

ARLib: A C++ Augmented Reality
Software Development Kit

Masters Thesis

Daniel Diggins

MSc Computer Animation
N.C.C.A Bournemouth University

5 September 2005

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

2

Contents

1 Introduction... 3

2 Previous and Current Work ... 5

3 Image Segmentation... 7

3.1 Static Thresholding ...7
3.2 Dynamic Thresholding ..8

4 Feature Extraction .. 12

4.1 Detecting the Corners...12
4.2 Detecting the Marker Edges ...15
4.3 Custom Corner Detector...20

5 Marker Detection... 23

5.1 Detecting Markers...23
5.2 2D-to-2D Projection Mappings..24
5.3 Detection Problem ..28

6 Camera Orientation... 30

6.2 OpenGL Matrices..33
6.3 Augmentation ...34

7 Using ARLib .. 35

7.1 Installation ..35
7.2 The “Hello World” ARLib Application ..35
7.3 Running an ARLib Application ..37
7.4 Adjusting for Varying Lighting Conditions37
7.5 A Custom ARLib Application...38

8 Conclusion .. 43

8.1 Recommendations..43

Appendices ... 45

Appendix A Sample Otsu Thresholding C++ code45
Appendix B ARLib Application Command-Line Switches46
Appendix C ARLib Application User-Interface Keys47
Appendix D ARLib Configuration File ..48

Bibliography.. 52

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

3

1 Introduction

Computer Graphics is now a huge industry. Computer Graphics (CG)
applications are now used across a wide range of industries, including the more
obvious, such as film and TV, manufacturing and the defence sector, through to
the less well known such as specialist medical units.

CG has dominated the film industry in recent years, with a greater proportion of
movies being made that use computer generated special effects compared with
those that contain none at all. Even movies that look as if they have no special
effects are likely to have been digitally manipulated or enhanced in post-
production. From a director’s point of view, the use of computer graphics gives
an endless creative power, in what would normally be an impossible shot to
make. The downside is that the cg elements have to be added after the scenes
have been shot, a process that can take many months to complete. It is not until
the cg and live action footage are merged together that the final result can be
viewed and is hopefully how the director envisaged it.

The ability of computers to handle complex tasks has grown in parallel with their
processing power and, in particular, their ability to perform graphically intensive
operations in real-time has improved so much that previously impossible cg
scenarios are now both feasible and commonplace.

An exciting development within the computer graphics arena is the field of
Computer Vision. This is the ability of a computer to be able to recognise key
points or extract specific features from both still images and video footage. The
use of Computer Vision for reading still images is used in optical character
recognition (ocr), where a computer is able to translate handwritten characters
into computer text. Facial recognition is another commonly used area of
computer vision with still images. However, recognition of moving images is a
much less developed field. One such example is a police pedestrian monitor,
used to identify potential criminals by their unlawful activities [DAVIES 2005].

Augmented Reality is a fast growing field within Computer Vision, where the use
of computer graphics and live footage has taken advantage of the advances in
processing power. Augmented Reality is a process in which computer graphics
are placed over live footage so that the cg elements look as if they are integral to
the scene. The use of Augmented Reality could, in the not too distant future,
help directors to visualise how the computer graphic elements will interact in the
scene during the actually shooting.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

4

This Masters Thesis describes the process of developing an Augmented Reality
C++ development kit called ARLib. The ARLib toolkit enables developers to
create Augmented Applications quickly and easily. The applications work by
looking for predefined black and white markers in the video footage and then
placing computer graphics over the top of them. The entire process has been
broken down into separate modules, each one handling a specific task.

As a means of placing this AR toolkit into context within the AR marketplace,
Chapter 2 details how AR applications are being used today, and by whom.

Chapters 3-6 cover how the ARLib was developed, and what models and
methods were used in its implementation.

Chapter 3 describes the first stage of performing Augmented Reality by taking a
colour image and converting it to black and white so that features within it can be
detected.

Chapter 4 details the process of extracting useful features, ie; black and white
markers, from the black and white image.

Potential markers in an image are then further analysed to determine whether it
is a valid marker. This process is described in Chapter 5.

The final stage of the Augmented Reality process involves determining where the
marker is in relation to the camera and is detailed in Chapter 6.

Chapter 7 describes how to create applications using ARLib. The C++ code for
two working examples is detailed, which are included as part of ARLib.

Finally, the conclusion and recommendations for further developments are
discussed in Chapter 8.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

5

2 Previous and Current Work

The Computer Vision Homepage [HUBER 2005] provides a list of known
computer vision research institutes from around the world. At over 300 in
September 2005, the number of entries in this list reveals just how much current
interest and activity there is in the subject.

A key aspect of Computer Vision is the ability of the application to identify known
entities within an image. Some techniques for performing computer vision use
markers to aid in the recognition process whereas more recently markerless
detection systems have been developed [VACCHETTI et al 2003], [ALLEZARD
et al 2000] and [LEPETIT 2004]. These markerless systems still require some
knowledge about the environment. Some techniques use a computer model of
an object to use as a template, where lines and features detected in the scene
are matched against the model’s shape. Other techniques search for textures on
objects.

The application of Augmented Reality within the realms of Computer Vision is
becoming more common and is now used in many different fields, including
medical, manufacturing, military and visualisation. In particular, fighter pilots
have been using the application of augmented reality for many years to highlight
the outside world in the form of head up displays.

The University of North Carolina has researched into using augmented reality in
medicine [LIVINGSTON 1998] as an aid for performing surgery, see figure 2.1.

Figure 2.1 Augmenting the internal organs during surgery [LIVINGSTON 1998].

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

6

Another interesting example of Augmented Reality is an application that was
developed to aid maintenance engineers who have to repair a variety of different
equipment [FEINER 1993]. The system works by incorporating a camera into
the engineer’s goggles, which is linked to the AR software. The AR application is
able to annotate what the engineer is seeing with useful text and markers, to aid
the engineer in his job, see figure 2.2.

Figure 2.2 Using Augmented Reality to Assist Maintenance Engineers

A mundane but essential task of quality control has been made easier by AR.
Custard creams are scanned for excess cream by an AR application and rejected
if they fall outside of a predefined limit [DAVIS 2005].

L'Ecole Polytechnique Fédérale de Lausanne (EPFL) is a Swiss University that
has a dedicated computer vision lab. Within this lab they have developed many
techniques and applications in the realms of augmented reality, including real-
time face tracking and 3D object tracking.

Figure 2.3 Examples of EPFL’s AR Work

It is EPFL’s 3D object tracking work that inspired the development of the ARLib,
and is described in detail in the following chapters.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

7

3 Image Segmentation

With most applications of computer vision, one of the primary and most important
tasks is to isolate the foreground from the background objects. This task is often
referred to as segmentation or thresholding and its performance in isolating
elements will determine how successful features can be extracted from the
image.

3.1 Static Thresholding

This is the simplest and most basic form of segmentation that takes the grey
value of each pixel and converts it to black or white, depending on a static
threshold value. Figure 3.1 shows the flow of the basic segmentation technique.

Static Threshold Value

Figure 3.1 The basic segmentation technique

Under ideal circumstances, where the lighting and camera parameters are
constant, the basic segmentation technique will perform adequately for most
tasks. However, most captured video images are susceptible to noise and
fluctuations in brightness and will therefore produce varying levels of
segmentation. To demonstrate this, figure 3.2 shows three images taken from a
static video camera. Although the background elements appear to be the same,
by comparing the differences it can be seen in figure 3.3 that there were varying
levels of brightness even in static regions.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

8

Figure 3.2 Captured Video Images

Figure 3.3 Varying brightness levels for static objects.

When dealing with a single image, a static threshold value will suffice, as the
value can be adjusted manually to get the desired segmented image. For video
sequences, manual adjustment of the threshold value is an impractical solution
as the images are being processed at a rate of 25 frames per second and
therefore a technique was required that will automatically adjust the threshold
from frame to frame.

3.2 Dynamic Thresholding

Also known as optimal thresholding, dynamic thresholding attempts to calculate
the optimal threshold value based on the grey level values of the image. Each
frame of an image sequence is analysed and a threshold value is calculated.
This has the advantage that, if the luminance of the sequence is inconsistent
between frames, then the dynamic threshold value should stabilise the problem.

One of the more popular approaches of dynamic thresholding is the Otsu Method
[NIXON and AGUADO 2002]. The Otsu method works on the theory that there
are two peaks in the grey values of an image’s histogram, one representing the

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

9

background and the other representing either the foreground or an object. Otsu
makes the assumption that the lowest mid-point between these two peaks is the
optimal threshold value, see figure 3.4.

Figure 3.4 Otsu optimal threshold position

Colour Image Grey level histogram Dynamic threshold

Figure 3.5 The Otsu Thresholding technique

The optimal threshold value is calculated from the Otsu method using the
following equations:

∑
=

=
k

l
lpk

1
)()(ω

Equation 3.1

Background

No. of points

Object

Optimal threshold value
Brightness

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

10

∑
=

⋅=
k

l
lplk

1
)()(μ

Equation 3.2

∑
=

⋅=
max

1
)(

N

l
lplTμ

Equation 3.3

Using the previous equations, the final calculation can be expressed as:

))(1)((
))()(()(

2
2

kk
kkTkB ωω

μωμσ
−
⋅⋅

=

Equation 3.4

Where:

 k = The histogram index position in the range 0 to 255.

 p = The normalised histogram value for the current index position.

 ω and μ = The first and second order cumulative values of the normalised

histogram.

 μT = The total mean level of the image.

See Appendix A for example C++ implementation code for the Otsu thresholding
method.

A final comparison of how Otsu’s algorithm performed against a static threshold
is shown in figure 3.6. The first column shows the same scene with different
lighting. The middle column shows the result after using a static threshold value
and the third column shows the result with the Otsu dynamic thresholding
method. It can clearly be seen that the Otsu method out-performed the static
method, as the markers were more pronounced and also the noise caused from
the shadows was greatly reduced.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

11

Same Scene / Different Lighting

Static Thresholding

Otsu Thresholding

Figure 3.6 Otsu and static thresholding comparison.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

12

4 Feature Extraction

Feature extraction is a term used for finding known elements within an image.
These elements consist mainly of corners, lines, shapes and curves. The ARLib
uses two dimensional square markers for its detection system, therefore the
features required were corners and edges.

4.1 Detecting the Corners

There is a variety of corner detection algorithms documented in many textbooks
and research papers. A commonly used method is the Harris Corner Detector
[HARRIS and STEPHENS 1988]. The basic mechanism behind the Harris
detector is that a small square template window is centred on a point in the
image. The template window is then slightly shifted in various directions and the
average change in intensity is recorded. It is these changes in intensity that can
indicate whether the template window is on a corner, see figure 4.1.

Figure 4.1 The Harris Corner Detector

Although deemed to be the preferred method for detecting corners, it was
estimated that the algorithm would take too much computation time and would
hinder the real-time target of ARLib.

Another common technique for detecting corners is known as the SUSAN Corner
Detector [SMITH and BRADY 1997]. This technique uses a circular template
mask which is placed over every pixel in the image. All pixels of a similar
intensity to the central pixel are counted, and if the count is less than half of the
number of pixels in the template, then it is assumed a corner exists within the

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

13

circle. The actual location of the corner is indicated by performing a local
minimum search within the template area, see figure 4.2.

Figure 4.2 The Susan Corner Detector

Initial prototyping and testing showed that the SUSAN algorithm was too slow at
processing to be used in a real-time application.

Another corner detection algorithm that uses a circular template is detailed in
[EPFL 2004] and is referred to as the Keypoint Detector. This technique differs
from the SUSAN method in that only the pixels on the circumference of the
template are analysed. The idea behind this technique is that if two diametrically
opposed pixels have a similar intensity to the central pixel, then the point is not a
corner or feature point, see figure 4.3.

Figure 4.3 The Keypoint Detector

Because of the way video images get digitised, some straight edges can be
falsely recognised as corners. To overcome this problem, the neighbouring cells
on the circumference are also tested, see figure 4.4.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

14

Figure 4.4 Testing Neighbouring Pixels in Keypoint Detector

This algorithm was initially implemented in ARLib as it performs well and has no
real noticeable affect on performance. Figure 4.5 shows some sample video
images with highlighted corners. It can be seen that there appeared to be more
corners indicated than were actually visible. This was due to noise caused by the
segmentation process.

Figure 4.5 Sample Images showing Keypoint Detector results.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

15

4.2 Detecting the Marker Edges

When a two dimensional square is viewed from any angle, its edges always
remain straight, therefore if the four edges of the square can be detected, then its
corners can also be calculated using simple line intersection routines.

Since its invention in 1962 by Paul Hough, the Hough transform method [DUDA
and HART 1972] has been the main technique used for detecting lines within an
image. The technique has been further advanced to detect arbitrary shapes and
is called the Generalised Hough transform.

The principle behind the Hough transform is that there are an infinite number of
lines that can pass through a single point. However, if many collinear points are
examined, then there is only one line that is common to all of them, see figure
4.6. It is this simple concept that is used by the Hough transform.

Figure 4.6 The Hough transform principle

The original method for calculating the lines in the Hough transform used the
slope-intercept equation of:

cmxy +=

Equation 4.1

Here a range of values are used for m and c to determine the lines for a
particular point (x,y). A major problem with using the slope-intercept technique is
that there is no way of knowing the range of values to use for m and c.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

16

Another technique was tried [DAVIS 2005] that replaced the slope-intercept
formula with one called the normal(θ,p) form:

)sin()cos(θθ ⋅+⋅= yxp

Equation 4.2

Using this formula, the lines were represented using a sinusoidal wave. Points
were plotted and multiple hits in (θ, p) space indicated the presence of a line.
Multiple hits are highlighted in figure 4.7.

Figure 4.7 Hough Transform Sinusoidal Wave.

The Hough transform is a very accurate technique for detecting lines within an
image and functions well in noisy images too. It is, however, very
computationally expensive and it is this reason that the Hough transform was not
used in ARLib, as it cannot perform satisfactorily in a real-time scenario.

With the combination of these two problems, ie; the Hough transform not
performing well and the corner detection not picking up all corners, another more
efficient and reliable technique was needed.

In [MALIK 2002], a completely different approach is used to detect the corners
and edges of the markers. The technique takes advantage of the fact that a
marker comprises of a thick black border that is surrounded by a white edge, see
figure 4.8.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

17

Figure 4.8 Marker border

It can be seen that a potential marker’s boundary consists of a large connected
region of black. To identify these regions, bounding boxes were created around
the black border.

Looking for the black regions was a fairly simple process and the well known
flood-fill technique [FOLEY et al 1990] was used. During the flood-fill process,
the current bounding box was adjusted accordingly, see figure 4.9.

Figure 4.9 Marker Bounding Box

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

18

The process is described in the following steps:

1. Starting at the bottom-left pixel of the image, each row is scanned until a
black pixel is found.

2. When a black pixel is found, it is flagged as being processed and a

bounding box is created around it.

3. The four unprocessed neighbouring pixels (above, below, left and right)
are recursively scanned and processed and the extents of the bounding
box are adjusted accordingly.

4. When no more black pixels can be found during the recursive process, the

current bounding box is added to the list of regions that may potentially
contain a marker.

5. The scanning of rows continues until another unprocessed black pixel if

found, then steps 2 to 4 are repeated.

Figure 4.10 Example bounding boxes

Because there is noise in an image, the number of bounding boxes could
potentially be large, which would hinder the performance of the detection
process. The problem was easily overcome by applying some simple checks
prior to each bounding box being added to the current list:

1. If the bounding boxes area is smaller than a predefined value then it is
deemed too small for processing and is excluded, see figure 4.11a.

2. If the aspect ratio of the box is below a defined threshold, then the

assumption is made that either the region does not contain a square or, if
it did contain a square, then it is being viewed from too sharp an angle for
a satisfactory detection, see figure 4.11b.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

19

Figure 4.11 Bounding Box Exclusions. (a) Area and (b) Aspect Ratio too small.

Within each bounding box, a convex hull exists defined by the maximum extents
of the black pixels. Because the markers were square, then the convex hull
should contain four corners, see figure 4.12.

Figure 4.12 Bounding Box and Convex Hull can help identify corners.

In [MALIK 2002], the assumption is made that a straight edge consists of
approximately 50% black and 50% white pixels, while the corner has more than
50% white. To determine if an edge is a corner, a square template is placed
centrally over the edge pixel. A count is then made of the black and white pixels
and the four highest scoring counts are recorded. This entire corner detection
process is included in the recursive flood fill routines.

(a) (b)

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

20

The results from the corner detection process proved successful for most cases
in ARLib but, like many corner detection routines, they performed best when the
image being processed contained a marker that was relatively flat within the
scene. Testing of this technique revealed that the corners were not detected
when the marker was at an angle to the camera. This is because, in some
instances, a corner can look almost like a straight edge, see figure 4.13.

Figure 4.13 Corners appearing as a straight edge.

Further research failed to reveal an alternative corner technique that was capable
of overcoming this problem therefore a custom corner detection method was
devised and implemented.

4.3 Custom Corner Detector

A technique was needed for ARLib that would reduce or even take away the
assumptions of other corner detection routines, in which a corner was determined
by the ratio of black to white pixels. Because the bounding box and outer edges
of the black region within the box are known, a geometric solution was possible.

If a bounding box was scaled so that it forms a square, then this simplified the
problem even further, see figure 4.14.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

21

Figure 4.14 Scaling bounding boxes to form a square.

Once the bounding box was a square, the region corners could be identified by
working out the furthest edge pixel from each of the bounding box corners, see
figure 4.15.

Figure 4.15 Detecting region corners from bounding boxes.

Although this technique succeeded where previous detectors had failed i.e. it
detected almost straight corners, this technique also had a problem with one
particular scenario. The corners were not detected correctly when the region
within the bounding box formed a diamond shape. The problem was caused
because two of the corners in a diamond shape were the same distance from two
of the bounding box corners, therefore only two corners were detected, see figure
4.16.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

22

Figure 4.16 Two corners detected when diamond shape.

A simple solution to the problem was that, if four unique corners were not
detected using the four corners of the bounding box, then four alternate points on
the bounding box were used. In this case, the mid-point of each of the corners
were used, see figure 4.17. By using both sets of bounding box reference points,
it guaranteed that fours corners were always found.

Figure 4.17 Alternate bounding box points.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

23

5 Marker Detection

A 2D marker or fiducial, as it often called, must be designed in such a way that
can be easily detected and be unique enough to be easily identified from other
markers. Each marker must also provide some kind of unique binary code so
that its ID can determined. Most markers use black and white designs, however
in [EPFL 2004] a technique is described that can be used on detailed coloured
markers by using classification trees for identification.

In ARLib, black and white markers were used and were based initially on the
design in [LIU et al 2002], however as will be shown, this design did not perform
well at acute angles.

The marker design uses a 5x5 matrix where each cell represents a single bit in
the marker’s identification code, see figure 5.1.

Figure 5.1 5x5 Matrix Design

This marker represents a 25 bit binary code. 12 of the bits are used for the actual
marker ID. The four corners are used to determine the orientation and the
remaining bits are used for error detection. The error detection bits enable
falsely detected markers to be rejected.

5.1 Detecting Markers

Detecting a potential marker in ARLib involved finding the location and colour of
each cell within the image. Because the corners of the marker were available,
the problem was simplified to mapping a square to a quadrilateral, see figure 5.2.

P1 P1 P1

P1

P2 P2 P2

P2
P1

P2

Orientation bit (4 bits)

Marker code bit (12 bits)

Parity code for rows (4 bits)

Parity code for columns (4 bits)

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

24

Figure 5.2 Mapping a square to a quadrilateral.

A solution is described in [HECKBERT 1995] and is commonly called projective
mapping. The technique is often used in computer graphics when performing
texture mapping. Projective mappings can be performed in 3D, but for the
purposes of ARLib, 2D projections were used.

5.2 2D-to-2D Projection Mappings

The main principle behind projective mapping is to take points from one plane
and project them onto another.

The general form for a projective mapping is:

ihvgu
cbvaux

++
++

=

Equation 5.1

ihvgu
fevduy

++
++

=

Equation 5.2

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

25

These previous two equations can be represented in homogeneous form as:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ihg
fed
cba

q
v
u

w
y
x

Equation 5.3

By solving the above unknowns a-i, then by specifying u and v coordinates in the
reference square, the x and y coordinates in the quadrilateral can be calculated,
see figure 5.3.

Figure 5.3 u/v to x/y coordinates.

In the homogeneous matrix of the problem, assuming i=1, then there are eight
unknowns. By using the four corners of the reference square and the four
corners of the quadrilateral, then eight equations can be defined. Each corner
mapping produces the following equations:

kkkkkkk
kk

kk
k xhxvgxucbvau

hvgu
cbvaux =−−++⇒

+
++

=

Equation 5.4

u

v

x

y

0 1 0.5

1

0.5

0
0

0

288

340

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

26

kkkkkkk
kk

kk
k yhyvgyufevdu

hvgu
fevduy =−−++⇒

+
++

=

Equation 5.5

The eight equations can be written using an 8x8 system for k=0 to 3:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−
−−
−−
−−

3

2

1

0

3

2

1

0

333333

222222

111111

000000

333333

222222

111111

000000

1000
1000
1000
1000
0001
0001
0001
0001

y
y
y
y
x
x
x
x

h
g
f
e
d
c
b
a

yvyuvu
yvyuvu
yvyuvu
yvyuvu
xvxuvu
xvxuvu
xvxuvu
xvxuvu

Equation 5.6

The linear solution can be solved using Gaussian elimination or by calculating the
inverse of the 8x8 matrix. The downside of solving the above solution is that it it
computationally expensive, however this solution handles the mapping of a
general quadrilateral to another quadrilateral. For ARLib, all that was required
was to map a square to a quadrilateral therefore the solution could be simplified.

Assuming the square to quadrilateral vertex correspondences were as follows:

x y u v
x0 y0 0 0
x1 y1 1 0
x2 y2 1 1
x3 y3 0 1

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

27

Then the eight equations could be reduced to:

21

21

2

2 /
yy
xx

yy
xx

g
ΔΔ
ΔΔ

Δ
Δ

=
∑
∑

21

21

1

1 /
yy
xx

yy
xx

h
ΔΔ
ΔΔ

Δ
Δ

=
∑
∑

101 gxxxa +−=

101 gyyyd +−=

303 hxxxb +−=

303 hyyye +−=

0xc =

0yf =

Where:

211 xxx −=Δ

211 yyy −=Δ

232 xxx −=Δ

232 yyy −=Δ

∑ −+−= 3210 xxxxx ∑ −+−= 3210 yyyyy

Using the solved projection mapping equation, it was now a straight forward task
to determine the colours of the cells within the potential marker.

The u and v coordinates were divided up into the number of columns and rows
and then the central position of each column and row was used to locate the
point in the image, see figure 5.4.

Figure 5.4 Using central uv coordinates to locate xy coordinates.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

28

5.3 Detection Problem

The marker design described above had some problems in that detection
performed poorly as the marker was moved away from the camera, which was
amplified when the marker was also at an angle. After a variety of experiments,
the markers were redesigned to use large circles instead of square cells. The
bits used for error detection were removed to allow more space for the larger
circles, see figure 5.5. Using a circle improved marker detection, even at acute
angles.

Figure 5.5 New marker design using circles.

In the original marker design, all cells were scanned during the detection
process, whereas in the new design only cells that should be definitely black or
white were tested, for example figure 5.6 shows how the marker shown in figure
5.5 was defined.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

29

Figure 5.6 New Marker definition

Using this new approach, in the example above a maximum of 7 checks were
needed.

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

Black Cells

White Cells

(1 , 3)
(3 , 3)
(2 , 6)
(7 , 5)

(5 , 1)
(5 , 3)
(4 , 6)

Position (1, 1) is reserved for orientation and is always black.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

30

6 Camera Orientation

Once a marker had been successfully identified, the final step in the process was
to determine the location of the marker in world space. This step was needed so
that, when augmented graphics were rendered on top of the image, their scale
and orientation would match the detected marker.

Determining the location of the marker in world space raised some interesting
problems. The main one was that the only information available was the 2D
coordinates of the reference square and the marker corners. There was also the
added complexity in that the marker corners were subjected to perspective.

In computer vision, this problem is referred to in many different ways, including
Pose Estimation [ABIDI and CHANDRA 1989], Camera Calibration [EASON et al
1984] and Object Pose [LEPETIT 2004]. Although referred to by different names,
they each attempt to calculate the camera’s internal and external parameters.

The internal parameters, referred to as intrinsic parameters, are the focal lengths
in the u and v direction. These two values control the perspective scaling of the
augmented graphical objects. The external parameters, called extrinsic
parameters, define the camera’s location and orientation with respect to the
marker.

Many solutions assume that the focal length is already known and can be
substituted into the relevant equations. ARToolkit [KATO 2005] uses this
approach and supplies the required tools for calibrating new cameras. For
ARLib, a solution was needed that would be able to calculate the focal length
automatically. Such a solution is described in [MALIK 2002] in which the
mapping of a planar marker in world space is mapped to the image plane, see
figure 6.1. It is this technique that was implemented in ARLib.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

31

Figure 6.1 Planar Mapping from world to image space

The 2D to 2D projection matrix calculated in section 4 were used as the starting
point. The technique, used in ARLib, calls on the projection matrix values to
enable the focal lengths and orientation to be calculated automatically.

The general perspective matrix is show in equation 6.1. This matrix was
simplified and shown in equation 6.2.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

3333231

2232221

1131211

int

trrr
tfrfrfrf
tfrfrfrf

MMM vvvv

uuuu

ext

Equation 6.1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33231

22221

11211

trr
tfrfrf
tfrfrf

H vvv

uuu

Equation 6.2

Image coordinates
Camera coordinates

Marker coordinates

Marker plane

Image plane

X

Z

Y

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

32

The following rules exist with the H matrix:

12
31

2
21

2
11 =++ rrr

Equation 6.3

12
32

2
22

2
12 =++ rrr

Equation 6.4

0323122211211 =++ rrrrrr
Equation 6.5

Using the rules in equations 6.3 to 6.5, matrix H could then be arranged into two
equations for solving fu and fv:

)()(
)()(
2

32
2

312221
2

22
2

213231

2
12

2
112221

2
22

2
211211

hhhhhhhh
hhhhhhhh

fu
−+−−
−−−

=

Equation 6.6

)()(
)()(
2

32
2

311211
2

12
2

113231

2
12

2
112221

2
22

2
211211

hhhhhhhh
hhhhhhhhfv −+−−

−−−
=

Equation 6.7

Once the intrinsic values have been calculated from the above equations, the
remaining matrix values could be calculated using the following equations:

ufhr /1111 λ= ufhr /1212 λ= 2231322113 rrrrr −= ufht /131 λ=

vfhr /2121 λ= vfhr /2222 λ= 3211123123 rrrrr −= vfht /232 λ=

3131 hr λ= 3232 hr λ= 1221221133 rrrrr −= 333 ht λ=

Equations 6.8 to 6.19

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

33

Where λ is a scaling factor and was calculated using the following equation:

2
31

22
21

22
11 //

1

hfhfh vu ++
=λ

Equation 6.20

6.2 OpenGL Matrices

Once the values had been calculated for fu, fv, r11-r33 and t1-t3, they could then be
used to construct the projection and model view matrices.

To create the projection matrix, the fu and fv value were used in the glFrustum
function call.

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,

GLdouble zNear, GLdouble zFar)

Typical values used in the glFrustum call were:

right = imageWidth / fu

left = -right

top = imageHeight / fv

bottom = -top

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

34

The model view matrix could be constructed from the remaining values r11-r33 and
t1-t3. The OpenGL function glLoadMatrix uses matrices in column-major order,
therefore the values in ARLib were needed to be transposed from the matrix in
equations 6.8 to 6.19. The sixteen elements of the glLoadMatrix parameter were
set as follows:

M[0] = r11

M[4] = r21 M[8] = r31 M[12] = 0

M[1] = r12

M[5] = r22 M[9] = r32 M[13] = 0

M[2] = r13

M[6] = r23 M[10] = r33 M[14] = 0

M[3] = t1 M[7] = t2 M[11] = t3 M[15] = 1

6.3 Augmentation

Once the OpenGL projection and model view matrices had been initialised, then
standard calls to Glut and OpenGL could be made to render 3D objects. Any
rendered objects would be positioned and scaled on the marker with the scene.

Because there could be multiple markers within a particular image, the whole
process of calculating the camera intrinsic and extrinsic parameters needed to be
calculated for each marker. The call to glFrustum and the loading of the model
view matrix also needed to be carried out for each marker.

Figure 6.2 Examples of augmented graphics.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

35

7 Using ARLib

The ARLib toolkit was written for both Windows and Linux. It consists of a single
static library that is linked into the final Augmented Reality application.

7.1 Installation

Before applications can be developed using ARLib, the library needs to be built.

Linux

ARLib has the following external dependencies and they must be installed prior
to building the library:

• Libtiff
• Glut
• OpenGL

Once these dependencies have been installed, the ARLib static library can be
built by typing “Make”. This process creates a file called “libAR.so” in the “lib”
folder. The file should be moved either to another location, where it can be
located by the linker, or alternatively, the LD_LIBRARY_PATH can be updated to
include the lib folder path.

Windows

The Windows version of ARLib has the following dependencies:

• Libtiff
• Glut
• OpenGL
• DirectX 9

A Visual Studio .NET C++ solution file exists within the “vcc” folder. This should
be loaded into Visual Studio and built using the “Build” option. The file “AR.lib”
will be created in the “lib” folder.

7.2 The “Hello World” ARLib Application

To demonstrate the ease of use of ARLib, a basic application is described below.
The basic application uses no custom functionality, but has instead all the

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

36

features of all AR applications developed using ARLib. Note that the source files
for this application can be found in the “examples\BasicApp” folder.

The first requirement of the application is to include the relevant header files:

#include <arlib.h>
#include <arapplication.h>
#include <arappbase.h>

These are the main header files. As more functionality of ARLib is used, then
additional files will need to be included.

ARLib uses namespaces to group functional areas. The top level namespace is
ARLib and within this namespace, there are the functional namespaces.

using namespace ARLib::Application;

The final piece of code required is the main function.

int main(int argc, char *argv[])
{
 ARApplication<ARAppBase> app(&argc, argv);
 app.Run();

 return 1;
}

The first line of code constructs an ARApplication variable called “app”. The
ARApplication is a template class and therefore requires a template argument.
The argument in this case is the ARAppBase class name. This class provides all
the base functionality for ARLib applications, including display and user interface
operations. This functionality can be changed by specifying a custom class
name as the template argument for ARApplication. However, the custom class
must be derived from ARAppBase.

The next line of code calls the Run method of the ARApplication. This method
puts the application into Augmented Reality mode and will display the specified
images or video with computer graphics overlaid.

Once the above code has been written, it can be built, but before it can be
executed, there are some additional requirements.

All ARLib applications are configured through external configuration files, so
some additional files will need to be created for the basic application.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

37

Fortunately, template versions of these files with default settings are supplied
with the ARLib application. The folder “config” should be copied to the location of
the final application executable. For details on how to modify the configuration
files, see Appendix D.

7.3 Running an ARLib Application

Running the executable without any command-line arguments will attempt to
connect to a video source if one is available. In Linux this can be a webcam and
in Windows this can either be a webcam or an IEEE1394/firewire device. If no
video source is available, a pre-recorded sequence of .tif files can be viewed. To
specify a sequence, the following command-line argument should be used:

AppName -sequence <filename>

The filename parameter should be the first image to be used in a numbered
sequence of files ie. footage.0001.tif.

As well as displaying sequences of files, a single image can also be viewed:

 AppName - image <filename>

For a complete list of available command-line arguments, see Appendix B.

Once the application is running, there are numerous keys that can be used to
control the functionality, see Appendix C for a complete list. Some of the more
useful keys are:

Tab Toggles between the display of messages and debug information.

F Toggles between full screen and windowed mode.

+/- Zoom in and out.

Space Pauses the sequence.

7.4 Adjusting for Varying Lighting Conditions

Although the routines used in ARLib attempt to minimise the amount of
adjustments required, in varying lighting conditions, they will generally need to be
tweaked to get the best results when detecting markers. The main adjustments
that will need to be made are in the segmentation process, when the colour
image is converted to black and white. The Otsu thresholding technique
described in Chapter 3 automatically calculates the relevant values, but does not

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

38

cater for the fact that the scene may either be brightly lit or is in low light.
Therefore, the Otsu values need to be offset to cater for the current lighting.

The following steps describe the process for adjusting the Otsu thresholding
value:

1. Press the ‘A’ key to display the alpha channel of the image. This makes
the adjustment easier to see.

2. Press the ‘U’ key to enter update mode. This will display each option that

can be updated at the top of the screen. Use the left and right arrow keys
to navigate backwards and forwards through the available options.

3. Navigate to the option called “Otsu Threshold Offset” and use the up and

down arrow keys to adjust the value until the markers are more
pronounced. The ideal setting is to have more white than black, whilst
ensuring that the definition of the markers is as clear as possible.

4. Once the Otsu value has been adjusted press the escape key to exit

update mode.

5. To switch back into colour mode, press ‘C’.

7.5 A Custom ARLib Application

The basic functionality of ARLib supports the augmentation of static images or
models. To add animated effects, a custom implementation needs to be made.
To demonstrate how to implement custom code, the “Clock” example (found in
“examples\Clock” folder) is described below.

The “Clock” example comprises of three source files, one header file and two
implementation files.

clock.h

The clock header file details the custom functionality that will be provided by the
Clock class. The first requirement is to include the ARLib headers that will be
used:

#include <arappbase.h>
#include <arboundingbox.h>
#include <arstring.h>

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

39

The next step is to define the class:

class Clock : public ARLib::Application::ARAppBase

All custom implementations must be derived from the ARAppBase class.

The final stage of the class definition is to list the methods that are to be
overridden from the ARAppBase class:

public:
 virtual void OnGetApplicationTitle(ARLib::Utility::ARString &title);
 virtual void OnGetDetailHelp(ARLib::Utility::ARString &help);
 virtual void OnInit(int *argc, char *argv[]);
 virtual void OnInitDisplayAR();
 virtual void OnDisplayAR(ARLib::Detection::ARBoundingBox *marker);

The details behind these methods will be described in the next section.

clock.cpp

First define the header files and namespaces that are to be used:

#include <clock.h>
#include <armodels.h>
#include <time.h>
#include <sys/timeb.h>

// specify the ARLib namespaces that are to be used
using namespace ARLib::Application;
using namespace ARLib::Graphics;
using namespace ARLib::Utility;

Next define the constant variables that are to be used by the custom
implementation:

// define OpenGL colour parameters
const GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
const GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
const GLfloat lightPos[] = { 10.0f, 10.0f, -10.0f, 1.0f };

// Constants for loaded obj files
#define OBJ_MINUTE_HAND 101
#define OBJ_HOUR_HAND 102
#define OBJ_SECOND_HAND 103

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

40

Now the custom implementation code is created:

void Clock::OnGetApplicationTitle(ARString &title)
{
 // Set the title for the AR Application
 title = "Augmented Ticking Clock";
}

This OnGetApplicationTitle method tells ARLib the name of the application. The
title is used in the application’s main window title bar.

void Clock::OnGetDetailHelp(ARString &help)
{
 // Set the detail help for the application
 help = "An augmented reality application that displays a ticking clock.";
}

The OnGetDetailHelp method defines additional help text that will be displayed
when the application is executed with the help switch (-? or -help),

void Clock::OnInit(int *argc, char *argv[])
{
 // Call base implementation
 ARAppBase::OnInit(argc, argv);

 // Load custom models that will be used
 ARModels::Add("models/bighand.obj" , OBJ_MINUTE_HAND);
 ARModels::Add("models/smallhand.obj" , OBJ_HOUR_HAND);
 ARModels::Add("models/secondhand.obj" , OBJ_SECOND_HAND);
}

The OnInit method is where all custom initialisation is performed. The first
command in the OnInit should be to call the ARAppBase::OnInt method to allow
default initialisation to be done. In this example, three additional models are to
be loaded.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

41

void Clock::OnInitDisplayAR()
{
 // Call base implementation
 ARAppBase::OnInitDisplayAR();

 // Setup OpenGL lights
 glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);
 glLightfv(GL_LIGHT0, GL_POSITION, lightPos);

 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_COLOR_MATERIAL);
}

The OnInitDisplayAR is called prior to displaying all the augmented graphics.
Again as with the OnInit method, the ARAppBase implementation is called first,
followed by the custom code. In this example, the OpenGL lighting is being
setup for the scene.

void Clock::OnDisplayAR(ARLib::Detection::ARBoundingBox *marker)
{
 ARAppBase::OnDisplayAR(marker);

 // get the time
 time_t theTime;
 time(&theTime);

 // break up the time useful elements e.g. hours, minutes and seconds
 tm *fullTime = localtime(&theTime);

 // Draw the Second hand
 glPushMatrix();
 glRotatef(-(6 * fullTime->tm_sec),0,1,0);
 ARModels::glDrawList(OBJ_SECOND_HAND);
 glPopMatrix();

 // Draw the Hour hand
 glPushMatrix();
 glRotatef(-((30*fullTime->tm_hour)+((fullTime->tm_min/60.0)*5)*6),0,1,0);
 ARModels::glDrawList(OBJ_HOUR_HAND);
 glPopMatrix();

 // Draw the Minute hand
 glPushMatrix();
 glRotatef(-(6*fullTime->tm_min),0,1,0);
 ARModels::glDrawList(OBJ_MINUTE_HAND);
 glPopMatrix();

}

The final custom method is OnDisplayAR. This method is called for each marker
that is detected and requires augmented graphics to be displayed. Here, the

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

42

ARAppBase code is executed, although this is optional. In the case of the Clock,
a static clock model is associated with the markers, therefore the default
implementation can handle the drawing of the static models. The rest of the code
deals with drawing the clock’s hour, minute and second hands.

main.cpp

The final source file in the clock application is the main function. The code in this
file is the same as for the basic application except the ARApplication template
argument is the Clock class:

#include <arlib.h>
#include <arapplication.h>
#include <clock.h>

using namespace ARLib::Application;

int main(int argc, char *argv[])
{
 ARApplication<Clock> app(&argc, argv);
 app.Run();

 return 1;
}

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

43

8 Conclusion

The aim of project was to develop a comprehensive, yet easy to implement
developer’s toolkit for producing augmented reality applications. The ease of use
has certainly been achieved, as an AR application can be created with just two
lines of code. For the majority of scenarios, the basic ARLib application will
suffice, as much of the functionality is controlled through external configuration
files. For more advanced applications, the built-in functionality can be extended
or completely replaced, depending on requirements.

From a developer’s point of view, the toolkit offers all the extensible features that
would normally be expected of a software library such as ARLib. Another area
with the ARLib that functions particularly well is the corner detection routines.
The final solution was devised and developed by the author and out performed
other well establish techniques in both the detection and performance.

Where the toolkit performs less well is in the actual augmentation
implementation, particularly the camera calibration calculations. The technique
used from [MALIK 2002] is a fairly simple implementation for what is well known
in the computer vision world as a fairly complex problem. The simplicity of the
algorithms used was also reflected in the quality of the augmented graphics;
even the smallest of 3D objects can suffer from jittering. This is because the
algorithms can produce quite different focal length values even when a corner of
a detected marker moves by a single pixel. To overcome this problem, ARLib
can be switched from automatically calculating the focal lengths to using fixed
values. The fixed values can be adjusted while the AR application is running.

Every step of this project was complex and had its difficulties. A main
requirement of ARLib was that it must be able to run in real-time of at least 25
frames per second. These requirements proved too much for some of the
chosen algorithms, but could only be rejected once the code had been
implemented and tested. In the early stages of the project, two week’s work had
to be abandoned, as the marker detection routines did not function in a real-time
environment because they were too computationally expensive.

8.1 Recommendations

ARLib is a complete application and can be used to create AR applications
quickly and easily. However, like most first versions of software there are
improvements to features and functionality that can be added to later releases.

These include:

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

44

• Improve the camera pose calculation so that it is less jittering. This could

be improved by adding a history to the detected markers so that if a corner
has only moved by a pixel or two, then the focal lengths do not need to be
recalculated.

• Provide full support for IEEE1394/Firewire devices in Linux.

• Add built-in support for OpenGL lighting so that lights can be configured

while an AR application is running. This would allow the lit augmented
objects to match the real world environment.

• Currently, a single snapshot of the augmented scene can be saved to a .tif

file. This functionality could be extended so that an entire sequence can
be saved.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

45

Appendices

Appendix A Sample Otsu Thresholding C++ code

// NOTE: Creation of histogram[256] not shown

float w = 0; // first order cumulative
float u = 0; // second order cumulative
float uT = 0; // total mean level

int k = 255; // maximum histogram index
int threshold = 0; // optimal threshold value

float histNormalized[256];// normalized histogram values

float work1, work2; // working variables
double work3 = 0.0;

// Create normalised histogram values (size=image width * image height)
for (int I=1; I<=k; I++)

histNormalized[I-1] = histogram[I-1]/(float)size;

// Calculate total mean level
for (int I=1; I<=k; I++)

uT+=(I*histNormalized[I-1]);

// Find optimal threshold value
for (int I=1; I<k; I++) {Hav
 w+=histNormalized[I-1];
 u+=(I*histNormalized[I-1]);
 work1 = (uT * w - u);
 work2 = (work1 * work1) / (w * (1.0f-w));
 if (work2>work3) work3=work2;
}

// Convert the final value to an integer
threshold = (int)sqrt(work3);

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

46

Appendix B ARLib Application Command-Line Switches

The default implementation of ARLib supports the following command-line
switches:

Switch

Details

-? or -help

Displays help for the application, including command-line
switches and user interface keys.

-configfile <filename>

Specifies an alternative configuration file to use for the
application.

-markerfile <filename>

Specifies an alternative marker definition file to use for the
application.

-modelfile <filename>

Specifies an alternative model file to use for the application.

-image <filename>

Loads the image specified by <filename>.

-sequence <filename>

Loads a sequence of tiff files starting with the specified
<filename>.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

47

Appendix C ARLib Application User-Interface Keys

Key

Details

Left Arrow

Plays the sequence backwards. If the sequence is paused, then this keys
will step backward one frame at a time.

Right Arrow

Plays the sequence forwards. If the sequence is paused, then this key will
step forward one frame at a time.

Spacebar

Stops the current sequence or video source. Press spacebar to continue.

R

Toggles playback of sequence between real-time and normal speed.

F

Toggles display between full screen and windowed mode.

D

Switch into display element mode. Use left and right arrows to navigate the
available user interface elements. Use the up and down arrows to change
to associated value. Press Escape to exit this mode.

U

Switch into update mode. Use the left and right arrows to navigate through
the available options. Use the up and down keys to change the associated
value (hold shift to update in increments of 10). Press Escape to exit.

Tab

Toggles the display of all user interface elements.

M

Reloads any models (obj files) that are being used.

+/-

Zooms in and out of the currently display image.

A

Displays the Alpha channel.

C

Displays the colour channel.

S

Saves a snapshot of the currently display image.

Esc

Exits the application.

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

48

Appendix D ARLib Configuration File

The following configuration file is supplied as default with ARLib:

default.conf

Default configuration settings for ARLib applications #

The common section defines configuration options applicable
to all ARLib applications.

[Common]

Image is for specifying an image to be automatically loaded.

 Image =

Sequence is for specifying the first image of a sequence of image to load.

 Sequence =

MarkerFile is for specifying an alternate marker configuration file.
The default is "config/markers.conf". If no value then default will be used.

 MarkerFile =

ModelFile is for specifying an alternate model configuration file.
The default is "config/models.conf". If no value then default will be used.

 ModelFile =

ShowUI is an ovveride for the displaying of all user interface elements
(e.g. showfps). If this value is not set then no UI elements will display.
The default is 0 (off). Acceptable values are 1 or 0.

 showUI = 1

Realtime denotes whether image sequences should run at realtime (as denoted
by the fps setting). If realtime is off then frames will be displayed as
they are processed. The default is 1 (on). Acceptable values are 1 or 0.

 realtime = 1

denotes the required frames per second to display.
The default is 25. Acceptible values are 1 to 100.

 fps = 25

Zoom denotes how much the image should be zoomed or scaled
The default is 1. Acceptible values are in the range of 1 to 20.

 Zoom = 2

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

49

Fullscreen denotes whether the application should start in full screen mode.
The default is 0 (off). Acceptable values are 1 or 0.

 FullScreen = 0

WindowWidth defines the default startup width of the main window.
The default is 800. Acceptable values are a position integer.

 WindowWidth = 800

WindowHeight defines the default startup height of the main window.
The default is 600. Acceptable values are a position integer.

 WindowHeight = 600

ShowAR denotes whether the augmented elements should be display.
The default is 1 (on). Acceptable values are 1 or 0.

 ShowAR = 1

ShowFPS denotes whether frames per second should be displayed or not.
The default is 0 (off). Acceptable values are 1 or 0.

 ShowFPS = 1

ShowFrameNo denotes whether the current frame number should be displayed.
The default is 0 (off). Acceptable values are 1 or 0.

 ShowFrameNo = 1

ShowFocalLength denotes whether to display the current focal length.
The default is 0 (off). Acceptable values are 1 or 0.

 ShowFocalLength = 1

(LINUX) Denotes whether the image show be flipped upside down. Some (if not
all webcam drivers appear to read the image upside down).
The default is 1 (on). Acceptable values are 1 or 0.

 FlipHorizontal = 1

(LINUX) Specifies the default device to open for streaming webcam support.
The default is /dev/video0.

 DefaultDevice =

Specifies the location to store snapshots.
The default is "".

 SnapshotLocation = snapshots

Specifies the prefix of the snapshot file name. The format of the final image
will be SnapshotPrefix.n.tif.
The default is "snapshot".

 SnapshotPrefix = snapshot

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

50

[Segmentation]

The segmentation section defines options for producing a black and white
image from the pixel colour values.

The OtsuOffset defines how much the dynamically calculated threshold value
should be adjusted. The Default is 0. Acceptable values are -255 to 255.

 OtsuOffset = 55

UseLuminance denotes how the black and white values should be calculated from
the colour values. If set then a lumunance formula is used otherwise an
average of the red, green and blue value is used. The default is 1 (On).
Acceptable values are 1 or 0.

 UseLuminance = 1

[Detection]

ShowBoundingBoxes denotes whether boxes should be draw around potential
markers. The default is 0 (off). Acceptable values are 1 or 0.

 ShowBoundingBoxes = 1

ShowCorners denotes whether potential marker corners should be display.
The default is 0 (off). Acceptable values are 1 or 0.

 ShowCorners = 1

ShowMarkerEdge denotes whether the markers outer edge should be highlighted.
The default is 0 (off). Acceptable values are 1 or 0.

 ShowMarkerEdge = 1

ShowMarkerID denotes whether to display the detected marker id.
The default is 0 (off). Acceptable values are 1 or 0.

 ShowMarkerID = 1

The MinArea defines the minimum size in pixels that a bounding box is deemed
valid. The Default = 625. Acceptable values are a positive integer.

 MinArea = 400

[Pose]

UseFixedFocal denotes whether the fixed Focal Length values should be used or
whether the focal length should be dynamic calculated based on detected marker
position. The Default = 1. Acceptable values are 1 or 0.

 UseFixedFocal = 1

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

51

The FocalLength parameters defines the fixed focal length in the U and V
directions.

 FocalLength = 800,400

The Rotation parameter defines a default rotation for each model prior to
being diplayed. The three values represent rotation degrees in the x, y and z
axis. The default is 0,0,0.

 Rotation = 90,0,0

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

52

Bibliography

ABIDI, M. A. AND CHANDRA, T., 1989. Accurate Pose Estimation From A Single
Perspective View. University of Tennessee, Knoxville.

ALLEZARD, N., DHOME, M., AND JURIE, F., 2000. Recognition of 3D Textured
Objects by Mixing View-Based and Model-Based Representations. In: 15th
International Conference on Pattern Recognition. 2000 p.1960.

DAVIS, E. R., 2005. Machine Vision - Theory, Algorithms, Practicalities, 3rd ed.
USA: Morgan Kaufmann.

DUDA, R.O. AND HART, P.E., 1972. Use of the Hough transformation to detect
lines and curves in pictures. In: Communications of the ACM Vol 15 Number 1,
1972 New York. ACM Press. pp. 11-15.

EASON, R. O., ABIDI, M. A., AND GONZALEZ, R. C., 1984. A Method For
Camera Calibration Using Three World Points. In: Proc. Int’l Conf.Systems,man
and Cyber., October 1984 Halifax Canada. pp. 280-289.

EPFL, 2004. Towards Recognizing Feature Points Using Classification Trees.
Lausanne, Switzerland, IC/2004/74.

FEINER, S., MACINTYRE, B., AND SELIGMANN, D., 1993. KARMA:
Knowledge-based Augmented Reality for Maintenance Assitance [online].
Columbia University. Available from
http://www1.cs.columbia.edu/graphics/projects/karma/karma.html [Accessed 2
Sept 2005].

FOLEY, J. D., DAM, A. V., FEINER, S. K., AND HUGHES, J. F., 1990. Computer
Graphics - Principles and Practice. 2nd ed. USA: Addison-Wesley.

HARRIS, C. AND STEPHENS, M., 1988. A Combined Corner and Edge
Detector. In: M. M. MATTHEWS, ed. Proceedings of the 4th ALVEY vision
conference, September 1988 University of Manchester. pp. 147-151.

HECKBERT, P., 1995. Projective Mappings for Image Warping (Masters).
University of Berkeley.

HUBER, D., 2005. Computer Vision Homepage [online]. Carnegie Mellon
University. Available from http://www.cs.cmu.edu/~cil/vision.html [Accessed 3
Sept 2005].

ARLib: A C++ Augmented Reality Software Development Kit

MSc Computer Animation 2005

53

KATO, H., 2005. ARToolkit Home Page [online]. University of Washington.
Available from http://www.hitl.washington.edu/artoolkit/ [Accessed 3 Sept 2005].

LEPETIT, V., PILET, J., AND FUA, P., 2004. Point Matching as a Classification
Problem for Fast and Robust Object Pose Estimation. In: CVPR, June 2004
Washington DC.

LIU, P., GEORGANAS, N. D., AND BOULANGER, P., 2002. Designing Real-
Time Vision Based Augmented Reality Environments for 3D Collaborative
Applications. In: Proceedings of the 2002 IEEE Canadian Conference on
Electrical & Computer Engineering, May 12-15 2002 Hotel Fort Garry.

LIVINGSTON, M. A., 1998. UNC Laparoscopic Visualization Research [online].
University of North Carolina. Available from
http://www.cs.unc.edu/Research/us/laparo.html [Accessed 3 Sept 2005]

MALIK, S., 2002. Robust Registration of Virtual Objects for Real-Time
Augmented Reality (MSc). Carleton University, Canada.

NIXON, M. AND AGUADO, A., 2002. Feature Extraction & Image Processing.
Cornwall, England: Newnes.

SMITH, S.M. AND BRADY, J.M., 1997. SUSAN - a new approach to low level
image processing. Int. Journal of Computer Vision. May 1997. pp. 45-78.

VACCHETTI, L., LEPETIT, V., AND FUA, P., 2003. Fusing Online and Offline
Information for Stable 3D Tracking in Real-Time. In: Conference on Computer
Vision and Pattern Recognition, June 2003 Madison.

Further Reading

BOYLE, R. D., AND THOMAS, R. C., 1988. Computer Vision - A First Course.
Great Britain: Blackwell Scientific Publications.

GONZALEZ, R. C., WOODS, R. E., AND EDDINS, S. L., 2004. Digital Image
Processing Using MATLAB. New Jersey: Pearson Prentice Hall.

HARTLEY, R., AND ZISSERMAN, A., 2000. Multiple View Geometry in
Computer Vision. 2nd ed. Cambridge: Cambridge University Press

JAIN, R., KASTURI, R., AND SCHUNCK, B. G., 1995. Machine Vision.
Singapore: McGraw-Hill.

STOLFI, J., 1991. Oriented Projective Geometry: A Framework for Geometric
Computations. USA: Academic Press, Inc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

