Scriptable Scene-Graph based
OpenGL Rendering Engine

Masters Thesis
Colin Wheatley

Msc Computer Animation
N.C.C.A. Bournemouth University

11 September 2005

Contents

1 Introduction

1.1 Need for performance optimisations in real time/interactive applications
1.2 What is a scene-graph?
1.3 How can scene-graphs aid in interactive rendering?

2 Previous and Current Work

3 Technical Background
3.1 Identifying the main aspects of a real time, scene based rendering engine
3.2 Graph/Tree Based Data Structure
3.3 Culling

3.4 State Sorting
3.5 Separate render passes
3.6 Level of Detail Nodes

4 Implementation
41 System Overview
4.2 Performance

4.2.1 Mesh Loader
4.2.2 Frustum Culling
4.2.3 Octree Culling
4.2.4 State Management, Materials & Render passes
4.2.5 Level Of Detail Nodes
4.3 Extendible Framework
4.3.1 System Design
4.3.2 SceneGraph Data Structure
4.3.3 Spatial & Logical Relationships
4.3.4 Abstract Shape Class
4.3.5 Factory Pattern
4.4 User Interface
4.4.1 Interface Overview
4.4.2 Scene Interface
4.4.3 Lua Interface
4.4.4 Scenes as scene-graph nodes
445 Camera & Light Classes

Using the System

5.1 Installation
5.2 The "Hello World" Application
5.3 Running an Application

Conclusions

Reference

1 Introduction

1.1 Need for performance optimisations in real time/interactive
applications

Unlike film and production animation, interactive applications such as video games
and visual simulations are dictated by the real time performance of CPU’s and graphics
processors. In the early days of gaming and visual simulation, titles such as Pong and
Space Invaders amazed audiences with their simple but effective graphics. Early computer
generated flight simulators also demonstrated the possibilities of interactive environments
to the world, albeit in a crude manner. The importance of realistic graphics and worlds
weren’t so important at the time. As the games and visual simulation sectors progressed
however, vast improvements were made in the graphical performance of hardware
allowing for bigger and more detailed environments, especially in the field of video games.
Now as each new game was released to the market, game players expected more and more
in every area, especially in the graphics department. As theatre audiences around the
world enjoy full scale wars between possibly thousands of creatures in glorious detail in
films such as the Lord of the Rings trilogy, games players are seldom allowed the same
pleasure when confronted with real time generated battles found in games such as the
Civilization series and Battle for Middle Earth.

Fig 1.1 Screenshot from the PC game Battle for Middle Earth [17]

In interactive applications, compromises must often be made between the realism
of the world and the amount of objects in any scene. This makes sense when we think of
the different approaches that are found in interactive simulations and production rendered
animation. In production animation, rendering is an off-line process where each frame
could take anywhere from minutes to hours to produce, where as in video games and
simulations we are expected to produce anywhere from 25 to 60 frames a second. As
technology continues to advance this compromise is becoming less and less of a problem
for video games and interactive simulations alike, but for the time being developers must
still find ways to optimise their applications to get the most out of the current technology
available.

The aim of this project is to design and implement a performance driven, scene
based rendering engine that can be utilised in the development of video games and
interactive visual simulations, which can also be extended by the end user. There are many
optimisations that can be applied to improve rendering times and our goal is to implement
a set of key features, which will complement the design and performance of the
application. Most rendering engines include some form of culling and state sorting as a
standard, as well as features such as level of detail nodes and separate render passes. The
organisation of objects in a scene can also be vitally important, a popular design approach
for scene based rendering engines found in modern video games and simulations is
through the use of a scene-graph, an approach that we will be implementing in the
development of our system.

1.2 What is a Scene-Graph?

“The scene-graph is an object-oriented structure that arranges the logical and often (but
not necessarily) spatial representation of a graphical scene.” [18]

Scene-graphs are organised as a collection of nodes in a graph or tree structure,
were nodes represent different objects and relationships in the scene. Nodes generally
have a single parent and zero or multiple children, an operation applied to a node
propagates the effect to its children. Most commonly a node can either be an internal node
or a leaf node, where a internal node refers to some logical relationship or procedure and
leaf nodes define the actual geometry of the object or more generally an object that can be
viewed in a scene [10].

1.3 How can scene-graphs aid in interactive rendering?

Scene-graphs provide a logical and intuitive means of organising objects in a
scene or world, establishing a good basis for transformation and object hierarchies. This
can greatly aid our optimisation techniques and prepare the objects in the scene for
advanced culling procedures such as Octree culling and occlusion culling techniques
such as Hierarchical Z-Buffering [13]. These processes can improve the rendering
performance of applications using graphics libraries such as OpenGL or Direct3D, which
although based on low level commands for drawing to the screen contain no specific
routines or processes to improve rendering performance on the client side. Scene graph
based toolkits such as SGI’s Performer [20] and the OpenSceneGraph [8] project provide a
framework and library which make it easier for developers to produce 3D applications,
allowing the developer to concentrate more on the creative aspect and not so much on
underlying details such as culling and rendering optimisations.

2 Previous and Current Work

Many scene-graph based rendering engines exist in the computer animation
sector, including commercial, open source, application specific and generic toolkits.
Scene graphs are commonly found in vector-based graphics editing applications including
programs such as AutoCAD, Adobe lllustrator and CorelDraw[?], but have also found great
acclaim in visual simulations and many modern video games. Scene-graph
implementations can also be found in modelling packages such as Alias Maya, in the form
of the Hypergraph. Current scene graph based toolkits include SGI's Performer [20], the
OpenSceneGraph project [8], opensg and more recently ogre3d [9], each supplying
developers intuitive means for production of 3d applications.

After being one of the earliest on the market, SGI's Performer, built atop of the
OpenGL graphics library, has now established itself as one of the industry standards for
scene graph based development toolkits. SGI's Inventor existed at roughly the same time
as Performer, but took a different approach to the performance driven Performer, ranking
re usability as it’s main priority, resulting in a system that has found more use in academic
research or prototyping then high performance applications [7].

Fig 2.1 Visual Simulations implemented with the OpenSceneGraph toolkit [8]

More recently there has been a lot of research and input into the OpenSceneGraph
project. An open-source high performance 3d toolkit, providing an object oriented
framework on top of OpenGL freeing the developer from implementing and optimising low-
level graphics calls. The toolkit contains some of the following key features, multiple
culling techniques, state sorting, level of detail nodes, vertex arrays, display lists and as of
this document supports 45 different model formats such as Alias (.obj), DirectX (.x) and
3DstudioMax (.3ds). Although the project is entirely written in standard C++, there is a
large community of developers and users providing Java and Python bindings. The
OpenSceneGraph has been used to develop many applications including numerous visual
simulations and interactive environments.

Another open source toolkit that has become popular in recent years, especially in
the video game sector, is Ogre3d. A scene-oriented, flexible 3D library written in C++
designed to make it easier and more intuitive for developers to produce applications
utilising hardware-accelerated 3D graphics. The abstracted library features support for
OpenGL and Direct3D, state management, spatial culling, opaque and transparent render
passes, flexible mesh support, material/shader support, special effects and many other
features. Ogre3D has been used in the development of games such as Pacific Storm and
Ankh.

Fig 2.2 Screenshot from Pacific Storm in development and implementing Ogre3D [19]

3 Technical Background

3.1 Identifying the main aspects of a real time rendering engine

Although much of the work discussed previously documented generic libraries and
toolkits to aid in computer generated applications, scene-graphs and scene based
systems exist in many computer graphics applications which are designed specifically for
that project. It is true that a generic toolkit may not meet the needs of all projects, requiring
some aspects to be tailored to satisfy the needs of that specific application. It can also be
seen however that most scene based systems possess many of the same key elements.
These elements can be seen as the main data structures and processes that make up
generic toolkits such as Ogre3d and the OpenSceneGraph project. The most notable are
as follows;

3.2 Graph/Tree Based Data Structure

The core data structure of any scene-graph. Many different data structures have
been implemented as scene-graphs including n-ary trees and directed acyclic graphs, all
however are based on the idea of a graph or tree representing the spatial or logical
hierarchy of objects in a scene. The most common is an n-ary tree, consisting of single or
shared parents, possessing zero or more children, with at most n children at each inner
node [10].

//C?\\\

/\@Q/G\)@CD
/q ODOOO ©
oJ0

Fig. N-Ary Graph

3.3 Culling

In computer graphics, culling algorithms determine the visible objects in the scene.
Any polygons which are deemed to be visible in the scene are sent down the graphics
pipeline to be rendered, the rest are discarded or “culled”. Many culling algorithms exist in
computer graphics such as view frustum culling, which involves testing polygons against
the viewing volume of the camera, back face culling, which removes any polygons that do
not face the viewer. Occlusion based culling algorithms such as cell, portal, pvs and
quad/octree based algorithms attempt to identify the visible parts of the scene, greatly
reducing the number of primitives sent down the graphics pipeline, by culling many
polygons at a higher level of abstraction then frustum culling [23].

Fig. View Frustum Culling [24]

3.4 State Sorting

In computer graphics API's such as OpenGL and Direct3D, state changes can be
very expensive, efficient state changes can greatly improve rendering times. State sorting
is about minimising the number of state changes that go down the graphics pipeline. This
is accomplished by reorganising the order that calls are made to the rendering API by
grouping collections of similar objects together based on material/shader states such as
texture, blend functions and surface material[11]. For example, if we have a scene
composed of 300 objects rendered with a choice of three textures, in a worst case
scenario, rendering the scene in random order could result in 300 texture state changes,
which would be very expensive for our rendering time [10]. Through the use of state
sorting however, we can guarantee the maximum number of state changes to be 3, which
is obviously a vast improvement over the previous attempt. State sorting has often been
described as a black art, some state changes are more expensive then others, for example,
turning on and off depth buffer writing is far less expensive than turning on or off a light
[11]. We must also contend with the fact that while developing specific projects or when
using multiple graphics API’'s some state changes will not be comparatively expensive, so
state sorting must often be tailored to a particular API or project.

3.5 Separate render passes

Implementing separate render passes, enables us to draw objects in an order
which can efficiently optimise rendering. Many rendering API's are fill rate bound, which
means that it is relatively expensive for them to draw pixels once everything has been
setup[3]. So every pixel we don’t draw saves us time, implementing this can be quite
complicated and can involve culling which was discussed previously. An obvious
approach however is to not draw any pixels which are behind other pixels. So by splitting
the rendering into separate passes we can hope to draw pixels in an order that will
minimise the number of pixels drawn.

For example we can first split the objects into two groups, those which are
considered opaque and those which are transparent. Obviously the transparent objects
must be drawn last, from back to front, for correct blending[3]. Opaque objects can be
drawn from front to back or through separate passes, drawing large static objects at the
foreground first, followed by dynamic objects such as actors and finally the background
plane, which in itself could cover the entire screen[10].

3.6 Level of Detail Nodes

Imagine a scene were we are rendering a character or model. Obviously on close
inspection the level of detail/complexity in the model is of importance. However, if we are
to view that same model from far away, we cannot make out the same level of detail, yet
still render the same complex model to the screen, thus wasting valuable rendering time. A
better idea would be to draw the same model at different levels of complexity based on the
model’s distance from the viewer, this is were level of detail nodes play their part [3].

A level of detail or LOD node in a scene-graph is like a switch statement that is
connected to several child nodes, were each child node represents a shape or model at
different levels of complexity/detail. The LOD nodes job is to decide on a per frame basis,
which child is to be sent to the next stage of the graphics pipeline. The LOD node bases
this decision on the complexity of the child and the distance of the object from the viewer,
the rest of the child nodes are said to be invisible for this frame. Popular modelling tools
such as Alias’ Maya incorporate user defined LOD nodes, allowing the designer an extra
level of optimisation over Maya’s built in techniques.

Fig. Spheres at reduced levels of complexity

4 Implementation

4.1 System Overview

The goal of this project was to develop a scriptable scene based rendering engine
to be used for the creation of static scenes, that is not only useable but also extensible to
include other features such as animation controllers at a later stage. The system has been
developed using the C++ programming language in conjunction with the OpenGL graphics
library, so as to encourage cross platform portability. Much like the Ogre3D engine
discussed previously, our system interface is purely code/script driven and there is no GUI
available for scene design. Embeddable scripting is provided by a LUA wrapper class,
which provides a secondary interface to our application over the C++ application code.
The main priorities of the application in order are; performance, extendible framework,
user interface.

Performance: the application should considerably increase the rendering time of
interactive applications, the application should also be capable of displaying reasonably
complex models and scenes at interactive rates.

Extendible Framework: the system design should provide an intuitive and simple
means to extend the application, making good use of object oriented frameworks and
suitable design patterns were possible.

User Interface: the application should be user friendly and yet flexible enough to

optimise and create multiple types of scenes. It should also incorporate a scripting
language to aid in scene design.

4.2 Performance:

Performance as the main priority in our system design and implementation, is
tackled with the following optimisation features.

4.2.1 Mesh Loader

The system includes a custom mesh loader which loads wavefront .obj files or a
custom binary file. If the binary mesh file does not exist, the obj file is loaded as a
preprocessing step, converted to vertex array data and finally written to binary form, ready
for use on the applications next run. Vertex arrays are storage buffers, which can contain
data such as vertices, texture and normal coordinates[4]. OpenGL provides built in
support for vertex arrays, so by storing our mesh data in them, we can greatly enhance our
rendering times, allowing for the depiction of reasonably complex models at interactive
rates. Also, as we are storing our mesh data on disk in binary format, this allows us to
improve the loading times compared to the parsing of .obj files and often results in smaller
files.

Fig. Mesh Loader Demo

4.2.2 Frustum Culling

Graphics API's such as OpenGL provide their own clipping algorithms to remove
any primitives which are not currently viewable on screen, this obviously improves the
efficiency of rendering. The problem is that clipping is one of the last operations
performed in the rendering pipeline, meaning that primitives which are not on screen are
processed the same as any which are viewable, this results in wasted rendering time. In a
small scene this may not be a problem but as the complexity and size of the scene
increases this can be detrimental to the frame rate. Frustum culling determines whether or
not an object is viewable from a given viewpoint, by testing if that object is in the current
view frustum. The view frustum is the volume of space that includes everything that is
currently visible from a given viewpoint. By only rendering objects which are in the view
frustum we can reduce the number of primitives which are sent down the rendering
pipeline and thus greatly improve our rendering times[11].

This system implements an OpenGL frustum culling technique proposed by Mark
Morley’s “Frustum Culling in OpenGL” tutorial[16]. The frustum is defined by six planes,
which form the shape of a pyramid with the top cut off. The test is simple, If a point is
inside this volume then it's in the frustum and it is visible, If the point is outside of the
frustum then it isn't visible. We extract the frustum coordinates from the current OpenGL
projection and modelview matrices, combine them, extract the values from the resulting
matrix and use them to define the six planes of the frustum. We then provide functions to
test whether a point, sphere or cube is contained in or intersects the frustum, we also
provide a function which returns a points distance from the near clipping plane, which we
can use to find the z depth of an object to be used by the LOD nodes later in the pipeline.

4.2.2.1 OpenGL View Frustum Extraction
Algorithm 1

/l GET THE CURRENT PROJECTION MATRIX FROM OPENGL
/l GET THE CURRENT MODELVIEW MATRIX FROM OPENGL

/ MULTUPLY THE MODELVIEW BY THE PROJECTION MATRIX TO
/l COMBINE THE TWO

/ EXTRACT THE COORDINATES FOR EACH OF THE SIX PLANES FROM
/l THE RESULTING MATRIX

/ NORMALIZE EACH PLANE

/I TEST THE DISTANCE BETWEEN A POINT IN SPACE AND EACH OF THE
/I SIX FRUSTUM PLANES

/I |[F THE RESULT IS POSITIVE WE ARE INSIDE A PLANE, NEGATIVE WE
/I ARE OUTSIDE, ZERO ON THE PLANE

/I IF ALL SIX PLANES RETURN INSIDE WE ARE COMPLETELY INSIDE THE
/I VIEW FRUSTUM

/[|lF WE ARE INSIDE AT LEAST ONE OR MORE PLANES BUT NOT ALL
/ PLANES, WE INTERSECT THE FRUSTUM

/I IF WE ARE OUTSIDE ALL PLANES WE ARE COMPLETELY OUTSIDE THE FRUSTUM
/I AND CAN BE DISCARDED

4.2.3 Octree Culling

Frustum culling helps to improve rendering times, but on a large scene with many
objects, culling each object against the frustum indivdually may not suffice. This system
implements another culling algorithm which operates on top of the basic view frustum
previously discussed, this algorithm is known as Octree culling or Octree Space
Partitioning [15]. Octree culling is an advanced culling technique that operates on a higher
level of abstraction then frustum culling. An Octree is a hierarchical structure which
encloses a scene or group of objects, it is usually defined as a cube.

|

‘ull!‘
' B
—

i
I
W
i
i
\

]

"‘%&E' i
A\:!éﬁ

X

y
1“‘5]
il =
!lr.% > N

A

Fig. Octree

The creation of an Octree is generally a recursive procedure, first we insert each
object at the root of the tree, following this we subdivide the root into eight child nodes
represented by cubes an 1/8th the size of the root cube. We then test individually whether
each object fits inside one of the child Octree nodes, if it is completely outside we move
onto the next node, if it fits totally inside a node, the object is inserted into this node, this
process continues recursively until we find a subdivision which is either too small to
enclose the object or an intersection occurs. On intersections the object is attached to the
last Octree node that could enclose the object.

4.2.3.1 Octree Creation Pseudo code

Algorithm 2

/I CALCULATE THE CENTRE OF THE OCTREE ROOT FROM THE POSITIONS OF WORLD
/l OBJECTS

/ FIND THE RADIUS OF THE ROOT, THE DISTANCE FROM THE CENTRE TO THE
/l FURTHEST OBJECT, DOUBLE THIS FOR THE CUBE WIDTH

/l CREATE THE OCTREE CUBE ROOT FROM THE CENTRE AND WIDTH
/I INSERT EACH OBJECT INTO THE ROOT

// SUBDIVIDE THE ROOT BY CREATING 8 OCTREE NODES AS CHILDREN INSIDE THE
// ROOT, EACH AN 1/8TH THE SIZE OF ITS PARENT

/l TEST WHETHER EACH OBJECT CAN FIT INSIDE ONE OF THE ROOTS CHILD NODES

/I IF THEY CAN FIT TOTALLY INSIDE A CHILD NODE, INSERT THE OBJECT INTO THIS
// NODE AND REPEAT THE PREVIOUS STEPS FOR THE CHILD OCTREE NODE

/ THIS PROCESS CONTINUES RECURSIVLEY UNTIL WE FIND AN INTERSECTION OR A
/ CHILD NODE WHICH IS TOO SMALL TO CONTAIN THE OBJECT, AT THIS POINT

/l ATTACH THE OBJECT TO THE LAST OCTREE NODE THAT COULD FIT THE OBJECT
/ WITHOUT INTERSECTIONS

{3 {3 {2 13
A A ¢ [

w w v v

0 0 (0

Fig. Octree subdivision & insertion [13]

The process of culling is to first take the root of the tree and test it against the view
frustum, if it is visible, recursively test each of the root’s nodes against the view frustum
until we reach the leaf nodes of the Octree which are the objects themselves or we find a
node which is outside the view frustum. In this case, discard the node and any of it’s
subset and move to the next Octree node. Recursive subdivision of the scene allows the
algorithm to cull objects at a higher level of abstraction then with just frustum culling.

Fig. View Frustum Culling using the Octree [15]

Our implementation of Octree Space Partitioning is at the object level, meaning
that objects rather then individual polygons are culled. Octree culling algorithms are best
suited to static scenes, as the pre-process of inserting large numbers of objects into the
tree can be quite expensive. With some techniques such as loose nodes however, the
octree can be made more suitable for dynamic objects.

4.2.4 State Management, Materials & Render passes

Internally OpenGL acts as a state machine and is composed of many different state
settings which instruct the API’'s operation. As previously discussed state changes in
Graphics API's such as OpenGL can be very expensive and efficient state management
can greatly improve rendering times [22]. In our system, state management is a process
performed after culling has taken place. On completion of Octree culling, we possess a list
of objects which have been deemed visible for that frame. Each object in the scene has
either zero or one materials attached which describe how that object should be drawn,
each material in the scene can have zero or many objects attached. In this system, what
we are referring to by “Material” is a list of properties which describes how the object
attached should be drawn, basic properties of our Material object are texture, specular,
ambient, diffuse and emissive components and alpha type. Obviously the Material object
can include any properties that could be desired, here we are using a basic set of
properties shared by all objects in a scene, which can be extended at a later date to
include other properties such as shaders. The process of state management is to sort the
order in which objects are drawn by the material properties that define them.

L I

— DetailTexturel

——& RedMaterial

——® OpaqueBlending

¢ GrayMaterial

——@ OpaqueBlending

® DetailTexture?
—Tfil‘uﬂaterial
OpaqueBlending

No texture

ChromeMaterial

AdditiveBlending

Fig. Material Tree Sort Example [22]

We are sorting materials using a binary sort algorithm, by doing so we can set a
precedence on certain properties of our Material. For example we are sorting materials by
texture first, as binding textures can be one of the most expensive state changes in a
graphics API, this is followed by material components and finally blending function. If we
were implementing shaders we would most likely sort materials by shader first, then
texture, but as we have noted, state changes are not comparatively expensive on different
systems and API's, so often we must tailor state management to a particular project or
system, here we have implemented a more generic state management algorithm.

4.2.4.1 State Management Pseudo code

Algorithm 3
// STORE MATERIALS ATTACHED TO VISIBLE OBJECTS IN AN STL VECTOR

/l OVERLOAD THE < OPERATOR TO SORT MATERIAL OBJECTS WITH THE FOLLOWING
/ PRECEDENCE

/l TEXTURE

/ MATERIAL COMPONENTS
/I SHININESS

/ BLEND FUNCTION

/ SORT THE MATERIALS USING THE STL VECTOR SORT FUNCTION

The process of rendering objects using materials involves setting the appropriate
states described by the material properties, rendering the attached object and then
releasing any state changes which will adversely effect the next object to be drawn. The
Material object implemented by this system provides two functions which handle the
setting and release of material properties, they are, use() and release() and act similarly to
the OpenGL glPushMatrix()/gIPushAttrib() and glPopMatrix()/glPopAttrib() block functions.
Calling the use() function sets the material state properties based on the current settings
stored by a static Material class member on the client, this may include such operations as
enabling of texturing/blending and shader/texture binding. All objects rendered from this
point will be drawn using the state settings specified by the use() function. After rendering
of an object has been completed we call the release() function which returns OpenGL to
it's previous state settings prior to the use function, this may involve calls to disable
texturing and blending.

4.2.4.2 Rendering Objects with Materials Pseudo code
Algorithm 4

/I SELECT A MATERIAL
/l CALL THE USE FUNCTION WHICH WILL

/ ENABLE BLENDING, DISABLE THE DEPTH MASK AND SET THE
/ BLEND FUNCTION FOR TRANSPARENT OBJECTS

// SET THE SHADING MODEL
/I SET MATERIAL COMPONENTS
/ ENABLE TEXTURES IF THEY ARE SET
/I BIND THE TEXTURE
/ RENDER THE ATTACHED OBJECTS
/l CALL THE RELEASE MATERIAL FUNCTION WHICH WILL ENABLE THE
// DEPTH MASK AND DISABLE BLENDING

/I DISABLE TEXTURES

Our state management algorithm can also carry out the task of designating objects
to separate render passes. Rendering objects through multiple passes can be of benefit to
rendering although it can be very scene specific. Here we have split our objects into
multiple passes, through our state sorting algorithm. Before material state sorting can
occur we must first divide the visible objects into opaque and transparent passes, by
comparing the alpha type of each material. This is an important step as transparent
objects must be drawn from back to front on a separate pass to avoid blending errors. We
can then sort our opaque objects by render pass type, were the types include STATIC for
large static objects, DYNAMIC such as actors or animated objects, TERRAIN another static
object but one that is known to control more space in a scene, SCENE for a whole scene
itself and BACKGROUND for background planes which can possibly take up the whole
screen. The order in which the passes is sorted is of importance, here we have designated
the following order, SCENE, STATIC, DYNAMIC, TERRAIN and BACKGROUND [3].
Although drawing the objects in this order gives us a good chance of not redrawing pixels
on screen, the cost and benefits of the process can be very scene specific, often just
sorting by material is more beneficial to render times as the problem of fill rate bound and
pixel redraw is becoming less important. Designation of render pass type for each object
is left to the end user and is a property found in the scene node itself, this allows for
greater flexibility in scene design.

4.2.5 Level of Detail Nodes

A level of detail or LOD node is implemented in our scene-graph data structure
which helps to minimize the complexity of objects drawn at different levels of z depth. The
LOD node acts like a switch statement, it is connected to several child nodes, were each
child node represents a shape or model at different levels of complexity. The LOD nodes
job is to decide on a per frame basis, which child is to be sent to the next stage of the
graphics pipeline, which in our case is culling. The LOD node bases this decision on the
complexity of the child and the distance of the object from the viewer, the rest of the child
nodes are set to invisible for this frame and thus are not sent for culling.

The process involves calculating the z depth of the object, which can be found by
testing the distance of the object from the near clipping plane of the view frustum. We can
then use this z depth to determine which level of detail should be drawn at this depth. So
we draw different model’s that represent the same structure based on how far away that
object is from our viewpoint, up close we draw our highest complexity model and
gradually draw less detailed modelled as we move our view further away from the object.
The implementation of LOD nodes in the scene-graph is left to the end user.

4.2.5.1 Level Of Detail Pseudo code

Algorithm 5

/I CALCULATE Z DEPTH OF LOD NODE AS DISTANCE OF OBJECT FROM VIEW FRUSTUM
/I NEAR CLIPPING PLANE

/l CALCULATE LOD DETAIL LEVEL BASED ON Z DEPTH
/l SELECT APPROPRIATE SHAPE COMPLEXITY BASED ON LOD DETAIL VALUE

/I SET REMAINING OBJECTS ATTACHED TO LOD NODE TO INVISIBLE FOR THIS FRAME

4.3 Extendible Framework

4.3.1 System Design

We have chosen to divide the rendering system into four sub systems consisting
of, an interface wrapper providing embedded scripting using the LUA scripting language,
the scene-graph data structure as the basis for our scene representation, the culling
subsystem to provide culling at different levels of abstraction and the state management
subsystem to organising state sorting and render passes.

Fagte
]]
. .
LU lnterfare ScereCraph

Cilling StatellanaEment

Fig 4.1 Sub-System Diagram

4.3.2 Scene-Graph Data Structure

The scene-graph, the core data structure of our rendering engine and basis for the
logical and spatial relationships found in scenes. Here we are implementing the basic data
structure as n-ary tree of nodes, consisting of single parents, possessing zero or more
children. The scene-graph contains inner and leaf nodes, generally inner nodes are nodes
that are not visible or renderable in the scene, who partake in some relationship or carry
out an operation, such as Transform and Lod nodes. Leaf nodes represent renderable
objects or the actual geometry to be displayed in the scene such as Shape nodes. Every
node in the data structure is derived from the base class Node, which provides the basic
functionality for creating, attaching and detaching nodes, as well as holding the member
variable SceneNodeProperties, which stores the nodes unique identifier, node type (INNER
or LEAF), world matrix, global position and render pass. Predefined scene-graph nodes
are as follows; Transform, Lod, Shape, Scene, Mesh, Camera and Light. The layout and
relationships of the nodes can be seen in the class diagram.

<<deag paten>>

Factory
rep <creator fnchors® - wdefned|
regsterCiodar)
o)
* | cretor
0] crested
LinScene
E Mok
sl e urtiofed
vecter et fods> - wdefined <> e ma_wrrld_m;_;d g fe
* SIP_PIOpE_
Scene vt i ha 8 b garat -l SceneliukRoperties
mEE) P g} 0l £ o cild fet *: wdefred ol bodem
. X
M),,\ - sﬁ:}n&‘; stmg i) ¢ rerer_pass -cnm: gl
iid_cirteger aRdCHE) s nate_: sing
““’-E‘EME:S 01 * irep _soemetog» wnefined et dearichild) fashlc mode e e
mﬂ; i [——y [z 0‘7\;@ isteger “
a"a‘jﬂ"m n atachTrenstmiode]) ol lrenter=) et e coord: undefiredd ~
et by Aerezary .
attachiiods() haid [PUpdae()
N 7 Mokix
A0
/
upcatel) parat
s /]
O —
chill A —
¥ / /!
/
Shape
) rateralundefioed Chiera Light Transfonn
- rsh sy vndefned o v v v e od_cdo_: undeied vec_trarelae_: undekred
£ foat boweding red P cd_spes_prdox_ urrefred vec_utate_: wkfined
[Fendn) £ apect._ wleized ligtoct_mode_ varefred v e
P astion() £ viewr ange_:urdefnd i mm lght : nteger et Incal criert : undefined
; vCetBowdngRardivs) £ pear_-unckfinal eral)
£ fr_ urdefined sg()
Mhtanl seshpe() st}
[S sa0
Textme o specular_-undefiol e N s
T o emisive_wdefed | haa ' o
e i e el urtefived (//Q ety Lok werefied h
Lhig il | 0T e o el
£ ta *oreal oy = tPostonf) Fiustun e
it e i blst) seTeh)
s nave_: sting 2ha_boreas extratFrusur)
ez - 0
), ; “ portinFrustar)
hes Mesh Leader
* *Fvert fhce data - urdefhed
£ m face i wrdre
Cao fi Boe da - wdefned
e
1 wndefned draw()
£ 2 wichzcd btz
£ b wsfed 0
£ 2 wniefzed cdolat-EoundngRac)

Fig 4.2 Scene-Graph Class Diagram

Although any node can be inserted in the scene-graph, there are some stipulations
on the insertion, which are as follows;

Only INNER nodes may have children.

LEAF nodes must be attached to an INNER node such as a Transform node.
Nodes must posess a unique identifier for each scene.

Nodes may only be connected to one parent at a time.

YV V V V

Therefore each leaf node in a scene must be attached to a Transform or Lod node
to be inserted in the scene-graph. The reasoning for this is simple, inner and leaf nodes
play different roles in the scene-graph. The role of the Transform node is to calculate the
local and world orientation and promote the logical and spatial relationships of objects in a
given scene. Where as the role of a leaf node is to describe how the object is to be drawn,
by seperating the functionality of each object we are promoting a better object oriented
framework that will be of great benefit when extending the system in the future.

Fig 4.3 Shape attached to transform

Updating the scene-graph is a recursive process which starts at the root or at a
desired node in the structure. Through a depth first traversal of each node in the graph we
propagate the local and world transformations of each transform node to the leaf nodes,
as well as carrying out any operations such as Lod node calculations.

4.3.2.1 Depth First Traversal Recursive Update Function
Algorithm 6

/l STARTING AT THE ROOT NODE OR A DESIRED SUB NODE
/l CALL THE NODES ACTUAL VIRTUAL UPDATE FUNCTION
/l CHECK IF WE HAVE ANY CHILDREN

/I IF WE DO, TRAVERSE THROUGH EACH CHILD AND CALL THIS
/ RECURSIVE FUNCTION ON THEM

/ IF WE HAVE NO CHILDREN OR HAVE REACHED THE END OF THE CHILD LIST WE ARE
/I FINISHED OUR TRAVERSAL

The ability to update a subsystem of the scene-graph rather then the whole system
is a functionality that will become important in future if we decide to extend the engine to
include animation, as it will allow us to monitor the data structure and only update nodes
in the system which have been altered since the last frame.

4.3.3 Spatial & Logical Relationships

The distinction between inner and leaf nodes allows us to exploit an important
aspect of scene-graphs, the ability to model spatial and logical relationships in a scene
[18]. For example, imagine a scene were we have multiple characters in a building, were
the building consists of several rooms. In global space, designing this scene could be
quite cumbersome, attaching each character to the world and then positioning them one
by one in world coordinates. By using the logical and spatial relationships supplied by the
scene-graph we can approach this scene in a different manner, first we create the building
and attach each room locally to that object, then we create actors and attach each actor
through local translations to a room. By modelling the scene in this manner we can
orientate each object locally to a parent object, instead of defining world positions for each
object.

Fig 4.3 Spatial & Logical Relationship scene-graph example

4.3.4 Abstract Shape Class

The predefined abstract shape class provides the basis for renderable objects in
the scene-graph, all geometry and visible objects in a scene are derived from the Shape
class. The class declares four virtual functions that allow the derived objects to define how
they are to be drawn. The functions are as follows; update(), getPosition(),
getBoundingRadius() and render(). Separating these definitions from an abstract base
class to derived objects allows for more flexibility when deriving user defined shapes. For
example as part of the system we have derived a class Mesh, which defines methods for
drawing models and meshes using the functionality of the Mesh Loader class. This class
becomes very useful when we wish to draw models and meshes using the Mesh Loader
class, however it does not supply us with an endless amount of options when rendering
objects and models in our scenes. Suppose we want to draw something procedurally or
create an effect such as a particle system, using the shape as a base class we can derive
our own shapes and tell the scene-graph how they should be drawn and updated
conviently, by defining the classes derived virtual functions. This allows for dynamic
growth of functionality in the system and the ability to tailor the engine to a user’s needs.

Shape

vRender])
vl pdate()

voelBoundingRadius()

vietPosition()

A

Mesh ParticleSvstem Procedural Shape
vRender() v ender(} vRender()
vlpdate() vilpdate() viIpdatel)
viGerBounding Radies() viGetBoundingRadius() videtBoundingRadius()
vFetPosition() viGetPosition() viGetPosition()

Fig 4.4 Derived Shapes example

4.3.5 Factory Pattern

One of the main goals when designing this application was to create a scene based
rendering engine which was not only usable but also extensible. Through the design and
implementation of the application we have tried to supply a set of basic nodes and
operations which are required for a generic system. However, obviously we cannot supply
a node for every desired operation or shape and must supply a means for user defined
nodes to be derived from our base class with as little effort as possible. This design
results in a problem, at runtime the application cannot anticipate the class of object that it
must create. The Application may know that it has to instantiate classes, but it may only
know about abstract classes, which it cannot instantiate. Thus the Application class may
only know when it has to instantiate a new Object of a class, not what kind of subclass to
create [1]. As a result there is an inherent need to not only manipulate user defined objects
but also to create them.

The solution to this problem is in the use of a creational design pattern created by
Gopalan Suresh Raj, called the Factory Method. The pattern helps to model an interface for
creating an object which at creation time can let its subclasses decide which class to
instantiate. The major benefit of using this pattern is that the Factory Pattern promotes
loose coupling by eliminating the need to bind application specific classes into the code.
Thus when deriving user defined objects we do not have to alter or hard code tests to find
the type of an object at creation or runtime [21].

"Define an interface for creating an object, but let the subclasses decide which class to
instantiate. The Factory method lets a class defer instantiation to subclasses. [1]"

& Creator

AN

Factory

Method

Sy Concrete
Creator

Fig 4.5 Factory Pattern Overview

Our Factory Pattern implementation supplies a factory object which stores a
mapping between function pointers and a unique string describing the type of object being
created. The function pointers point to corresponding creation functions which define how
each class is created. So to create a new object type, we must register the creation
function and a unique string describing the object to be created. For example, suppose we
have a base node type which we are deriving classes from, to define a new class from this,
we just define the class as usual but with one exception. The class must contain a creator
function with a signature shared by all derived objects of the base class, which describes
what object is being created [1].

4.3.5.1 Factory Pseudo code

Algorithm 7

/Il A FACTORY OBJECT STORES A MAPPING BETWEEN A UNIQUE IDENTIFIER NAMING A
/ DERIVED CLASS & A FUNCTION POINTER, WERE THE FUNCTION DESCRIBES HOW
/l THAT DERIVED CLASS IS CREATED

// DERIVE A NEW CLASS FROM THE BASE CLASS
/ SPECIFY THE NEW CLASSES UNIQUE CREATOR FUNCTION

/ REGISTER THE CLASS & CREATOR FUNCTION WITH THE OBJECT
/ FACTORY

// TO CREATE A NEW INSTANCE OF THE DERIVED CLASS CALL THE CREATE OBJECT
/ FUNCTION OF THE FACTORY BY SPECIFYING THE CLASSES UNIQUE IDENTIFIER

The design pattern has provided us with a dynamic scheme for object creation,
moving the responsibility for creating objects from one centralized place to each concrete
class [1]. Thus making the factory scalable and removing the need to modify code on
creation of each new derived class.

4.4 User Interface

4.4.1 Interface Overview

As mentioned previously, our system does not supply a GUI for scene design, the
project has been designed as a framework to be used by programmers and as such there
is no need at this point to supply a graphical interface. However, as a priority of our
system design, the user interface plays an important part in the success of the project,
which is why we have supplied two public interfaces to the functionality of our system.
The Scene class provides the main interface to our system through a number of member
functions, while the LuaScene acts a wrapper class around this, providing embeddable
scripting through the Lua interpreter.

4.4.2 Scene Interface

The Scene class provides the main user interface to our rendering engine, it
provides functions for creating nodes, creating meshes and materials, updating and
rendering scenes, creating and settings lights, attaching and detaching nodes and node
subsystems from the scene-graph, creating the Octree, as well as running the culling and
state management procedures. The scene also maintains all the nodes, materials and
meshes created, as well as maintaining the scene-graph data structure itself.

Scane

Fatoy *: indefie d
Cictree * - urdefired

trEp <SP *= ndefined
e esh = inckfined
rrep<tode *= wdefired
rrepahdaend = unddfined
crestel-joder)

create d-HD
creaevbten =)
creaelvEd ()
attacrhy”hil)

detachChild)
attachlEda)
attachlEten A0
satCErreran)

setCtres)

Fig 4.6 Scene Object Diagram

4.4.3 Lua Interface

Our system provides two forms of user interface, the application’s C++ methods
provided by the Scene object class and a LuaScene wrapper surrounding this class which
binds the C++ code to the LUA scripting language, allowing for scriptable interface to the
scene-graph subsystem.

“Lua is a powerful light-weight programming language designed for extending
applications. Lua is a language engine that you can embed into your application. This
means that, besides syntax and semantics, Lua has an API that allows the application to
exchange data with Lua programs and also to extend Lua with C functions. In this sense,
Lua can be regarded as a language framework for building domain-specific languages. [6]”

Lua's APl is not designed to register C++ classes to Lua, only C functions that have
the signature int()(lua_State*), it does however provide a low level C APl and extension
mechanism that makes it possible. Here we are using Lunar[25] to bind our C++ code to
the Lua so that we can call our application methods from an external script run in the lua
interpreter. Lunar is a template class created by Lenny Palozzi, which provides binding of
C++ classes to Lua, allowing us to create and call functions from C++ objects in Lua. The
lunar process involves four steps, class registration, object instantiation, member function
calling and garbage collection.To bind a C++ class to Lua using this method, there a few
requirements the class must meet.

The class must have a public constructor that takes a lua_State pointer as an argument
Registered member functions must have the signature int(T::*)(lua_State*)

It must have a public static const char[] member called className

It must have a public static const Luna<T>::RegType[] member called Register

YV V V V

Implementing Lunar, we first register our class and member functions using the
Lunar register() function, specify a static class name so that it can be identified in Lua and
then create an instance of our class or pass a reference to it through Lua user data. In our
system we create an instance of our Scene class in the C++ application code and then
pass it to Lua as user data, with a unique Lua global reference name. In the Lua script we
can then obtain a reference to our object using this global reference.

4.4.4 Scenes as scene-graph nodes

Imagine we are designing a city scene, organising such a scene would be quite
complicated to do in one scene-graph data structure, especially when we consider the
number of nodes required to model a large city. It would be a better idea if we could design
small subsets of the overall scene and then insert those subsets into a larger scene, a
scene of scenes. Our system provides this functionality by allowing the scene object istelf
to be part of a scene-graph, this functionality is provided by deriving the scene class from
the shape class, so in essence when we create a scene we are really just creating another
object or set of geometry to be rendered. As we have a scene of scenes, this means that
we also have an octree of octrees as each scene contains it's own octree, this greatly
benefits culling, as it gives us the ability to cull whole scenes as part of the Octree’s
recursive culling technique.

4.4.5 Camera & Light Classes

The engine also defines a simple camera object based on the hill “computer
graphics using OpenGL” programming book [5], the object also includes a frustum that is
used for view frustum culling. The class provides functions for setting camera projection
and orientation. As a node in the scene-graph the camera has the functionality of the base
node class and thus can be attached to other nodes such as the Transform node and
using this parent to calculate it’s orientation.

The user can also create lights and attach them to other nodes in the scene-graph
in the same manner as the Camera. The Light class provides functions for setting light
properties, as well as enabling and disabling the Light.

5 Using the System

The rendering engine is available for both Windows and Linux, through separate releases.
5.1 Installation

Linux

The following library dependencies must be installed prior to building applications
using the system.

® DeviL —Image Library
® Lua 5.1 - Lua library files
® OpenGL - OpenGL graphics library

Once these dependencies have been installed, we can develop applications using
the system by including the header and source files, a static library will be available
shortly.

Windows

The following library dependencies must be installed prior to building applications
using the system.

® DeviL —Image Library
® Lua 5.1 - Lua library files
® OpenGL - OpenGL graphics library

Once these dependencies have been installed, we can develop applications using
the system by including the header and source files, a dynamic library will be available
shortly.

5.1 The “Hello World” Application

To demonstrate a simple use of the rendering engine we will briefly describe a
basic application.

The first requirement of the application is to include the appropriate system header files
along with any other header files we wish to include:

#include "scene.h"
#include "luascene.h”

The next step is to register the lua wrapper class and functions, as well as the global
material state:

/ldefine lua class name

const char LuaScene::className[] = "LuaScene";

//define the methods we will expose to lua
#define method(class, name) {#name, &class::name}

Lunar<LuaScene>::RegType LuaScene::methods[] = {
method(LuaScene, createSNP),
method(LuaScene, createNode),
method(LuaScene, translate),
method(LuaScene, attachChild),
method(LuaScene, attachChild2Parent),
method(LuaScene, createMesh),
method(LuaScene, attachMesh),
method(LuaScene, createMaterial),
method(LuaScene, createMaterialTex),
method(LuaScene, attachMaterial),
method(LuaScene, setLight),
method(LuaScene, enableLight),
method(LuaScene, setSpotLight),
method(LuaScene, setCamera),
method(LuaScene, setOctree),
method(LuaScene, update),

{0,0}

b

//set static material variable
Material *Material::mtl_current_state_ = new Material();

The next step is to create a scene and load it using a lua script called test.lua
/111 LUA SCRIPT INITIATION /it it e e

//lopen the lua state
lua_State *L = lua_open();

/load default libs
luaL_openlibs(L);

//register lunar methods
Lunar<LuaScene>::Register(L);

/lallocate scene memory for scenes
Scene *scn_scenel = new Scene();

//push the objects into lua
lua_pushlightuserdata(L, scn_scene1);
lua_setglobal(L, "scene");

std::cerr << "-- Loading Lua Script: " << std::endl;
int i_status = luaL_loadfile(L, "test.lua™);
std::cerr << "-- Execute Lua Script: " << std::endl;

//if status is 0
if(i_status == 0)

{
/lexecute script
lua_pcall(L, 0, 0, 0);
} /lend if

//report any errors
reportErrors(L, i_status);

//close script/lua
lua_close(L);

Finally in our OpenGL update function we call the scene update function and in our
display function we call our render function.

void Update(int i)

{
//call the update function
scn_scenel->update();
glutPostRedisplay();
glutTimerFunc(60,Update,0);
} /lend method definition

void myDisplay()
{

/Iclear the colour and depth buffers
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1.0f, 1.0f, 1.0f);

//load identity matrix
glLoadldentity();

//set global rotations
setGlobalRotations();

/Irender the scene
scn_scenel->vRender();

//swap buffers
glutSwapBuffers();

} /lend method definition

Demo Applications have been included on the source CD.

6 Conclusion

The goal of this project was to develop a performance driven scriptable scene
based rendering engine to be used for the creation of static scenes, that is not only useful
to developers but also easily extensible, with the main priorities of the application being;
performance, extendible framework and user interface.

The system has certainly achieved it’s primary goals and priorities, although in
some areas more then others. Rendering performance for demos has increased through
the use of the system’s culling, state sorting and level of detail procedures, with vast
improvements for spacious scenes through the use of Octree Culling and notable
improvements for densley populated scenes using level of detail nodes. State
management provides improvement for large scenes, were multiple objects share the
same materials. The system did not however show substantial increases through the use
of multiple render passes, although it can be mentioned that separate render passes would
greatly improve performance if the Octree had implemented polygon level culling as well
as object level. Performance could also be improved by extending the Octree algorithm to
include Z buffer occlusion, a routine discussed in Real Time Rendering - second edition
[13]. Established rendering engines such as Ogre3d include many different forms of
culling, as an extension, the system could also include portal/cell culling. Portal culling is
a process which divides a scene into separate rooms or cells and connects them by a door
or opening which is referred to as a portal, the parts of the scene which are deemed visible
are the sections that can be seen through the portal, thus allowing us to clip the connected
sectors against the portal boundaries[?], portals are best suited for indoor scenes such as
mazes. An obvious development would see the inclusion of animation in scenes, which
could be controlled by a keyframe node found in the scene-graph that acts as an operation
on a shape much like the LOD node.

Possibly the more complicated and time consuming portion of development was the
system design, as an important aspect of the project was extensibility much time was put
into this section, which proved very successful. The system has provided an easily
extendible framework through the use of design patterns such as the Factory method,
which has been implemented in the scene class through object registration and creation.
The object oriented layout of the scene-graph data structure has also benefited the
derivation of new node types, including Shape instancing that has been implemented in
the Mesh class.

The system provides completely automated culling and state management and the simple
user implementation of level of detail nodes, allowing the end user to concentrate more on
scene design and less on optimisation. The interface provides two forms of functionality,
through the public Scene methods supplied and a lua scripting wrapper surrounding these

base methods. Although the Lua interface is an improvement over the hard coded Scene
functionality, managing to separate testing and scene design from application code, some
aspects could be improved such as error and debugging information which is quite sparse
in some cases. In future, scripting could also be implemented to setup the basic OpenGL
framework required to run an application, which would further abstract application code to
Lua. The ability to include Scenes in the scene-graph has greatly improved the scene
design interface, making it a much easier and less complicated process to create a large
scene. Further developments in the system could see the inclusion of a mesh decimation
tool that would automatically reduce the complexity of a model connected to a LOD node.

7 Reference

[1] Alexandrescu, A., Modern C++ Design — Generic Programming and Design
Patterns Applied, 2001. Abstract Factory. Addison Wesley

[2] Eberly, David H., 3D Game Engine Architectur e, 2005. Scene-graphs. Kaufmann
Publishersinc

[3] McShaffrey, M., Game Coding Complete - 2nd Edition, 2005. Scene-graphs.
Paraglyph Inc.

[4] OpenGL Architecture Review Board, OpenGL Programming Guide, 2005.
Addison Wesley

[5] Hill, F.S., Computer Graphics Using Open GL, 2000. Prentice Hall
[6] Leruselimschy, R., Programming in Lua, 2006. Lua.org

[7] [Anon], [no date]. Lua Tutorials [onling]. Available from http://lua-
users.org/wiki/ [Accessed August 2006]

[8] [Anon], [no date]. OpenSceneGraph Project [online]. Available from
http://www.openscenegraph.or g/ [Accessed July 2006]

[9] [Anon], [no date]. Ogre3d rendering engine [onling]. Available from
http://www.ogre3d.or g [Accessed July 2006]

[10] [Bar-seev, A], [no date]. Scene-graphs past, present & future[online]. Available
from http://www.realityprime.com/scenegr aph.php [Accessed July 2006]

[11] [Anon], [no date]. State sorting tutorial [onlling]. Available from
http://opengl.j3d.or g/tutorials/statesorting.html [Accessed July 2006]

[12] Modller, T., Haines. E, Real timerendering, 2002. Hierarchical Z Buffering. AK
Peters, Ltd

[13] [Anon], [no date]. , Octree Culling [onlingl. Available from
http://lwww.distanthumans.info/programming/java/misc.php [Accessed August
2006]

[14] Greene, N., Kass, M., Miller, G. 1993, Hierarchical Z-Buffer Visibility.

[15] [Kelleghan, M .], [no date]. Octree Partitioning Technique [onling]. Available
from http://www.gamasutr a.com/featur es/19970801/octr ee.ntm [Accessed July 2006]

[16] [Morley, M.], [2000]. Frustum Culling using OpenGL [onling]. Avilable
fromhttp://www.crownandcutlass.com/featur es/technicaldetails/frustum.html
[AccessedJuly 2006]

[17] [Anon], [no date]. Lord of the Rings Battle for Middle Earth IMG [onling].
Avilable from http://www.ign.com [Accessed July 2006]

[18] [Anon], [no date]. Scene-graphs [onling]. Avilable from
http://en.wikipedia.or g/wiki/Scene_graph [Accessed July 2006]

[19] [Anon], [no date]. Pacifice Storm IMG [online]. Available from
http://lwww.pacificstor m.net/ [Accessed July 2006]

[20] [SGI], [no date]l. SGI's Performer [onlingl Available from
http://www.sgi.com/products/softwar e/performer/ [Accessed July 2006]

[21] [Raj, G. S], [no date]. Factory Pattern [onling]. Available from
http://gsraj.tripod.com/design/creational/factory/factory.html [Accessed August
2006]

[22] [Nuydens, T.], [no date]. State Management [onling]. Available from
http://lwww.delphi3d.net/articles/viewarticle.php?article=stateman.htm [Accessed
August 2006]

[23] [Anon], [no date]. Culling [onling]. Available from
http://lwww.gamedev.net/r efer ence/programming/features/culling/ [Accessed July
2006]

[24] [Anon], [no date]. View Frustum Culling [onling]. Available from http://www.c-
unit.com/tutorials/mdirectx/?t=45 [Accessed September 2006]

[25] [Palozzi, L.], [no date]. Lunar C++ Binding [online]. Available from
http://www.lua.or g/notes/Itn005.html [Accessed Ahugust 2006]

