one we would have obtained by perfect edge localization. It is

therefore considered that the waviness on edge localisation from frame to frame

enhances the final animation.

Finally, the objects for the scene were modelled in Maya and shaded using developed

cartoon looking Renderman shaders. A major problem was encountered at a late

development stage, where shaded objects appeared self-shadowed but not receiving

shadows cast by objects surrounding them. This problem was overcome by the addition

 26

of light colour contribution to the final shading colour. Overall, a fairly cartoon looking

animation has been produced and this should be considered the achievement of this

project.

I believe a more flexible cartoon looking style relies on the geometrical information that

is lost in the rendered image. I therefore consider that one interesting subject of study

would be to develop a method by which this geometrical information could be kept in

the renders.

 27

Refrences

[1] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bourdev, Daniel

Goldstein and John F. Hughes, “Real-Time Nonphotorealistic Rendering”, Computer Graphics

(Proc. Siggraph), ACM SIGGRAPH, ACM Press, 1997.

[2] John W. Buchanan, “The edge buffer: a data structure for easy silhouette rendering”. In

Proceedings of the first international symposium on Non-photorealistic animation and

rendering, ACM SIGGRAPH.

[3] Ramesh Raskar and Michael Cohen. “Image Precision Silhouette Edges”. In Proc. 1999

ACM Symposium on Interactive 3D Graphics, April 1999.

[4]Barbara Meier, “Painterly Rendering for Animation”, Computer Graphics (Proc.

Siggraph), 1996

[5] Takafumi Saito and Tokiichiro Takahashi, ”Comprehensible Rendering of 3D

Shapes”, Computer Graphics (Proc. Siggraph), Vol. 24, No. 4, ACM SIGGRAPH,

ACM Press, August 1990.

[6] Winkenbach, G. and Salesin, D.H. (1994). “Computer generated pen-and-ink illustration”.

In SIGGRAPH 94 Conference Proceedings.

[7] Philippe Decaudin. Cartoon-Looking Rendering of 3D-Scenes. Technical Report 2919,

INRIA, June 1996.

[8] Amy, Bruce Gooch, and Mass Natick. “Non-photorealistic rendering”. A K Peters 2001.

[9] Alan Watt, “The computer image”, Addison-Wesley, 1998.

[10] John Canny. ”A computational approach to edge detection”. IEEE Transactions on Pattern

Analysis and Machine Intelligence., Vol.8, No.6, IEEE Computer Society, 1986.

[11] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. "A Non-photorealistic

Lighting Model for Automatic Technical Illustration." Computer Graphics (Proc.

Siggraph), ACM SIGGRAPH, July 1998.

 28

[12] Steve Upstill. “The Renderman companion: a programmer’s guide to realistic computer

graphics”. Addison.Wesley, 1990.

[13] Ian Stephenson, “Essential RenderMan fast”, Springer, 2002.

[14] “Digital image processing and analysis”, Vol. 2. IEEE Computer Society Press, 1985.

[15] Thomas Strothotte, “Non-photorealistic computer graphics: modelling, rendering and

animation”, Morgon Kaufmann, 2002.

[16] Jerry Beck, “Animation art: from pencil to pixel, the world of cartoon, animé and CGI”,

Flame Tree, 2004.

[17] Anthony Apodaca, Larry Gritz “Advanced Renderman: creating CGI motion pictures”,

Morgan Kauffman, 1999.

 29

Appendix I: Code for Canny implementation

/* -------------- Canny's Algorithm implementation ----------
 1) Convolve the image with a separable gaussian filter.
 2) Take the dx and dy the first derivatives usin g [-1,0,1] and
[1,0,-1]'.
 3) Compute the magnitude: sqrt(dx*dx+dy*dy).
 4) Perform non-maximal suppression.
 5) Perform hysteresis.
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <signal.h>
#include <assert.h>
#include <NCCAPixmap.h>
#include <PixFileIO.h>

#define STRONG 0.0
#define CANDIDATE 0.5
#define WEAK 1.0
void step1_smooth_with_gaussian();
void step2_compute_gradient();
void step3_compute_magnitude();
void step4_non_maxima_suppression();
void step5_perform_hysteresis();
void edge_linking(short int lowval, int r, int c);

//GLOBAL VARIABLES
NCCAPixmap image;
NCCAPixmap edge;
unsigned char **nms; //non-maxim suppression
short int **smoothedim, //image after gaussian smoo thing
 **xderiv, //first devivative image, x-direction
 **yderiv, //first derivative image, y-direction
 **magnitude; //magnitude of the gadient image

int rows, cols; //image dimensions and rows and col umns counters
float sigma, //standard deviation of the gaussian k ernel
 tlow, //low threshold for hysteresis
 thigh; //high threshold for hysteresis

main(int argc, char *argv[])
{
 NCCAPixmap orig;
 NCCAPixmap final;

 NCCAPixel p;
 float grey;
 int convert;

 int r, c;
 if(argc < 6){
 fprintf(stderr,"\nCanny usage %s image sigma tlow thigh
edge\n",argv[0]);
 fprintf(stderr,"\timage:\tAn image to process .\n");

 30

 fprintf(stderr,"\tsigma:\tStandard deviation of the
gaussian.\n");
 fprintf(stderr,"\ttlow:\tHigh threshold.\n");
 fprintf(stderr,"\tthigh:\tLow threshold");
 fprintf(stderr,"\tedge:\tThe edge image to ob tain.\n");
 exit(1);
 }

 orig = loadPixmap(argv[1]);
 rows = orig.height;
 cols = orig.width;

 //convert image to greyscale
 image =newPixmap(cols,rows,1,8);
 for(r=0; r<rows; r++){
 for(c=0; c<cols; c++){
 p = getPixel(orig,c,r);
 grey = p.r;
 setPixelGrey(image,c,r,grey);
 }
 }

 sigma = atof(argv[2]);
 tlow = atof(argv[3]);
 thigh = atof(argv[4]);

 edge = newPixmapLike(image);

 //allocate space for the smoothedim data
 smoothedim = (short int**)calloc(rows,sizeof(short int*));
 if(smoothedim == NULL){
 fprintf(stderr, "Error allocating the smoothed ro ws
image.\n");
 exit(1);
 }
 else{
 for(r=0; r<rows; r++){
 smoothedim[r] = (short int*)calloc(cols,sizeof(s hort
int));
 if(smoothedim[r] == NULL){
 fprintf(stderr, "Error allocating the smoothed c ols
image.\n");
 exit(1);
 }
 }
 }

 step1_smooth_with_gaussian();

 //allocate space for gradient images
 xderiv = (short int **) calloc(rows,sizeof(short i nt*));
 if(xderiv == NULL){
 fprintf(stderr, "Error allocating the x derivativ e
image.\n");
 exit(1);
 }
 else{
 for(r=0; r<rows; r++){
 xderiv[r] = (short int*) calloc(cols,sizeof(shor t
int));
 if(xderiv[r] == NULL){

 31

 fprintf(stderr, "Error allocating the x
derivative image.\n");
 exit(1);
 }
 }
 }

 yderiv = (short int **) calloc(rows,sizeof(short i nt*));
 if(yderiv == NULL){
 fprintf(stderr, "Error allocating the y derivativ e
image.\n");
 exit(1);
 }
 else{
 for(r=0; r<rows; r++){
 yderiv[r] = (short int*) calloc(cols,sizeof(shor t
int));
 if(yderiv[r] == NULL){
 fprintf(stderr, "Error allocating the y
derivative image.\n");
 exit(1);
 }
 }
 }

 step2_compute_gradient();

 //allocate space for the magnitude image
 magnitude = (short int **) calloc(rows,sizeof(shor t int*));
 if(magnitude == NULL){
 fprintf(stderr, "Error allocating the magnitude
image.\n");
 exit(1);
 }
 else{
 for(r=0; r<rows; r++){
 magnitude[r] = (short int*) calloc(cols,sizeof(s hort
int));
 if(magnitude[r] == NULL){
 fprintf(stderr, "Error allocating the
magnitude image.\n");
 exit(1);
 }
 }
 }
 step3_compute_magnitude();

 //allocate space for the non-maxima output
 nms = (unsigned char **) calloc(rows,sizeof(unsign ed char*));
 if(nms == NULL){
 fprintf(stderr, "Error allocating the magnitude
image.\n");
 exit(1);
 }
 else{
 for(r=0; r<rows; r++){
 nms[r] = (unsigned char*)
calloc(cols,sizeof(unsigned char));
 if(nms[r] == NULL){
 fprintf(stderr, "Error allocating the
magnitude image.\n");

 32

 exit(1);
 }
 }
 }

 step4_non_maxima_suppression();

 step5_perform_hysteresis();

 savePixmap(edge, argv[5]);

 //free the pointers
 for(r=0; r<rows; r++){
 free(smoothedim[r]);
 free(xderiv[r]);
 free(yderiv[r]);
 free(magnitude[r]);
 free(nms[r]);
 }
 free(smoothedim);
 free(xderiv);
 free(yderiv);
 free(magnitude);
 free(nms);
}

void step1_smooth_with_gaussian()
{
 int r, c, rr, cc,//counters
 dimension, //dimension of the gaussian mask
 center; //center of gaussian mask
 float **tempim,//buffer to separate gaussian mask in x and y
directions
 greyval,
 prod,
 sum,
 x,
 Gx,
 *gaussmask;

 //compute the gaussian kernel
 //set dimensions accorind to the value of sigma
 dimension = 1 + 2 * ceil(2.5 * sigma);

 gaussmask = (float*)calloc(dimension,sizeof(float));
 if(gaussmask == NULL){
 fprintf(stderr, "Error allocating the Gaussian ma sk.\n");
 exit(1);
 }

 center = dimension/2;
 sum = 0.0;
 for(r=0;r<dimension; r++){
 x = (float)(r - center);
 //gaussian function in one dimension
 Gx = pow(2.718281828, -0.5*x*x/(sigma*sigma)) / (sigma *
sqrt(6.2831853));
 gaussmask[r] = Gx;
 sum += Gx;
 }

 33

 for(r=0;r<dimension;r++) gaussmask[r] /= sum;

 //allocate space for the temporary buffer
 tempim = (float**)calloc(rows,sizeof(float*));
 if(tempim == NULL){
 fprintf(stderr, "Error allocating the buffer rows
image.\n");
 exit(1);
 }
 else{
 for(r=0; r<rows; r++){
 tempim[r] = (float*)calloc(cols,sizeof(float));
 if(tempim[r] == NULL){
 fprintf(stderr, "Error allocating the buffer col s
image.\n");
 exit(1);
 }
 }
 }

 //smooth in the x direction
 for(r=0;r<rows;r++){
 for(c=0;c<cols;c++){
 prod = 0.0;
 sum = 0.0;
 for(cc=(-center);cc<=center;cc++){
 if(((c+cc) >= 0) && ((c+cc) < cols)){
 greyval = getPixelGrey(image,c+cc,r);
 prod += greyval* gaussmask[center+cc];
 sum += gaussmask[center+cc];
 }
 }
 tempim[r][c] = prod/sum;
 }
 }

 //smooth in the y direction
 for(c=0;c<cols;c++){
 for(r=0;r<rows;r++){
 prod = 0.0;
 sum = 0.0;
 for(rr=(-center);rr<=center;rr++){
 if(((r+rr) >= 0) && ((r+rr) < rows)){
 prod += tempim[r+rr][c] *
gaussmask[center+rr];
 sum += gaussmask[center+rr];
 }
 }
 smoothedim[r][c] = prod/sum;
 }
 }

 for(r=0; r<rows;r++)
 free(tempim[r]);
 free(tempim);
 free(gaussmask);
}

//use 1D Prewitt operator for caluclating gradient image

 34

void step2_compute_gradient()
{
 int r, c, pos;

 //gradient along x direction
 for(r=0;r<rows;r++){
 xderiv[r][0] = smoothedim[r][1] - smoothedim[r][0];
 for(c=1;c<(cols-1);c++){
 xderiv[r][c] = smoothedim[r][c+1] - smoothedim[r][c-
1];
 }
 xderiv[r][cols-1] = smoothedim[r][cols-1] -
smoothedim[r][cols-2];
 }

 //gradient along y direction
 for(c=0;c<cols;c++){
 yderiv[0][c] = smoothedim[1][c]-smoothedim[0][c];
 for(r=1;r<rows-1;r++){
 yderiv[r][c] = smoothedim[r+1][c] - smoothedim[r -
1][c];
 }
 yderiv[rows-1][c] = smoothedim[r-1][c] - smoothed im[rows-
2][c];
 }
}

//compute magnitude
void step3_compute_magnitude()
{
 int r, c, pos, gx, gy;
 for(r=0;r<rows;r++){
 for(c=0;c<cols;c++){
 gx = xderiv[r][c] * xderiv[r][c];
 gy = yderiv[r][c] * yderiv[r][c];
 magnitude[r][c] = sqrt(gx + gy);
 }
 }
}

//apply non-maxima suppression
void step4_non_maxima_suppression()
{
 int rowcount, colcount,count;
 int r, c;
 short mag,gx,gy, ux, uy;
 float p1, p2, magA,magB,xperp,yperp;

 //assign zeros to the borders of the final image
 for(c = 0; c<cols; c++){
 nms[0][c] = (unsigned char) 0;
 nms[rows-1][c] = (unsigned char) 0;
 }

 for(r=0; r<rows; r++){
 nms[r][0] = (unsigned char) 0;
 nms[r][cols-1] = (unsigned char) 0;
 }

 for(r=1; r<rows-2; r++){
 for(c=1; c<cols-2; c++){

 35

 mag = magnitude[r][c];
 if(mag == 0){
 nms[r][c]= WEAK;
 }
 else{
 gx = xderiv[r][c];
 ux = -gx/mag;
 gy = yderiv[r][c];
 uy = gy/mag;
 }

 //deal with each case
 if(gx >= 0){
 if(gy >= 0){
 if (gx >= gy)
 {
 p1 = magnitude[r][c-1];
 p2 = magnitude[r-1][c-1];
 magA = (mag - p1)*ux + (p2 -
p1)*uy;
 p1 = magnitude[r][c+1];
 p2 = magnitude[r+1][c+1];
 magB = (mag - p1)*ux + (p2 -
p1)*uy;
 }
 else
 {
 p1 = magnitude[r-1][c];
 p2 = magnitude[r-1][c-1];
 magA = (p1 - p2)*ux + (p1 -
mag)*uy;
 p1 = magnitude[r+1][c];
 p2 = magnitude[r+1][c+1];
 magB = (p1 - p2)*ux + (p1 -
mag)*uy;
 }
 }
 else
 {
 if (gx >= -gy)
 {
 p1 = magnitude[r][c-1];
 p2 = magnitude[r+1][c-1];
 magA = (mag - p1)*ux + (p1 -
p2)*uy;
 p1 = magnitude[r][c+1];
 p2 = magnitude[r-1][c+1];
 magB = (mag - p1)*ux + (p1 -
p2)*uy;
 }
 else
 { p1 = magnitude[r+1][c];
 p2 = magnitude[r+1][c-1];
 magA = (p1 - p2)*ux + (mag -
p1)*uy;
 p1 = magnitude[r-1][c];
 p2 = magnitude[r-1][c+1];
 magB = (p1 - p2)*ux + (mag
- p1)*uy;
 }
 }

 36

 }
 else
 {
 gy = yderiv[r][c];
 if (gy >= 0)
 {
 if (-gx >= gy)
 {
 p1 = magnitude[r][c+1];
 p2 = magnitude[r-1][c+1];
 magA = (p1 - mag)*ux + (p2 -
p1)*uy;
 p1 = magnitude[r][c-1];
 p2 = magnitude[r+1][c-1];
 magB = (p1 - mag)*ux + (p2 -
p1)*uy;
 }
 else
 {
 p1 = magnitude[r-1][c];
 p2 = magnitude[r-1][c+1];
 magA = (p2 - p1)*ux + (p1 -
mag)*uy;
 p1 = magnitude[r+1][c];
 p2 = magnitude[r+1][c-1];
 magB = (p2 - p1)*ux + (p1 -
mag)*uy;
 }
 }
 else
 {
 if (-gx > -gy)
 {
 p1 = magnitude[r][c+1];
 p2 = magnitude[r+1][c+1];
 magA = (p1 - mag)*ux + (p1 -
p2)*uy;
 p1 = magnitude[r][c-1];
 p2 = magnitude[r-1][c-1];
 magB = (p1 - mag)*ux + (p1 -
p2)*uy;
 }
 else
 {
 p1 = magnitude[r+1][c];
 p2 = magnitude[r+1][c+1];
 magA = (p2 - p1)*ux + (mag -
p1)*uy;
 p1 = magnitude[r-1][c];
 p2 = magnitude[r-1][c-1];
 magB = (p2 - p1)*ux + (mag -
p1)*uy;
 }
 }
 }

 //is the current point a maximum point?
 if ((magA > 0.0) || (magB > 0.0)){
 nms[r][c] = WEAK;
 }
 else

 37

 {
 if (magB == 0.0){
 nms[r][c] = WEAK;}
 else{
 nms[r][c] = CANDIDATE;}
 }
 }
 }

}

//hysteresis
void step5_perform_hysteresis()
{
 int r, c, pos, numedges, lowcount, highcount, lowt hreshold,
highthreshold,
 i, hist[32768], rr, cc;
 short int maximum_mag, sumpix;
 float p;
 int pint;

 //initialise the edge image
 for(r=0; r<rows; r++){
 for(c=0; c<cols; c++){
 if((r==0)||(c==0)||(r==(rows-1))||(c==(cols-1))) {
 p = WEAK;
 setPixelGrey(edge,c,r,p);
 }
 else{
 if(nms[r][c] == CANDIDATE){
 p = CANDIDATE;
 setPixelGrey(edge,c,r,p);
 }
 else{
 p = WEAK;
 setPixelGrey(edge,c,r,p);
 }
 }
 }
 }

 for(r=0;r<rows;r++){
 for(c=0;c<cols;c++){
 p = getPixelGrey(edge,c,r);
 if((pint==CANDIDATE) && magnitude[r][c]>=thigh){
 p = STRONG;
 setPixelGrey(edge,c,r,p);
 edge_linking(tlow,r,c);
 }
 }
 }

 //set all the edges that are not connected to oher edges to weak
 for(r=0; r<rows; r++){
 for(c=0;c<cols;c++){
 p = getPixelGrey(edge,c,r);
 if(p!=STRONG){
 p = WEAK;
 setPixelGrey(edge,c,r,p);
 }
 }

 38

 }
}

//edge linking
void edge_linking(short int t, int r, int c)
{
 float p;
 int u, v;
 for(u=-1;u<1;u++){
 for(v=-1; v<1; v++){
 if((u!=0)&&(v!=0)){
 p = getPixelGrey(edge,c+v,r+u);
 if((p == CANDIDATE) &&
(magnitude[r+u][c+v]>t)){
 p = STRONG;
 setPixelGrey(edge,c+v,c+u,p);
 edge_linking(t, r+u, c+v);
 }
 }
 }
 }
}

 39

Appendix II: Code for cel shading models
/*------------ celBrick.sl ---------------*/

/*

Surface shader for a cartoon looking wall brick pat tern.

Params:

 Ka, Kd: standard ambient and diffuse components

 Kl: fraction of Cl contributing to lighted color

 Cshad: fraction of Cs contributing to the shadowed color

 Cligh: fraction of Cs contributing to the lighted color

 Y: grey component of Ci used in edge detection

 irregularity: how dented or uneven the brick surfa ce appears

 brickwidth: width of the brick

 brickheight: height of the brick

 mortarwidth: with of the mortar

 mortardepth: the bumpiness of the mortar

 texturescale: overall scale of the applied pattern

 brickcolor: standard color for the brick

 mortarcolor: standard color for the mortar

 colorvariation: deviation from the standard color from brick to

brick*/

surface

celBrick(

 //standard variables

 float Ka = 1,

 Kd = 1,

 Kl = 1,

 Cshad = 0.25,

 Cligh = 0.5;

 output varying float Y = 0;

 //physical variables

 float irregularity = 0.06,

 brickwidth = 0.25,

 brickheight = 0.12, //give always even values he re

for it to work

 mortarwidth = 0.05,

 texturescale = 2;

 //color variables

 color brickcolor = color "rgb" (0.83,0.01,0.12),

 mortarcolor = color "rgb" (0.5,0.5,0.5);

 40

 float colorvariation = 0.5;

)

{

 #define snoise(x) (2 * noise((x)) - 1)

 normal Nf = faceforward(normalize(N), I);

 vector V = -normalize(I) ;

 //brick shape variation

 point PP = point noise (u/brickwidth, v/brickheig ht);

 float ss = s + irregularity * xcomp (PP);

 float tt = t + irregularity * ycomp (PP);

 //divide by brick dimensions so that ss and tt var y from 0 to 1

within a single brick.

 ss = (texturescale * ss)/brickwidth;

 tt = (texturescale * tt)/brickheight;

 //identify which brick contains the point being sh aded

 float brickrow = floor(tt);

 //offset even rows by half a row

 if(mod(tt, 2) > 1)

 ss += 0.5;

 //identify which brick contains the point being sh aded

 float brickcol = floor(ss);

 //texture coords within brick

 ss -= brickcol;

 tt -= brickrow;

 //choose brick color that varies from brick to bri ck

 color Ct = brickcolor * (1 + colorvariation * (n oise(

(brickcol * brickrow)/2.3 + 3.7)));

 //detrmine if in mortar for mortar color

 if(ss < mortarwidth || tt < mortarwidth)

 Ct = mortarcolor;

 //cartoon shading color declaration and initialisa tion

 color lightedcolor = Cligh * Ct;

 41

 color shadowedcolor =Cshad * Ct;

 color brightness = color(0, 0, 0);

 color lightcolor = color(0, 0, 0);

 //auxiliary variables for illuminance loop

 float dot, val, instep;

 //illuminance loop at P with a cone of 360 degrees , considering

Nf for illumination

 illuminance(P){

 //see difference in angle

 dot = (normalize(L)).Nf;

 //normalize so that it lies between 0 and 1

 val = 0.5 * (1 + dot);

 //consider lightcolor a fraction of the light col or

 lightcolor = Kl * Cl;

 //increase brightness after increasing the lighte dcolor by

the lightcolor

 //accumulate light by mixing shadowedcolor and

lightedcolor depending on the angle between the fac ing normal vector

Nf and the light vector L

 brightness += mix(shadowedcolor, lightcolor *

lightedcolor, val);

 }

 //detrmine if in mortar for mortar color

 //if(ss < mortarwidth || tt < mortarwidth)

 // Ct = mcolor;

 Oi = Os;

 Ci = Oi * (Ct * (Ka * ambient())

 + Kd * brightness);

 //detrmine if in mortar for mortar color

 //if(ss<mortar || tt<mortar)

 //Ci = mcolor;

 // -- Second method for colouring --

 42

/* float smwidth=smoothstep(0,mortar/2,ss);

 float tmwidth=smoothstep(0,mortar/2,tt);

 float mwidth=smwidth*tmwidth;

 color brick=mix(mcolor,bcolor,mwidth);

*/

 //calculate final color for the brick

 //Ci = brick*Os * (Ka*ambient() + Kd*diffuse(Nf));

 Y = comp(ctransform("yiq", Ci), 0) ;

}

 43

/*

------------ celMatte.sl ---------------

*/
/*
Params:
 Ka, Kd: ambient, diffuse coefficients
 Kl: fraction of Cl contributing to lighted color
 Cshad: fraction of Cs contributing to the shadowed color
 Cligh: fraction of Cs contributing to the lighted color
 Y: grey component of Ci used in edge detection
*/

surface
celMatte (
 float Ka = 1,
 Kd = 1,
 Kl = 1,
 Cshad = 0.25,
 Cligh = 0.5;
 output varying float Y = 0;
)
{
 normal Nf = faceforward(normalize(N), I);

 //cartoon shading color declaration and initialisa tion
 color lightedcolor = Cligh * Cs;
 color shadowedcolor = Cshad * Cs;
 color brightness = color (0, 0, 0);
 color lightcolor = color(0, 0, 0);

 //auxiliary variables for illuminance loop
 float dot, val, instep;

 //illuminance loop at P with a cone of 360 degrees , considering
Nf for illumination
 illuminance(P){ //same as illuminance(P,Nf,PI)
 //see difference in angle
 dot = (normalize(L)).Nf;
 //normalize so that it lies between 0 and 1
 val = 0.5 * (1 + dot);
 //consider lightcolor a fraction of the light col or
 lightcolor = Kl * Cl;
 instep = smoothstep(0.49, 0.51, val);
 //increase brightness after increasing the lighte dcolor by
the lightcolor
 //accumulate light by mixing shadowedcolor and
lightedcolor depending on the angle between the fac ing normal vector
Nf and the light vector L
 brightness += mix(shadowedcolor, lightcolor *
lightedcolor, val);
 }

 //opacity
 Oi = Os;
 //color: Cs contribution to ambient only, since br ightness
contains already Cs. brightness contribution to dif fuse, since diffuse
has been replace essentially by the loop above

 44

 Ci = Oi *(Cs * (Ka * ambient())
 + Kd*brightness);
 //YIQ component 0 component - grey
 Y = comp(ctransform("yiq", Ci), 0) ;
}

 45

/*------------ celMetalic.sl ---------------*/
/* cartoon looking surface shader simulating the ef fect of light on a
metalic object
Params:
 Ka, Kd: ambient, diffuse coefficients
 Kl: fraction of Cl contributing to lighted color
 Cshad: fraction of Cs contributing to the shadowed color
 Cligh: fraction of Cs contributing to the lighted color
 Y: grey component of Ci used in edge detection
*/

surface
celMetalic(
 float Ka = 1,
 Kd = 1,
 Kl = 1,
 Cshad = 0.25,
 Cligh = 0.5;
 output varying float Y = 0;
)
{
 normal Nf = faceforward(normalize(N), I);

 //cartoon shading color declaration and initialisa tion
 color lightedcolor = Cshad * Cs;
 color shadowedcolor = Cligh * Cs;
 color brightness = color(0, 0, 0);
 color lightcolor = color(0, 0, 0);
 color white = color(1, 1, 1);
 //initial specularity
 float spec = 0;

 //auxiliary variables for illuminance loop
 float dot, val, instep;

 //illuminance loop at P with a cone of 360 degrees , considering
Nf for illumination
 illuminance(P){
 //see difference in angle
 dot = (normalize(L)).Nf;
 //normalize so that it lies between 0 and 1
 val = 0.5 * (1 + dot);
 //specular highlight if dot product very close to one
 if(val > 0.975) spec += val * val;
 //consider lightcolor a fraction of the light col or
 lightcolor = Kl * Cl;
 //increase brightness after increasing the lighte dcolor by
the lightcolor
 //accumulate light by mixing shadowedcolor and
lightedcolor depending on the angle between the fac ing normal vector
Nf and the light vector L
 brightness += mix(shadowedcolor, lightcolor *
lightedcolor, val);
 }

 //opacity
 Oi = Os;

 //produce white specular highlight imitating carto on technique
 if(spec!=0){

 46

 float instep = smoothstep(0.97, 0.99, spec);
 Ci = Oi * mix(brightness, white, instep);
 }
 else
 Ci = Oi * (Cs * (Ka * ambient()) + Kd * bright ness);

 Y = comp(ctransform("yiq", Ci), 0) ;
}

 47

/*------------ celPlastic.sl ---------------*/
/* cartoon looking surface shader simulating the ef fect of light on a
plastic object
Params:
 Ka, Kd: ambient, diffuse coefficients
 Kl: fraction of Cl contributing to lighted color
 Cshad: fraction of Cs contributing to the shadowed color
 Cligh: fraction of Cs contributing to the lighted color
 Y: grey component of Ci used in edge detection
*/

surface
celPlastic(
 float Ka = 1,
 Kd = 1,
 Kl = 1,
 Cshad = 0.25,
 Cligh = 0.5,
 Cspec = 1;
 output varying float Y = 0;
)
{
 normal Nf = faceforward(normalize(N), I);

 //cartoon shading color declaration and initialisa tion
 color lightedcolor = Cligh * Cs;
 color shadowedcolor =Cshad * Cs;
 //make the specular color the same as Cs
 color specularcolor = Cspec * Cs;
 color brightness = color(0, 0, 0);
 float highlight = 0;
 color lightcolor = color(0, 0, 0);

 //auxiliary variables for illuminance loop
 float dot, val, instep;
 float count = 1;

 //illuminance loop at P with a cone of 360 degrees , considering
Nf for illumination
 illuminance(P){
 //see difference in angle
 dot = (normalize(L)).Nf;
 //normalize so that it lies between 0 and 1
 val = 0.5 * (1 + dot);
 //specular highlight if dot product very close to one
 if(val>0.925) highlight += val * val;
 lightcolor = Kl * Cl;
 specularcolor += Cspec * lightcolor;
 instep = smoothstep(0.49, 0.51, val);
 //increase brightness after increasing the lighte dcolor by
the lightcolor
 //accumulate light by mixing shadowedcolor and
lightedcolor depending on the angle between the fac ing normal vector
Nf and the light vector L

 brightness += mix(shadowedcolor, lightcolor *
lightedcolor, val);
 }

 //opacity
 Oi = Os;

 48

 if(highlight!=0){
 instep = smoothstep(0.94, 0.985, highlight);
 Ci = mix(brightness, specularcolor, instep);
 }
 else
 Ci = Oi * (Cs * (Ka * ambient()) + Kd * bri ghtness);

 Y = comp(ctransform("yiq", Ci), 0) ;
}

 49

/* ----------- celWood.l ---------------*/
/* cartoon looking surface shader simulating a tile d wooden floor
Params:
 Ka, Kd: ambient, diffuse coefficients
 Kl: fraction of Cl contributing to lighted color
 Cshad: fraction of Cs contributing to the shadowed color
 Cligh: fraction of Cs contributing to the lighted color
 plankwidth: width of the plank
 spacewidth: width of the space between planks
 texturescale: overall scale factor for the pattern
 ringfactor: multiplicative factor for the ringsize
 wavefactor: multiplicative factor for the waviness on the
distribution of the rings
 Y: grey component of Ci used in edge detection
*/

surface
celWoodShadows(
 //usual attributes
 float Ka = 1,
 Kd = 1,
 Kl = 1,
 Cshad = 0.25,
 Cligh = 0.5;
 //phyical attributes
 float plankwidth = 0.2,
 spacewidth = 0.02,
 texturescale = 8,
 ringfactor = 25,
 wavefactor = 0.8;
 //color attribute
 color woodcolor = color "rgb" (0.57, 0.292, 0.12 5),
 ringcolor = color "rgb" (0.275, 0.15, 0.06),
 spacecolor = color(0, 0, 0);
 float colorvariation = 0.5;
 //output
 output varying float Y = 0;
)
{

 float width = plankwidth;
 float height = plankwidth;

 #define snoise(x) (2 * noise((x)) - 1)
 #define MINFILTERWIDTH 1.0e-7

 normal Nf = faceforward(normalize(N), I);

 //divide by plank dimensions so that ss and tt var y from 0 to 1
within a single brick.
 float ss = (texturescale * s)/width;
 float tt = (texturescale * t)/height;

 //identify which plank contains the point being sh aded
 float plankrow = floor(ss);
 float plankcol = floor(tt);

 //twist the planks so that they are alternatively in horizontal
or vertical direction

 50

 if(mod(plankrow + plankcol, 2) >= 1){
 float tmp;
 ss = (texturescale * t)/width;
 tt = (texturescale*s)/height;
 plankrow = floor(ss);
 plankcol = floor(tt);
 }

 //texture coords within plank
 ss -= plankrow;
 tt -= plankcol;

 //work out the ring adding several layers of noise
 float nnoise = tt/4 + plankcol + wavefactor * nois e(8 * ss,
tt/4);
 float r = ringfactor * noise (ss - plankcol, nno ise);
 r -= floor(r);
 r = 0.5 + 0.5 * smoothstep(0.2, 0.55, r) * (1 - smoothstep(0.75,
0.8, r));

 //mix between ringcolor and woodcolor
 color Ct = mix(ringcolor, woodcolor, r);

 //let the color change from plank to plank
 Ct *= (1 - colorvariation/2 + colorvariation * (sn oise(plankrow
* plankcol + 0.7)));

 if(ss < spacewidth/width || tt<spacewidth/height)
 Ct = spacecolor;

 color lightedcolor = Cligh * Ct;
 color shadowedcolor = Cshad * Ct;
 color brightness = color(0, 0, 0);
 color lightcolor = color(0, 0, 0);

 //auxiliary variables for illuminance loop
 float dot, val, instep;

 //illuminance loop at P with a cone of 360 degrees , considering
Nf for illumination
 illuminance(P){ //same as illuminance(P,Nf,PI)
 //see difference in angle
 dot = (normalize(L)).Nf;
 //normalize so that it lies between 0 and 1
 val = 0.5 * (1 + dot);
 //consider lightcolor a fraction of the light col or
 lightcolor = Kl * Cl;
 //increase brightness after increasing the lighte dcolor by
the lightcolor
 //accumulate light by mixing shadowedcolor and
lightedcolor depending on the angle between the fac ing normal vector
Nf and the light vector L
 brightness += mix(shadowedcolor, lightcolor *
lightedcolor, val);
 }

 Oi = Os;
 Ci = Oi * (Ct * (Ka * ambient())
 + Kd * brightness);

 51

 //YIQ component 0 component - grey
 Y = comp(ctransform("yiq", Ci), 0) ;
}

