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Chapter 1     Abstract 

This report documents the analysis, design, implementation and results of simulating 

a clothed computer generated model driven by motion capture data as well as a 

variety of cloth simulation tests of interaction with static objects.  A framework has 

been implemented for all results to be exported to RIB files for rendering in a 

RenderMan compliant renderer. 

 

Page 2 



 

Chapter 2     Contents 

Chapter 1 Abstract ......................................................................................................2 

Chapter 2 Contents ......................................................................................................3 

Chapter 3 Introduction................................................................................................8 

Chapter 4 History of cloth simulation........................................................................9 

4.1 Geometric Techniques......................................................................................9 

4.2 Physically Based Approaches.........................................................................10 

4.3 Elasticity Based Methods ...............................................................................10 

4.4 Particle Based Methods ..................................................................................10 

4.5 Mass Spring Damper Model...........................................................................11 

Chapter 5 Cloth Model..............................................................................................12 

5.1 Mass Spring Model.........................................................................................12 

Chapter 6 Design Overview ......................................................................................14 

Chapter 7 The Cloth Class ........................................................................................15 

7.1 Introduction ....................................................................................................15 

7.2 Base Class.......................................................................................................15 

7.3 Cloth Initialization..........................................................................................15 

7.3.1 Sheet Class ...............................................................................................15 

7.3.2 Skirt Class ................................................................................................16 

7.4 Increment Simulation .....................................................................................17 

7.5 Force Calculations ..........................................................................................17 

7.6 Collision Check ..............................................................................................18 

7.7 Cloth Object Display ......................................................................................18 

7.8 Writing RIB Files ...........................................................................................19 

7.9 Particle Class ..................................................................................................19 

7.10 Spring Class.................................................................................................19 

Chapter 8 Explicit Integration..................................................................................20 

8.1 Forwards Euler (Explicit) ...............................................................................21 

8.2 Runge-Kutta....................................................................................................22 

8.3 2nd Order Runge-Kutta (RK2) ........................................................................23 

8.4 4th Order Runge-Kutta (RK4).........................................................................24 

Chapter 9 Implicit Integration .................................................................................26 

Page 3 



 
9.1 Introduction ....................................................................................................26 

9.2 An Implicit Integration Model........................................................................27 

9.3 Force Calculations ..........................................................................................27 

9.3.1 Stretch Force ............................................................................................29 

9.3.2 Shear Force ..............................................................................................29 

9.3.3 Bend Force ...............................................................................................29 

9.4 Energy.............................................................................................................29 

9.5 Verlet integration............................................................................................30 

9.6 Adaptive time steps ........................................................................................30 

Chapter 10 Motion capture data and FBX..............................................................32 

10.1 FBX SDK ....................................................................................................32 

10.2 Object management.....................................................................................32 

10.3 Scene description.........................................................................................32 

10.4 Scene import and export..............................................................................32 

10.5 Tools............................................................................................................32 

10.6 Utilities ........................................................................................................32 

10.7 FBX Overview ............................................................................................33 

10.8 The Process .................................................................................................33 

10.9 Motion Tracking the Mocap Model ............................................................35 

10.9.1 Collision Response ...............................................................................36 

10.9.2 Fastening Particles................................................................................36 

10.9.3 Motion Tracking ...................................................................................36 

10.10 Tracking the Hip Markers ...........................................................................37 

10.11 Motion Capture Data...................................................................................40 

Chapter 11 Collision Detection.................................................................................41 

11.1 Introduction .................................................................................................41 

11.2 The Process .................................................................................................41 

11.3 Collision Detection Algorithms ..................................................................43 

11.3.1 Method 1...............................................................................................43 

11.4 Method 2 .....................................................................................................45 

Chapter 12 Collision Response .................................................................................50 

12.1 Introduction .................................................................................................50 

12.2 Response Considerations.............................................................................50 

12.3 Response Implementation ...........................................................................52 

Page 4 



 
12.4 Method 1 .....................................................................................................52 

12.4.1 Results ..................................................................................................53 

12.5 Method2 ......................................................................................................53 

12.5.1 Results ..................................................................................................56 

12.6 Method 3 .....................................................................................................56 

12.6.1 Results ..................................................................................................58 

12.7 Method 4 .....................................................................................................58 

12.8 Collision Prediction.....................................................................................59 

12.9 Test Environment ........................................................................................60 

Chapter 13 Polygon Models ......................................................................................62 

13.1 Obj Loader Class.........................................................................................62 

Chapter 14 OpenGL Display ....................................................................................64 

14.1 Camera Class...............................................................................................64 

14.2 Cloth Object ................................................................................................66 

14.3 FBX Object .................................................................................................67 

Chapter 15 RenderMan Rendering..........................................................................68 

15.1 RibExporter Class .......................................................................................68 

15.2 Camera Class...............................................................................................68 

15.2.1 Clipping ................................................................................................68 

15.2.2 Projection..............................................................................................69 

15.2.3 Scale......................................................................................................69 

15.2.4 ConcatTransform..................................................................................69 

15.3 RenderMan Polygons ..................................................................................70 

15.4 RenderMan Parametric Patches ..................................................................71 

15.5 RenderMan Subdivision Meshes.................................................................71 

15.6 Cloth Object ................................................................................................72 

15.7 FBX & Obj Objects.....................................................................................72 

15.8 Rendering Process .......................................................................................73 

Chapter 16 Pipeline & Project Management ..........................................................74 

16.1 Project Management....................................................................................74 

16.1.1 Project definition ..................................................................................74 

16.1.2 Project Initiation ...................................................................................75 

16.1.3 Project Control......................................................................................75 

16.1.4 Project Closure .....................................................................................75 

Page 5 



 
16.2 Version Control ...........................................................................................75 

16.3 Data Backups...............................................................................................76 

16.4 Communication & Tasks.............................................................................77 

16.5 Project Plan .................................................................................................77 

16.6 Daily Meetings ............................................................................................77 

16.7 Code Reviews..............................................................................................77 

16.8 Pair Programming .......................................................................................77 

16.9 Unit Testing.................................................................................................77 

Chapter 17 Cloth Shaders .........................................................................................79 

17.1 Introduction .................................................................................................79 

17.2 Wool 1 .........................................................................................................79 

17.3 Wool 2 .........................................................................................................80 

17.4 Tartan ..........................................................................................................81 

17.5 Satin.............................................................................................................82 

17.6 Lycra™ ........................................................................................................83 

17.7 Velvet ..........................................................................................................84 

Chapter 18 Conclusion ..............................................................................................86 

Chapter 19 Acknowledgements ................................................................................87 

Chapter 20 Bibliography...........................................................................................88 

Chapter 21 Appendix A.............................................................................................91 

21.1 Class Diagram .............................................................................................91 

Chapter 22 Appendix B.............................................................................................96 

22.1 OpenGL View of the Cloth Sheet’s Springs ...............................................96 

22.2 OpenGL View of the Cloth Sheet’s Polygons ............................................96 

Chapter 23 Appendix C.............................................................................................97 

23.1 OpenGL View of the Cloth Skirt’s Springs ................................................97 

23.2 OpenGL View of the Cloth Skirt’s Polygons..............................................97 

Chapter 24 Appendix D.............................................................................................98 

24.1 Derivations for implicit integration.............................................................98 

Chapter 25 Appendix E...........................................................................................103 

25.1 Reduced Version of a Simulation RIB File...............................................103 

Chapter 26 Appendix F ...........................................................................................105 

26.1 Bash Script to Fix the Subversion Log File Issues....................................105 

26.2 Bash Script to Render the Sheet Simulations............................................105 

Page 6 



 
26.3 Bash Script to Render the Skirt Simulations.............................................106 

26.4 Bash Script to Render the Skirt Simulation Shadows ...............................107 

Chapter 27 Appendix G ..........................................................................................108 

27.1 Project Plan ...............................................................................................108 

27.2 Project Plan (Continued) ...........................................................................109 

  

Page 7 



 

Chapter 3     Introduction 

When approaching cloth simulation in computer graphics, it is worth noting that the 

phenomena under consideration are fundamentally chaotic.  Each time one puts on a 

skirt or drapes a table cloth, many of its details look different.  It is for this reason that 

when implementing a cloth simulation for computer graphics, the general aim is to get 

it to “look right” rather than adhere rigidly to engineering principles and physical 

properties of cloth. 

While the simulation outlined in this report was designed with this in mind, many of 

the methods used are also physically accurate.  The fundamental aim was to get a 

general cloth model looking as “realistic” as possible, whilst also interacting with its 

surrounding environment. 

Research into previously implemented methods shows the first important step is to 

decide upon the desired outcome of the simulation.  As the following Chapters will 

explain, a variety of available methods were tested and examined until the most 

suitable was chosen. 

In this way the simulation was built up using the appropriate mixture of physically 

correct algorithms, and problem specific solutions. 
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Chapter 4     History of cloth simulation 

The study of cloth and its simulation began in the 1930’s in the textile industry, when 

a paper entitled “On the geometry of cloth structure” was published [1].  The 

computer graphics community took an interest in the 1980’s with the publication of 

several papers on different methods of simulating cloth using computer graphics [3].  

Today, both industries approach the same subject, but from different angles.  The 

textile community are concerned with the physical properties of cloth, and the 

computer graphics community are concerned with creating visibly believable 

simulations with “realistic” computation times. 

  

The computer graphics approach to cloth modelling has mainly focused on the issue 

of simulating the complex shapes and deformations of fabric and clothing in 3D.  The 

techniques that have been formulated and studied can be broken up into town main 

sections; Geometric Techniques and Physically Based Approaches. 

4.1 Geometric Techniques 

In 1986, a geometric method for modelling cloth hanging from a fixed number of 

points was introduced by Weil [4].  For this method the cloth is modelled as a 2D grid 

of 3D points and calculated using a two step process: 

1. The points are connected recursively with Catenary curves, and are dealt with 

depending on whether they hang inside or outside a convex hull.  The points 

that do not hang inside the hull are removed. 

2. The second step is a relaxation pass.  This pass is to ensure the distance 

constraints set between the particles are adhered to.  This will give a smooth 

cloth with a realistic cloth-like drape. 

 

Later, other geometric approaches to modelling cloth–like surfaces began to emerge.  

In the 1990’s a number of papers were published on the topic [3].  

 

One such technique was a mixture of geometric and physically based methods.  It 

involved a computational geometry technique to roughly estimate the shape a piece of 

cloth would have, when hanging from specific constrained points [5]. 
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A wrinkle model was also introduced, again using a mixture of geometric and 

physically based methods [8].  This technique involved performing dynamic analysis 

on a small deformable sheet of material and using this analysis to identify 

characteristic deformations for wrinkling cloth.  This information was then used to 

define a model for cloth.  The method proved useful for providing cloth–like wrinkles 

for use in animations; however it did not prove to be accurate enough for modelling 

wrinkling cloth. 

4.2 Physically Based Approaches 

There are three main types of physically based models that have been developed for 

cloth simulation: 

1. Elasticity Based Methods 

2. Particle Based Methods 

3. Mass – Spring Damper Model 

4.3 Elasticity Based Methods 

In 1986, along with Weil’s geometric approach, another technique for modelling cloth 

simulation was introduced [3].  This was an Elasticity Based Model, which defined a 

set of energy functions over a 2D grid of 3D points.  The energy contained in this 

model included the cloth’s tensile strain, bending and gravity information.  The 

method is based on the idea of treating cloth as a continuous material, with these 

energy functions being derived from Elastic Theory [3].  The distance between points 

and a simple measure of the curvature of this distance are used to calculate the elastic 

forces in the cloth. 

4.4 Particle Based Methods 

In 1992, Particle Based Methods were introduced by Breen & House [6].  They had 

developed a model for cloth drape simulation using an interacting particle system that 

represented the underlying mechanical structure of cloth.  The particles interacted 

with their adjacent particles and the surrounding environment, by using equations that 

described associated mechanical connections, represented by energy functions.  

Further to this, a stochastic gradient descent technique [10] was used as a relaxation 

method to bring the cloth particles to a stable rest state. 
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This theory for modelling cloth using Particle Based Methods was built on further, by 

Eberhardt and Weber [7].  They reformulated the basic energy equations resulting in a 

set of Ordinary Differential Equations, which were then used to calculate the cloths 

dynamic behaviour.  

4.5  Mass Spring Damper Model 

This technique was first introduced in 1988 by Hamann and Parent [11, 3] and was 

developed further in 1995 by Provot [12].  It consists of cloth being modelled as a 

grid of particles that are connected by spring dampers.  

 

This technique was used as the basis for the cloth simulation discussed in this report 

and is developed further in the following section. 
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Chapter 5     Cloth Model 

5.1 Mass Spring Model 

The cloth model is represented by a grid of particles of known mass, connected by a 

series of spring-dampers.  There are three main types of spring which relate to the 

characteristics of cloth: 

1. Structural springs: Handle extension and compression and are connected 

vertically and horizontally. 

2. Shear springs: Handle shear stresses and are connected diagonally. 

3. Bend springs: Handle bending stresses and are connected vertically and 

horizontally to every other particle. 

The springs are the structural elements of the model and resist the various loads that 

are applied to the particles.  Figure 5.1.1 below illustrates the three types of springs 

and how they are connected to the particles. 

 

 

Figure 5.1.1: Three types of springs 

When the simulation is initiated, each spring’s rest length is set to the original length 

of the spring.  The mass values of the particles and the spring constants are defined by 

the user.  Additional information on simulation initialization is given in Section 7.3. 
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Once the springs and particles are set up, the simulation is incrementally advanced by 

integrating Newton’s Second Law of Motion.  Additional information on integration 

and Newton’s Second Law of Motion is given in Chapter 7 and Chapter 8. 

 

When an environmental force, for example gravity, is applied to the particles in the 

model over a specified time step, it produces a resulting acceleration for each particle.  

This acceleration gives rise to a velocity which causes the particle to update its 

position.  The new position of each particle in turn causes a change in length to each 

connected spring-damper. 

 

Hooke’s Law states that the extension of a spring is proportional to the applied force.  

By applying Hooke’s Law with the addition of damping calculations to reduce 

oscillations, a new force due to the springs can be calculated and applied to the 

simulation.  The combination of the particle and spring forces is integrated with 

respect to time to provide a new acceleration for each particle.  The iterative process 

of calculating forces and updating positions provides the motion of the cloth object.  

Additional information on Hooke’s Law and the spring-damper force calculations is 

given in Chapter 7. 
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Chapter 6     Design Overview 

The cloth simulation application can be broken down into elements that define the 

projects scope.  An application manager is in charge of managing the cloth 

simulation, collision detection and response, motion capture data, and OpenGL 

specific functionality such as cameras and drawing.    

 

The Cloth class, the FBX class and the Obj Loader class form the core structure of all 

physical objects in the simulation, instances of which are created from the application 

manager.  In order for physically accurate simulations to occur, all of these classes 

rely on the Axis-Aligned Bounding Box (AABB) Tree class.  The AABB Tree class 

has the responsibility of encapsulating any instances of the physical object classes in a 

hierarchy of Bounding Boxes for localized collision detection algorithms to be called.  

The AABB class therefore creates many instances of the Bounding Box class during 

the encapsulation process and then utilises these bounding box objects during any 

collision detection sweeps. 

 

The Cloth class encapsulates the two types of cloth to be simulated in the form of a 

Skirt class and a Sheet class which inherit the Base Cloth class.  These classes rely on 

the cloth Solver class to calculate the cloth's internal forces and the RenderMan 

Interface Bytestream (RIB) class for outputting RIB files for rendering in RenderMan. 

 

In regards to collision response, a Response class contains all the functions and 

attributes required to deal with any individual collision.  An instance of the Response 

class is created for every detected collision allowing only collided particles to be 

processed for collision response. 

 

Finally, a Camera class is used to allow cameras to be instanced for the purposes of 

rendering out to RIB files.  Instances of this class are the responsibility of the 

application manager. 

 

Refer to the class diagram in Appendix A for a visual representation of the program 

design. 
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Chapter 7     The Cloth Class 

7.1 Introduction 

During the initial design phase of the project, an early requirement became apparent 

of the need for two simulation environments: 

1. Testing (Sheet) 

a. Simple rectangular cloth 

b. Simple collision object 

c. Ability to control movement of cloth and collision objects 

d. Allow for simple unit tests of key methods 

e. Fast simulation processing and visualisation of results 

2. Full (Skirt) 

a. More complex skirt cloth model 

b. Complex collision object 

c. Movement of collision object controlled by FBX data 

d. Allow for unit tests of key methods 

e. Slower simulation processing and visualisation of results 

Although the two environments produce different simulations, it was important to 

maintain one set of the core calculation and response classes. 

7.2 Base Class 

An important feature of C++ is its support of object-oriented programming design.  

To minimise the size and complexity of the code base, a parent cloth class was 

defined.  This parent class contains the main attributes and a set of pure virtual 

methods that each of the child classes has to implement.  This application architecture 

also improves the potential extensibility of additional cloth objects. 

7.3 Cloth Initialization 

7.3.1 Sheet Class 

Cloth initialization for the Sheet class creates a rectangular grid of particles and 

assigns initial position and force values for each particle.  All of the particles are 

contained in a multidimensional vector variable. 
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It also creates the various types of springs by assigning parameters to each spring and 

indicating which two particles the spring connects.  All of the springs are contained 

in a vector variable.  Initialization finally creates the polygon list for the collision 

detection and display.  Figure 7.3.1 below, shows an OpenGL view of the Cloth sheet 

object.  Additional images of the OpenGL Cloth sheet can be found in Appendix B. 

 

Figure 7.3.1: OpenGL view of Cloth Sheet 

7.3.2 Skirt Class 

Cloth initialization for the Skirt class creates a circular grid of particles and assigns 

initial position and force values for each particle.  It also creates the various springs 

by assigning parameters to each spring and indicating which two particles the spring 

connects.  Although the methodology is basically the same for the sheet and skirt, the 

algorithm for creating the grid of particles is more complex for the skirt.  This is due 

to having to define the circular positional information and connecting two edges for 

the definition of the springs and polygons.  Figure 7.3.2 below, shows an OpenGL 

view of the Cloth skirt.  Additional images of the OpenGL Cloth skirt can be found in 

Appendix C. 
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Figure 7.3.2: OpenGL view of Cloth skirt 

7.4 Increment Simulation 

The increment simulation method calls the relevant force calculation and integration 

methods to update the position and force values for each particle and spring.  It also 

calls methods to recalculate the polygons’ normal and centroid values.  Additional 

information on the integration methods is given in Chapter 8. 

7.5 Force Calculations 

The force calculation method starts by setting all the force values to zero.  Gravity is 

then applied to each particle using the following formula: 

28.9 msonAccelerati

onAcceleratiMassForceGravity

−=

×=
 

Equation 7.5.1: Force due to Gravity 

The final calculation for the force total is provided by the springs.  The spring force is 

defined by the following formula [1]: 

Hooke’s Law states: 

ForceSpring = -ks x 
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ks = Spring constant 

x = Distance 

The negative sign indicates that the spring is a 

restoring force. 

 

A damping force is required for realistic numerical 

simulation to ensure the springs do not oscillate 

forever: 

ForceDamping = -kdv 

kd = Damping constant 

v = Velocity 

 

A spring and damper force can be combined into one 

equation for a spring-damper connecting two particles: 

Force = -ks(|L| - L0) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
|| L

L
 - kd(v1 – v2) 

|L| = Length between two Particles 

L = Length vector 

L0 = Rest length 

v1 and v2 = Velocities of Particle 1 and Particle 2 

respectively 

Equation 7.5.2: Hooke’s Law 

Applying this formula gives the force value on particle 1.  This value is simply 

negated to find the force for particle 2. 

7.6 Collision Check 

The collision checking method simply creates the Axis Aligned Bounding Box 

(AABB) tree and runs the sweep nodes method within the AABB class.  Additional 

information on Axis Aligned Bounding Boxes is given Chapter 11. 

7.7 Cloth Object Display 

The display method checks the various flags and displays the relevant data: 

• The cloth object is displayed as a series of OpenGL triangles 
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• The polygon normals are displayed as OpenGL lines located at the centroid of 

each polygon. 

• The particles call their respective draw methods 

• The springs call their respective draw methods. 

Additional information on OpenGL display is given in Chapter 14. 

7.8 Writing RIB Files 

The two writing to RIB methods implement different RenderMan packages: 

1. Patches: Iterates through all the particles and writes out RenderMan bicubic 

patches to the RIB file. 

2. Subdivs: Iterates though all the polygons and writes out a RenderMan 

subdivision surface to the RIB file. 

Additional information on RenderMan is given in Chapter 15. 

7.9 Particle Class 

The Particle class encapsulates a particle object.  A particle is one of the two main 

building blocks for the simulation.  It has a large number of attributes that store 

mainly positional, force and flag data.  The Particle class only has one method, the 

draw method, which simply creates an OpenGL point at the relevant coordinates to 

represent a particle. 

7.10 Spring Class 

The Spring class encapsulates a spring object.  A spring is one of the two main 

building blocks for the simulation.  It has a number of attributes that store distance, 

property data and pointers to the two particles that the spring attaches to.  The Spring 

class only has one method, the draw method, which simply creates an OpenGL line 

between the two referenced particles to represent a spring.  The colour of the line is 

related to the spring type. 
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Chapter 8     Explicit Integration 

Numerical integration is the approximate computation of an integral, using numerical 

techniques.  Integrals, along with derivatives, are the fundamental mathematical 

objects of calculus [14].  There are several standard integration techniques for solving 

Ordinary Differential Equations (ODE’s) [15].  These ODE’s are differential 

equations in which all dependent variables are functions of a single independent 

variable [15].  According to Newton's laws of motion, any motion of a collection of 

rigid bodies can be described using a set of 2nd order ODE’s, with time being the 

independent variable. 

 

There are several methods available for implementing cloth simulation systems, but 

most are based on a system of particle objects linked by springs.  It is the motion of 

these particle objects that is described by the ODE’s.  The evolution of this model 

over time is computed using these equations [16]. 

 

The various methods of integration for solving these ODE’s have varying strengths 

and weaknesses.  As a result, the appropriate method must be implemented to suit the 

requirements of the system. 

 

As the ODE’s describing the cloth model are dependent on time, the integration was 

used to update the position of the cloth's particles over time [17].  Integration 

generally involves finding the function from which the derivative function was 

obtained, and hence a numerical approximation to the function [17]. 

 

For example, the acceleration is obtainable using Newton’s second law: 

onAcceleratiMassForce ×=  

Equation 7.10.1: Newton’s second law 

 Performing integration on this ODE will result in the velocity – which itself is a 

derivative function.  Performing integration on the velocity will result in position. 

Thus: 

• Acceleration is the rate of change of velocity over time 
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• Velocity is the rate of change of position over time 

 

All cloth simulation integration is based on the notion of initial value problems – the 

starting point is one at which conditions are known at that point in time, and the 

simulation of this system is forward in nature, through all the time steps. 

 

There are various levels of integration methods available for solving these forward 

initial value problems: 

8.1 Forwards Euler (Explicit) 

The Euler algorithm for forwards integration is possibly the simplest method of 

integrating an ODE.  It starts with the original equation, with the forces from time 

step t(n) contributing to the velocities at time step t(n+1).  It is relatively trivial to 

implement. 

dtvxx
m
dt

Fvv

nnn

nnn

)()()1(

)()()1(

+=

+=

+

+  

where: 

v(n) = Current velocity 

x(n) = Current position 

v(n+1) = New velocity 

x(n+1) = New position 

F(n) = Current force 

dt = Time step 

m = Mass 

Equation 8.1.1: Explicit Euler 

 

The Euler method is not symmetric.  It uses information at the beginning of the time 

step to obtain the desired information at the end of the time step.  This is illustrated in 

Figure 8.1.1. 
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Figure 8.1.1: Explicit Euler function approximation 

In the cloth model, the acceleration is the first derivate at the beginning of the time 

step and results in a vector.  This vector is the tangent to the curve that represents the 

function at that point in time. 

 

Euler does have stability problems. The method is not symmetrical, so if large time 

steps are used, the estimated path will deviate greatly from the actual path and the 

simulation will become unstable very quickly.  For this reason, Euler requires the 

caveat of small time steps. 

 

The tangent from the beginning is used to approximate the behaviour of the function 

over the entire time step; hence Euler’s method has a high degree of error. 

8.2 Runge-Kutta 

Runge-Kutta methods are described by Conte & de Boor as, “methods to obtain 

greater accuracy than Euler’s method, and at the same time avoid the need for higher 

derivatives, by evaluating the function f(x, t) at selected points on each sub-interval” 

[7]. 

 

These methods are based on taking intervals during the time step to approximate a 

more accurate answer.  Runge-Kutta integration is an extension of Euler integration, 

and improves the accuracy due to its symmetry with respect to the time interval. 
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They use the Euler method to get started, with each level of Runge-Kutta performing 

an Euler step with new values per iteration.  The method uses the results from the first 

Euler integration to calculate the new derivative in between the initial and final times 

[19].  

 

Runge-Kutta methods are all forward explicit methods that use approximations to take 

“educated guesses” towards the end point.  The benefit of using the Runge-Kutta 

method is that it allows for larger time steps, however it still does not remove Euler’s 

instability, it simply reduces it.  These methods are also computationally more 

expensive [3]. 

8.3 2nd Order Runge-Kutta (RK2) 

RK2 is essentially the same as Euler, but considers the derivative at more points in 

time by making an Euler trial step to the midpoint of the time interval.  It then uses 

the values of (X, Y) at the midpoint to make the real step across the time interval [20].  

The general form of RK2 is shown in Equation 8.3.1. 

( )nn

nn

nn

ythfk

k
y

h
thfk

kyy

,
2

,
2

1

1
2

21

=

⎟
⎠
⎞

⎜
⎝
⎛ ++=

+≈+

 

Equation 8.3.1: General form of RK2 

This method takes one sample - the midpoint between the start and end of the time 

step. 

 

For the cloth simulation, the forces are computed at the start, using the current 

position and velocity, for half the time step.  These values for position and velocity 

are then stored as temporary mid-point values in the particle class.  The forces on 

each particle are re-computed using these mid-point values, and the final position and 

velocity is taken to be a weighted average of these. 

 

The method is more accurate and stable than the Euler method - it is symmetrical and 

the approximated path will be closer to the actual function path than Euler. However 
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small time steps must still be taken.  Figure 8.3.1 below, shows a graphical 

representation of RK2. 

 

Figure 8.3.1: RK2 function approximation 

8.4 4th Order Runge-Kutta (RK4) 

RK4 is described as 4th order, because it takes more intervals in between time steps.  

The process of RK4 is essentially the same as RK2, but uses an expanded Taylor 

Series approximation.  The simulation can use a larger overall time step because the 

approximation is more accurate.  Figure 8.4.1 below, shows the general form of RK4. 

 

Figure 8.4.1: General form of RK4 

Figure 8.4.2 below, shows the flow chart for the integration process within the 

application. 
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Figure 8.4.2: Flow chart for integration process 
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Chapter 9     Implicit Integration 

9.1 Introduction 

All methods previously described have been explicit methods for solving Ordinary 

Differential Equations (ODE’s).  The problem with explicit methods is that they are 

not very useful for solving “stiff” ODEs.  A stiff ODE is best described as one that 

requires very small time steps to remain stable.  Baraff [31] describes an example of a 

very stiff ODE in two dimensions. 

 

Given a particle with position (x(t), y(t)), in order to keep the y-coordinate at zero, a 

component -ky(t) can be added to y'(t) where k is a large positive constant.  As long 

as k is large enough, the particle will never move too far from y(t) = 0 as -ky(t) will 

cause y(t) to tend towards zero.  Now if the particle is allowed free movement along 

the x-axis, the differential equation can be described as: 
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Equation 9.1.1:Particle allowed free movement along the x-axis 

Because the particle is strongly attracted to the line y = 0 and less strongly towards 

the line x = 0, solving the equation far enough ahead in time will result in the particle 

eventually reaching (0, 0) and staying there upon arrival.  Solving the equation using 

Euler integration with step size h yields: 
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Equation 9.1.2: Euler integration with step size h 

By looking at the y component of this equation it is possible to see that if | 1 – hk | > 1 

then ynew will have an absolute value that is greater than | yo | and as such Euler's 
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method will never converge to an answer.  To ensure this is not the case, the largest 

step h that can be taken is 2 / k.  If k is very large, the steps will have to be very small. 

 

9.2 An Implicit Integration Model 

Cloth is a classic example of having to solve stiff ODE’s.  Initially, Baraff and Witkin 

[21] was considered as a model for the cloth simulation.  Its implicit integration 

model incorporates the internal cloth forces, constraints, collision detection between 

cloth and cloth, and cloth and solid objects, and adaptive time stepping.  On top of 

this, the model has proved itself in animations that it has been used in such as 

Monsters Inc.  The only issue with implementing this model is time.  Due to its 

complexity, getting the mathematical model in place is only half of the problem.  

Implementation specific issues as well as human error means that predicting the 

length of time required to get a working model into a simulation of choice is a 

difficult task. 

9.3 Force Calculations 

At the centre of the model is the structure of the cloth and the way forces are 

calculated.  Rather than using a mass spring model like many cloth simulation 

frameworks, this model uses the deformation of a triangular element to calculate 

internal cloth forces.  Essentially it acts like a three way spring but seems to be better 

suited to building non-uniform items of clothing such as a skirt or a t-shirt.  This is 

due to the fact that it is easier to build triangular elements of an arbitrary size and as a 

result build more interesting items of clothing.  A series of particles is therefore split 

into triangles with their vertices set to a rest position or normal length.  

 

All forces in the model are based on conditions.  A condition function C(x) “wants” to 

be solved for zero.  That is, like a spring in a mass spring model acts to pull itself into 

its natural length, so are the forces calculated to pull a triangle to a state where its 

condition C(x) is equal to zero.  This would normally be the rest state of the cloth.  

The basic formulation of the forces is as follows: 

 

Xi denotes the position vector of the ith vertex in world space.  As such it can be 

represented as follows: 
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Xi = ( xi, yi, zi ) 

Equation 9.3.1: Representation of Xi 

Each vertex also has its own coordinates in parametric space ( ui, vi ).  uv coordinates 

are constant for each particle. 

 

W is a function that maps uv coordinates to X, or world space. 

X = W( u, v ) 

Equation 9.3.2: W function 

So for a given triangle of vertices XI, XJ, and XK it can be defined that: 

∆X1 = XJ – XI 

∆X2 = XK – XI 
 

∆u1 = uJ - uI 

∆u2 = uK - uI 

∆v1 = vJ - vI 

∆v2 = vK - vI 
 

From the paper it is known: 
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 So it follows: 

 

Wu = ( ∆X1 * ∆v2 - ∆X2 * ∆v1) * (1 / ( ∆u1 * ∆v2 - ∆u2 * 

∆v1)) 

 

Wv = ( ∆X1 * ∆u2 - ∆X2 * ∆u1) * (1 / ( ∆u1 * ∆v2 - ∆u2 * 

∆v1)) 

Equation 9.3.3: Definition of XI, XJ and XK 

The condition C(x) can now be calculated as from the paper: 
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9.3.1 Stretch Force 
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Equation 9.3.4: Stretch Force 

Where a is the triangles area and bu and bv are normally set to 1.  They can however 

be changed to slightly lengthen a portion of a garment such as a sleeve. 

9.3.2 Shear Force 

The condition for shearing is calculated by finding the inner or dot product WuTWv: 

C(x) = aWu(x)TWv(x) 

Equation 9.3.5: Shear Force 

9.3.3 Bend Force 

Bending is measured between pairs of adjacent triangles and the condition for bending 

depends upon the four particles that make up the two triangles.  It can be defined as 

follows: 

sin Ө = ( n1 *  n2 ) . e 

cos Ө = n1 . n2 

Equation 9.3.6: Bend Force 

Where n1 and n2 are the surface normals of the two triangles and e is a unit vector 

parallel to the common edge.  The condition for bending is simply C(x) = Ө which 

results in a force that counters bending. 

9.4 Energy 

Energy can now be calculated for any given condition by: 

EC = k/2 * C(x)TC(x) 

Equation 9.4.1: Energy 

Where k is the selected stiffness constant. 
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For every particle i that condition C depends on, the force vector can be defined by 

calculating the change in energy EC with respect to the position of the particle: 

fi = - ∂EC / ∂xi 

   = -k * ∂C(x) / ∂xi * C(x) 

Equation 9.4.2: The force vector 

Finally, the derivative matrix K needs to be constructed out of a series of 3 x 3 

matrices Kij for every pair of particles i and j that C depends on. 

Kij = ∂fi / ∂xj = -k ( (∂C(x)/∂xi) * (∂C(x)T / ∂xj) + (∂2C(x) 

/ ∂xi∂xj) * C(x) ) 

Equation 9.4.3: Derivative matrix K 

The full derivation of K can be found in Appendix D. 

9.5 Verlet integration 

Verlet integration is another method of integration that is suitable for cloth simulation 

because it is quite stable, especially when dealing with enforced boundary conditions 

[23].  In this method, there is no explicit velocity term which can cause corruption in 

the position values. 

 

In terms of speed, Verlet integration is almost as fast as Euler to compute.  It is also 

more accurate - under the right conditions, it is 4th order accurate [22]. 

 

The disadvantages with Verlet integration are its relative complexity compared to the 

explicit methods, and its poor use of varying time steps [23, 24]. 

9.6 Adaptive time steps 

One method to improve the computation time of the RK2 method is to implement 

adaptive time stepping.  This method analyses the vector between the old position and 

the new proposed position to see if it is within certain bounds.  If the vector is deemed 

to be too small, the time step may be increased.  If the vector is deemed to be too 

large, i.e. the distance between the old position and the new position too great, the 

time step is decreased.  This ensures that the integration step size is maximised whilst 

remaining stable. 
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In order to implement adaptive time steps, the minimum and maximum bounds must 

be specified.  The initial method tried was to base the value of the time step size on 

the magnitude of the force generated.  This force is the value that will act on a 

particular particle, and the time step was changed accordingly. This method was not 

satisfactory, as its results were too unpredictable. 

 

A second approach was taken to implement adaptive time steps, by basing the value 

of the time step on the deviation of a spring from its rest length.  If the deviation from 

this value was too great, the spring was deemed to be stretching too far and the time 

step was decreased.  If the deviation was too small, the spring could afford to be 

stretched further without adverse affect on the stability of the system, and so the time 

step could be increased.  This method proved satisfactory, however, the RK4 method 

was selected for the integration calculations as it proved to be accurate and stable 

when handling larger time steps.  For debugging purposes, it was decided not to 

include the adaptive time stepping in the final model. 
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Chapter 10     Motion capture data and FBX 

10.1 FBX SDK 

Motion capture data was integrated into the cloth simulator using Alias®’s FBX 

Software Development Kit.  The importance of the FBX system to this cloth 

simulation is that the .fbx file format contains all the information for a model and the 

transformations that drives its motion.  There are five categories of classes for the 

FBX SDK: 

10.2 Object management 

The class KFbxSdkManager is responsible for creating, managing and destroying 

most object types.  There can be only one instance created at any given time.  Any 

attempt to create another will result in the object having a value of NULL. 

10.3 Scene description 

The scene description classes are responsible for the description of the static elements 

in the scene such as a polygon mesh that a model is made up of and the animation 

data that is used to transform these elements over time. 

10.4 Scene import and export 

These classes are the interface between the scene description classes and the .fbx file 

format.  For this simulation, the KfbxImporter class is used to import the .fbx files 

into the program for rendering in the OpenGL pipeline and for collision detection. 

10.5 Tools 

The tool classes are used to process animation data.  For this simulation, the 

KfbxGeometryConverter is required to convert the human model from NURBS and 

patches to polygons. 

10.6 Utilities 

The utility classes contain all the data types used by the FBX SDK such as 

KFbxVector4 and KFbxMatrix. 
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10.7 FBX Overview 

The FBX SDK overview document [2005] describes the scene description as follows: 

 “The FBX SDK holds a scene description in a tree structure.  The position of each 

node is expressed in coordinates relative to its parent.  Every node has an attribute and 

an array of takes of animation data.  The attribute describes the content of each node.  

Each take of animation data describes modifications to the state of the node over 

time”.  In order for the motion capture data and the corresponding model to be 

incorporated into an OpenGL environment a number of functions need to be 

performed during initialization. 

10.8 The Process 

Firstly, an FBX SDK manager object is created and then an importer object is created 

to import the FBX file into the manager.  Once a scene object has been created the 

scenes status is set to MUST_BE_LOADED.  The scenes status is only MUST_BE 

_LOADED during initialization and instructs the FBX interface to import the FBX 

file into memory and pass the FBX interface the following initialization instructions: 

 

• Convert the model from NURBS or patches into polygons by passing the 

ConvertNurbsAndPatch() function the manager object and the scene object. 

• Specify the “take” that you wish to use.  An FBX file allows for more than one 

motion capture sequence to be stored and called for the one model. 

• Initialize the frame period. 

 

This process is outlined in Figure 10.8.1 over the page. 

 

After successful initialization the FBX manager is ready to receive the polygon mesh 

and transformation data extracted at each given time frame.  When the GetScene() 

function is called, the simulation recursively loops through all the nodes that make up 

the FBX object.  Since the only data being extracted from the file is the mesh data for 

the purposes of rendering and collision detection, and marker data for the purpose of 

tracking the rotations of the hips, the only nodes that are retrieved are the nodes of 

type eMesh and eNull.  
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Figure 10.8.1: Flow chart for FBX initialization 
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A mesh node consists of control points or vertices that make up the individual 

polygons in the FBX model.  Each mesh control point in the FBX file has a matrix 

that holds its global position for any given point in time.  These control points are 

copied into an array so that they may be passed to deformation functions that 

interpolate the vertex positions at any given time.  The two transformation 

computation functions are: 

 

• ComputeShapeDeformation: This function deforms the vertex array with the 

shapes 

• ComputeLinkDeformation: This function deforms the vertex array with the 

links 

 

The result of calling these functions is the array of vertices that make up the polygon 

mesh in their new positions at the current time frame. 

 

In order for this positional information of vertices to be useful for the cloth simulator, 

they need to be in a format that is easily understood by the rest of the system.  FBX 

uses its own vector type (KFbxVector4) and in order to keep the FBX interface as a 

modularized component of the system, the vertex array must be converted into the 

same vector data type used by the rest of the system.  Using the KfbxVector4 data 

type everywhere in the system would make the entire system dependent on the 

inclusion of the FBX SDK header file and is not an appropriate solution.  A function 

has been developed that converts the vertex array into the standard Vector3D data 

type used in the rest of the system.  Once the array of vectors has been converted, it 

can be transformed into a list of 3 or 4-sided polygons so that axis aligned bounding 

boxes can be created for collision detection and the mesh can be used for rendering. 

10.9 Motion Tracking the Mocap Model 

One of the challenges presented by placing clothing onto an animated model is 

constraining the cloth to the model realistically.  An item of clothing such as a t-shirt 

or a poncho does not need to be fastened to a model as it can just be draped over the 

model and rely on the collision detection of the collar and sleeves to keep it fastened.  

For a skirt, there are three options that can be considered: 
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10.9.1 Collision Response 

The same theory can be applied as with the t-shirt and poncho example and the skirt 

can be tightened until there is contact with the model above the hips.  Because the 

width of the hips is greater than the waist the skirt will naturally rest on top of the hips 

in a realistic manner. 

 

While in theory this approach can produce the most realistic results, it is the least 

robust.  The collision response to any collision detection needs to be robust enough to 

deal with a permanent “rubbing” of the particles against the character mesh.  While 

the collision response and detection is capable of dealing with this type of situation, 

there would still need to be a condition that prevented the skirt from sliding up the 

model during large movements. 

10.9.2 Fastening Particles 

The top rings of particles that form the cloth can be fastened to a series of polygons 

around the waist of the model. 

 

Fastening particles in this way would also produce realistic, if slightly different 

results.  However, a number of issues need to be addressed on the implementation.  

Firstly, the number of particles to be fastened needs to be deduced, and to which 

vertices they will be constrained.  Since the polygon structure of different models 

varies infinitely, this would not allow the skirt to be ported between different models 

without manually defining the new constraint points. 

10.9.3 Motion Tracking 

The translation and rotations of the hips of the model can be tracked using the data 

from either the characters markers situated inside the character mesh or a series of 

polygons around the waist.  These translations and rotations can then be applied to the 

top ring of fixed particles that make up the waist band of the cloth. 

 

Choosing between using the marker information at the hip joints of the model and the 

polygons around the waist of the model to track the translations and rotations for the 

skirt proved to be fairly simple.  Tracking the rig markers is a far easier exercise than 

tracking polygon vertices as the rig information is stored in the FBX file.  Since the 

marker tracking method proved to be extremely accurate, it was the natural choice. 
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10.10 Tracking the Hip Markers 

Each FBX file has marker information stored for various points on the rig and mesh.  

In this case, the two markers that make up the hips and the marker on the lower spine 

are the points of interest.  Unfortunately, there is no way of directly extracting the 

tracking markers required and so as markers are encountered they are tested to see if 

they are required and stored if they are.  From these three points, local hip rotations 

and translations can be calculated.  The process is as follows: 

Calculate the midpoint m of the two hips marker h1 and 

h2: (h1 + h2 / 2). 

Calculate the vectors vX and vY by subtracting m from h2 

and m from the marker on the lower spine l respectively. 

Take the cross product of vX and vY to find the 

perpendicular vector vZ. 

Translation tracking is simply a matter of ensuring that the centre of the ellipse of 

fixed particles is set to the midpoint m.  The cloth particles are initialised relative to m 

and any changes to translation are tracked by adding the difference between the 

midpoints position from the last calculation to the fixed particle positions. 

 

For rotations, initial calculations were made by deriving the relative rotations between 

vX and the world space x-axis, vY and the world space y-axis and vZ and the world 

space z-axis respectively.  This is done by taking the arctan2 of the necessary vector 

components.  To do this, three points are needed to be compared against the midpoint 

of the two hip markers.  The first two are h2 and l which are in the direction of the 

normalized vX and vY respectively.  The third point, g, must be in the direction of the 

normalised vector vZ. 

 

 

XRotation = arctan2(m.y – g.y, m.z – g.z) 

YRotation = arctan2(m.y – g.y, m.z – g.z) 

ZRotation = arctan2(m.y – h2.y, m.x – h2.x) 
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Here, arctan2 takes the arctangent of the two parameters and decides on the correct 

orientation for which of the two parameters will be the denominator and which will be 

the numerator.  Hence, which will be taken as the opposite component and which will 

be taken as the adjacent component.  These angles can then be passed to a function 

that builds a rotation matrix for the three axes in world space.  By multiplying the 

ellipsoid ring of fixed particles by these rotation matrices, the waist band of the cloth 

should follow the rotations of the hips.  This method is called the fixed angle 

approach. 

 

This proved to be an elementary mistake as closer inspection of the method showed 

that it was a completely flawed approach to the problem.  The angle between each 

local axis needs to be calculated for every axis in world space.  While rotations 

around the y-axis will always be correct (assuming the character stays in an upright 

position) the rotations for the x and z-axis will only be correct if the character’s hips 

have a particular orientation.  It is easy to overlook this issue if the tests being 

undertaken have the character situated in only one orientation, in this case, facing the 

camera. 

 

A more correct method is achieved by using direction cosines.  Rotation information 

is calculated by taking the relative angles between the three vectors vX, vY and vZ and 

all three of the x, y and z-axis of world space.  This is calculated by taking the dot 

product of each of the three normalised vectors vX, vY and vZ with the unit vector of 

each of the world space axis. 

 

XRotationWithX = vX . Vector(1.0, 0.0, 0.0) 

XRotationWithY = vX . Vector(0.0, 1.0, 0.0) 

XRotationWithZ = vX . Vector(0.0, 0.0, 1.0) 

 

YRotationWithX = vY . Vector(1.0, 0.0, 0.0) 

YRotationWithY = vY . Vector(0.0, 1.0, 0.0) 

YRotationWithZ = vY. Vector(0.0, 0.0, 1.0) 

 

YRotationWithX = vZ . Vector(1.0, 0.0, 0.0) 

ZRotationWithY = vZ . Vector(0.0, 1.0, 0.0) 
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ZRotationWithZ = vZ . Vector(0.0, 0.0, 1.0) 

 

By building a single matrix with these values, the correct rotation of each of the three 

reference vectors can be calculated with respect to all three of the world space axis.  

Multiplying each particle in the row of fixed particles by this matrix calculates the 

correct rotation to allow the waist band to match the rotations of the hips. 
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It is worth mentioning that in both the fixed angle and the direction cosine method, 

the angles represented are the absolute angles of the hip rotations.  This is obvious as 

the calculations of angles are relative to the x, y and z-axis of world space, but this 

does have implications for position storage of the particles.  Each particle must store 

its position in world space with no rotations applied at each frame by storing the 

particle positions between the translation and rotation processes.  Rotations are then 

applied to these positions and the result stored as a separate vector. 

 

It is also important to note that for the rotation calculations of the ellipse of fixed 

particles to be correct, the midpoint of the ellipse, m, must be subtracted from each 

fixed particles position before rotation and then added again after rotation.  This 

effectively means that the rotations of the ellipse of fixed particles occur around the 

origin of world space (0, 0, 0). The particles are then transported back to their 

positions relative to the midpoint of the hips m. 

 

Figure 10.10.1 below shows the OpenGL view of the FBX character with the cloth 

skirt. 
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Figure 10.10.1: OpenGL view of the FBX character with cloth skirt 

10.11 Motion Capture Data 

The motion capture was taken at AccessMocap, Bournemouth Media School.  The 

data cleanup and FBX models were provided by Andy Cousins (Mocap Producer). 
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Chapter 11     Collision Detection 

11.1 Introduction 

In order to keep computation time to a minimum, the collision detection framework 

utilized Axis Aligned Bounding Boxes (AABB) to break the polygon mesh of an 

object into manageable groups of polygons.  The definition of an AABB is simply as 

the name suggests:  A box with edges aligned to the x, y and z-axis of a coordinate 

system that is bound by a minimum and maximum set of coordinates.  By building an 

AABB hierarchical tree, a series of leaf AABB’s , with creation conditions defined by 

specified heuristics, will hold all of the polygons in a mesh. 

11.2 The Process 

The process of generating an AABB tree for a given piece of geometry (defined by 

polygons) is recursive.  A root AABB is defined as a bounding box encompassing all 

of the polygons and is calculated by looping through all of the polygons in the mesh 

and determining the minimum and maximum values of the x, y and z- axis.  Once this 

has been calculated, the longest axis of the box is calculated and the polygons are split 

into two groups on either side of this axis with their minimum and maximum values 

calculated to form two more bounding boxes.  These are called child bounding boxes.  

This process moves recursively down all paths of the tree until specified heuristics are 

satisfied.  The heuristics are: 

 

• The maximum tree depth is reached.  This is the number of “generations” of 

children that are created. 

• A bounding box contains the minimum number of polygons allowed. 

 

For any given bounding box, if the heuristics pass, the bounding box becomes a leaf 

bounding box, i.e. it has no children. 

Figure 11.2.1 and Figure 11.2.2 below show a flowchart for the AABB tree creation 

and the AABB tree hierarchy, respectively. 
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Figure 11.2.1: Flow chart of AABB tree creation 

 

 

 

 

Figure 11.2.2: AABB tree hierarchy 
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Once the bounding boxes have been created, collision detection can be calculated.  

Regardless of the collision detection method, the underlying functionality of the 

bounding boxes with respect to collision detection remains the same.  For every step 

in the animation, check to see if an object has moved into the root bounding box.  If it 

hasn't then there has been no collision.  If it has, then check to see if the object is in 

either of the root nodes’ child bounding boxes.  The process continues recursively all 

the way down the trees hierarchy until either the object does not move into any more 

bounding boxes, or the object has moved into a leaf bounding box.  Once in a leaf 

bounding box, collision can be calculated against all polygons in that bounding box.  

In this way, collision detection calculations are localized.  Figure 11.2.3 below shows 

the bounding boxes on the FBX character. 

 

Figure 11.2.3: Bounding boxes on the FBX character 

11.3 Collision Detection Algorithms 

Two methods for collision detection were researched for this implementation.   

11.3.1 Method 1 

The collisions being dealt with are between a cloth model and a solid object or a cloth 

model and itself.  The first method simply checks to see if a particle (cloth particle) 
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passes through a given polygon.  This method is outlined in various collision 

detection techniques on the internet and described in Hill [2]. 

 

Assuming that it has been determined that a particle has breached a leaf bounding box 

node according to the procedure outlined in Section 11.2 on bounding boxes, for 

every polygon in this bounding box, a test needs to be made to see if the particle will 

pass through any of these polygons during a specified time period t.   

 

By taking a particles original position and its particles new position (as calculated for 

the current time step t), a line, or ray, can be drawn between the two points as a 

representation of the path that it will travel.  This line can be described parametrically 

as: 

a = b + ct  

Equation 11.3.1: Ray line 

Where a is the points new position, b is its original position, c is the ray direction of 

the particle and t is a time step.  Since a, b and t are known, the ray direction c, can be 

calculated by rearranging the equation.  c is significant as it means a collision can be 

determined if the dot product of c and a polygons surface normal is less than zero. 

n . c  <  0  

Equation 11.3.2: Normal test 

Where n is the polygons surface normal. 

 

For a specific polygon, it is known that given any point M that lies on the polygons 

surface, and the polygons surface normal n, an intersection point P will have to satisfy 

the equation of the plane defined as: 

n . (P – M) = 0 

Equation 11.3.3: The plane equation 

If a collision has been detected, a collision has occurred at an unknown time thit  and 

the collision point can be defined as: 
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P = b + cthit 

This can then be substituted into Equation 11.3.3 to 

form: 

N . (b +  cthit  - M) = 0 

Rearranging this to solve for thit  yields: 

thit  = (n . (M – a)) / n . c 

 

Now thit has been solved, it can be substituted and the intersection point can be 

determined. 

11.4 Method 2 

Bigliani and Eischen [3] describe a method that not only takes into account a given 

particles current and future positions, but also the position of the other two particles 

associated with the triangular element containing the colliding particle.  

Figure 11.4.1 below, shows two triangles, ABC and DEF at a point k in time.  Figure 

11.4.2, depicts the same scenario except that the position of point D in DEF can be 

seen at time k+1. 

 

Figure 11.4.1: Triangles DEF and ABC at time k 
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Figure 11.4.2: Point D at time k + 1 

By calculating XF = Fk - Ak and XD = Dk+1 – Ak a collision can be detected if n ⋅ XF 

and n ⋅ XD are of opposite sign.  Either the particle D has crossed the plane of triangle 

ABC between time k and k + 1, or the edge DF of triangle DEF intersects the plane of 

the triangle ABC. 

 

As with method 1, the equation of the plane ABC can be defined as n ⋅ (P – A) = 0 

where P is a point of intersection, A is a vector pointing to vertex A and n is the 

normal to the surface.  Bigliani and Eischen define P, A and n as follows: 

P = xi + yj + zk 

A = xAi  + yAj + zAk 

n = ai + bj + ck 

Equation 11.4.1: Definition of P, A and n 

Thus the equation of the plane can be rewritten as: 

a(x – xA) + b(y – yA) + c(z – zA) = 0 

Equation 11.4.2: The plane equation 
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From Figure 11.4.2, the line r between point F at time k and point D at time k+1 can 

be defined as a function of a parameter t.  Unlike method 1, the ray of intersection is 

calculated between the intersecting points destination at time k+1 and one of the other 

vertices that form the triangle at time k, rather than the intersecting points origin and 

destination.  Once the position of point D at time k+1 is known, the line r describes 

the new direction of one of the edges of the triangle DEF. 

 

Vector r = li + mj + nk has the components: 

l = xD- xF 

m = yD – yF 

n = zD – zF 

Equation 11.4.3: Vector components 

The parametric equations for the coordinate points on r are: 

x = lt – xF 

y = mt + yF 

z = nt + zF 

Equation 11.4.4: Parametric equations 

 

Figure 11.4.3: Line r, the ray of intersection 
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As with method 1, time t can now be determined at which intersection occurs at point 

Q by substituting the equation of the line r into the equation of the plane. 

tQ = - (n . (F – A) / al + bm + cn) 

Equation 11.4.5: Substitution of equations 

The coordinates of the intersection can now be determined by substituting this time 

into the parametric equations defined in Equation 11.4.4: 

xQ = ltQ + xF 

yQ = mtQ + yF 

zQ = ntQ + zF 

Equation 11.4.6: Coordinates of intersection 

Now that the point of intersection has been derived, the nature of the intersection must 

be determined.  Firstly a check needs to be made to see if the collision point Q is 

equal to any of the vertices of the triangle ABC, meaning the collision has been with 

one of the vertices of the triangle.  Assuming now, that the collision has not been with 

a vertex of triangle ABC, the problem can now be projected into two dimensions. 

 

The intersection point Q and the triangle ABC is projected onto a two-dimensional 

coordinate system parallel to the three dimensional coordinate plane that has a surface 

normal most closely aligned with the surface normal of triangle ABC.  Determining 

whether the intersection point Q is within the triangle ABC (particle-to-triangle 

collision) or if the intersection point Q is outside the triangle ABC (edge-to-edge 

collision) is now relatively simple.  By making the point Q the origin of the new two-

dimensional coordinate system, a check to see how many times the x-coordinate plane 

intersects the triangle ABC yields where the point Q lies.  As can be seen in Figure 

11.4.4,  one intersection means the point Q lies inside the triangle ABC (a) and any 

other result means the point Q lies outside of the triangle ABC (b) and (c). 
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Figure 11.4.4: 2D Projection of intersection point Q 

The useful thing about this method when considering collision detection for cloth is 

that, once a collision has been detected, it can determine whether the collision is 

between particle-particle, particle-triangle or particle-edge.  If the line considered for 

computing the collision is FD, then the algorithm can also check for edge-edge and 

triangle-triangle collision. 
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Chapter 12     Collision Response 

12.1 Introduction 

Collision detection and response are fundamental to the visual outcome of any cloth 

simulation. They are separate issues, but rely on the accuracy of each other and for 

this reason, it is important to make the distinction between the two. 

 

Collision detection is a computational geometry problem, determining whether two or 

more objects have intersected, and where these intersections have occurred. However, 

collision response is a physics problem, dealing with the energy, forces and motion of 

two or more objects after they have collided [25]. 

 

Implementing collision detection and response as part of the cloth model was crucial 

to the final appearance of the fabric.  When a collision is detected, the velocity, and 

therefore positions of the particles involved become altered, which in turn affects the 

movement and drape of the fabric.  Collision detection is an incredibly important part 

of any cloth simulation, as cloth in the “real world” will not penetrate objects or itself. 

Also, depending on the physical properties of the cloth, during movement, collisions 

will determine its behaviour.  

 

When simulating cloth, it is important to consider that there are a wide variety of 

fabrics, available, each with different physical properties.  These physical properties 

all cause the cloth to behave differently when it collides with an object. Satin is very 

smooth due to the linear direction of the fibres.  It also has a low degree of friction 

and so will slide off any object it comes into contact with. Wool however, has a high 

degree of friction, with its coarser fibres generally going in different directions. This 

will cause wool to stick to objects as opposed to sliding off them, especially if those 

objects themselves have a high degree of friction [26]. 

12.2 Response Considerations 

The cloth model selected for the application is based on the mass-spring model, which 

is a physically based model. The chosen collision response techniques have to provide 

a realistic response to the non-linear problem of the cloth drape and manipulation [3]. 
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It was also necessary that the chosen response method kept the model stable for a 

wide range of parameters. The parameters could be changed in order to demonstrate 

the various fabric types, such as satin and wool, and the different collision types, i.e. 

both cloth on cloth collisions and cloth on object collisions. It was also necessary to 

implement an algorithm that would not interfere with the physical behaviour of the 

model, through creating local instabilities or constraining the natural evolution of the 

fabric shape [26]. 

 

Once the collision detection is carried out, the collision response method gets called. 

It is based on the colliding particle, and the polygon it collides with, which could be 

on the cloth, the FBX model or on the static object model.  Using this information, 

there are various methods available for dealing with collision response.  When 

deciding on which collision is the most appropriate, there are several questions that 

need to be asked in relation to the simulation: 

• Is it rigid body or soft body dynamics that are being simulated? 

• If dealing with cloth, this is a soft body. However, the simulation may be 

dealing with cloth colliding with a rigid body. In this case, it is important to 

decide if the rigid body is static or if it will have any movement during the 

simulation. 

• How will the simulation deal with time? When there is a collision, will the 

simulation back up to the collision point or deal with the collision at the next 

time step? 

• Is the appropriate response force going to be Kinematic, Dynamic or Impulse 

[27]. 

 

A Kinematic response involves moving the colliding particle to the surface with 

which it has collided.  Its motion component, usually normal to the surface that has 

caused the collision, is negated.  This will produce an inelastic response with no 

bounce.  If the response is to be bouncy, the velocity component which is normal to 

the surface is negated. 

 

A Dynamic Penalty method involves introducing a penalty force to deal with the 

collision.  Usually in this method a spring is inserted between the particle and the 
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collision point to stop collisions.  However, this method can introduce stiff equations 

into the system, and so small time steps are needed to avoid any instabilities. 

 

The impulse method involves assuming the separation velocity of the particle is a 

normal component of the collision velocity [27].  This gives rise to the equation: 

Vs = e * Vn. 

Equation 12.2.1: Impulse method assumption 

This value is a function of linear velocity and rotational velocity.  The normal force 

gets calculated at the collision point, and so this results in the rotational velocity and 

the linear velocity being equal to the separation velocity. 

12.3 Response Implementation 

The methods that were considered for the cloth model as part of this project are 

described below.  Two of these methods have been implemented for the final model.  

1. The first is for cloth collisions with a static rigid body, and will result in a new 

velocity for the colliding particle. 

2. The second method is for cloth collisions with a rigid body that has movement 

during the simulation, and this method also results in a new velocity for the 

colliding particle. 

3. The third method is for cloth collisions with a rigid body with little or no 

movement during the simulation, and will results in a new position for the 

colliding particle. 

4. The fourth method is for cloth collisions with a rigid body, with its movement 

values disregarded, which will result in a new position for the colliding 

particle. 

12.4 Method 1 

Cloth - static rigid body collision response calculating a new velocity. 

 

This method is very effective when the cloth is moving and collides with a static 

object.  
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It is based on the theory of correcting the velocity of the colliding particles, by 

essentially reflecting the velocity from the collision to carry the particle back in the 

opposite direction. 

 

It takes in a particle, X, with a velocity V.  The particle is moving towards a plane P 

with normal N.  Two more vectors also need to be calculated to represent motion 

parallel and tangential to the collision normal. The collision normal is simply the 

normal to the plane [28]. 

Vn = normal of velocity 

Vt = tangent of velocity 

V = velocity of particle 

N = Normal to the plane and collision normal. 

Kr = restitution co-efficient 

 

Vn = (N . V)N 

Vt = V – Vn 

NewVelocity = Vt – Kr Vn 

Equation 12.4.1: Collision response Method 1 

 

The restitution coefficient will determine the amount of the normal force, Vn, which 

is applied to the resulting force. If this Kr value is 1, the collision will be totally 

elastic, however, if the value of Kr is 0, the particle will stick to its collision point. 

12.4.1 Results 

This method provides excellent results when the cloth is colliding with a stationary 

object.  However, because it does not take into consideration any information about 

the colliding object, such as its velocity, then it is not effective for collisions between 

cloth and moving polygons. 

12.5 Method2 

Cloth - moving rigid body collision response, calculating a new particle velocity. 

 

This method is used in order to deal with moving cloth colliding with a moving rigid 

body.  The principle behind this method is the transference of momentum from the 
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rigid body onto the cloth.  The velocity with which the cloth is hit, i.e. the velocity of 

the rigid body, is vital in computing the correct resultant velocity for the cloth's 

response movement.  The energy dissipated from the mechanical damping of the 

springs, or from the friction due to the surface contacts, must also be accounted for 

when using this method. 

 

Momentum is defined to be the mass of an object multiplied by the velocity of the 

object [28].  This collision response method is based on the Momentum Conservation 

Law: 

“Within some problem domain, the amount of momentum remains constant; 

momentum is neither created nor destroyed, but only changed through the action of 

forces.” [28] 

 

The algorithm is based on Newton’s Laws of Motion, and it is relatively complex. 

Dealing with momentum is more difficult than dealing with mass and energy because 

momentum is a vector quantity, so it has both magnitude and direction [28].  It must 

also be conserved in all three directions at the same time. 

 

The appropriate response velocity for the colliding particle is computed using the 

information about the particle before and after the collision, and the information about 

the polygon it has collided with, which is in the form of a triangle, before and after 

collision. Before the response is calculated, basic assumptions are made about the 

simulation: 

• The collision line is considered to be the normal line to the surface of the 

triangle at the collision point [3]. 

• Because the triangle is attached to the whole network of triangles, its mass M 

can be assumed to be much greater than that of the particle, so the triangle is 

forced to keep its velocity after the collision [3]. 

The relationship between the velocity of D, the colliding particle, and the collision 

point Q, before and after the collision are expressed using the following formulas: 

V_dk_a = -eV_dk_b + (1 – e) V_qk_b 

V_qk_a = V_qk_b 

 

K = triangle normal before collision. 
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D = colliding particle 

Q = collision point on the triangle surface. 

V_dk_b = component of velocity of D along direction K 

before collision 

V_dk_a = component of velocity of D along direction K 

after collision 

V_qk_b = component of velocity of Q along direction K 

before collision 

V_qk_a = component of velocity of Q along direction K 

after collision   

E – restitution coefficent. 

Equation 12.5.1: Collision response Method 2 

The restitution coefficient accounts for energy dissipated upon collision.  The 

algorithm calculates the information about Q, the collision point on the surface of the 

triangle, based on the triangles information.  A local co-ordinate system is defined for 

that polygon, using ABC, the triangle's vertices. 

 

The position and velocity of ABC is used to define (i, j, k, w), the vectors of the local 

co-ordinate system.  These values are then used to calculate the angular velocity of 

the triangle: 

AngVel = (velj . k) * i + (velk . i) * j + (veli . j) * k 

Equation 12.5.2: Angular velocity 

The angular velocity of the triangle is then used to calculate the velocity of the 

collision point on the triangle: 

  Vel Q = VelA + AngVel x (Q – A) 

Equation 12.5.3: Velocity of the collision point. 

These values for angular velocity and the velocity of Q are calculated for each 

collision at each time step.  Finally these values are used to calculate the new velocity 

of the particle after its collision. 
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 Vel D (after) = VelD (before) - VelDk + VelQk 

Equation 12.5.4: New velocity after collision 

Each time a collision is detected, the collision flag is set in the particle.  A reference 

to the colliding polygon is also set in the particle and after all the collision checks are 

done, the collision response method is called.  Each particle is checked, and if the 

collision flag is set, a response object is created for this particle.  The object calls the 

appropriate response methods and after the new velocity for the particle is computed, 

the collision flag is set back to false.  This value for velocity is then used during the 

next time step, resulting in the new position being calculated for the particle being 

moved away from the colliding object instead of further into it. 

 

This method also takes into account a tangent velocity for the collision.  This value 

can be used when calculating the effect of viscous damping or friction on the forces 

acting on the cloth [3]. 

12.5.1 Results 

Due to the nature of the simulation, the velocities and momentum of the cloth 

particles occasionally became too great for the collision response to adequately 

provide a resultant velocity that would pull the cloth from the model.  

 

In order to work around this issue, the following method was attempted.  From 

observations of the cloths behaviour, it was found that when the particles were 

colliding with the polygons head on, the velocities of the cloth particles were too great 

to be overcome by the new calculated velocity.  To solve this issue, a method was 

introduced to calculate the dot product of the vector of the particle going into the 

polygon, with the surface normal of the polygon.  If small, the value meant that the 

collision was head on, and so the velocity of the polygon pushing out was increased 

by a large number to counteract the velocity of the cloth particle coming in. 

 

The result appeared to have the desired effect, however this value had to be tested 

against other cloth parameters to simulate the chosen fabric type. 

12.6 Method 3 

Cloth – rigid body collisions, with position correction.  
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This method of collision response is based on the idea of calculating a new position 

for a colliding particle, using the distances between particles and the polygons, and 

the corresponding normals. 

 

The model was set up with a maximum threshold distance, which is the maximum 

distance a particle can be to the surface before a collision occurs.  If the particle gets 

closer than this threshold, the particle is sent back in the direction of the collision 

normal. 

 

First the normal component of the collision is calculated: 

Rn = N * (t – d) 

Equation 12.6.1: Normal component of collision 

Next, the method approximates a model for friction, by calculating the tangential 

component, through scaling the tangential part of the particles velocity: 

d = New Pos – Initial Position 

Dt =  d – N * (d . N) 

Rt = -cf * Dt 

Equation 12.6.2: Tangential component of particles velocity 

Finally the new position is calculated using these values: 

New Pos += Rn + Rt 

d = distance of the particle to the surface. 

Rn = normal component of the collision 

Rt = tangent component of the collision   

N = surface normal  

T = given threshold  

Dt = tangent part of particle movement vector  

Cf = friction parameter 

Equation 12.6.3: New position calculation 
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12.6.1 Results 

Correcting the position without integrating the simulation a second time to get a 

smooth corresponding velocity, resulted in popping of the particles and reduced the 

overall visual effect of the skirt. 

12.7 Method 4 

Relaxation using Verlet Integration and Jacobian or Non-Linear Gause-Siedel 

Relaxation methods [29]. 

 

This method was not implemented as part of this project, however it provides an 

interesting way of dealing with collisions, and is appropriate to include in this section.  

Cloth simulation models that implement this type of collision response use Verlet 

integration as the integration method.  Additional information on Verlet integration 

can be found in Section 9.5. 

 

The Non-Linear Gause-Siedel Relaxation method works on the following principle.  It 

uses constraints to project the particle out of the object it has collided with. This 

involves moving the point out perpendicular to the collision surface.  This method 

ensures the distance constraints between the particles are satisfied, and that cloth 

particles do not penetrate any object they collide with.  The relaxation technique 

works on each particle, translating it to a new position and satisfying its constraints. 

This is repeated until all the constraints are satisfied to within some threshold.  This is 

carried out for a set number of iterations until the relaxation threshold is reached [30]. 

 

It can be likened to inserting infinitely stiff springs between the particle and the 

collision surface.  These springs are so strong and suitably damped that instantly they 

will attain their rest length zero [29].  After an integration step, the particles positions 

could potentially have broken the distance threshold to the surface.  Therefore, in 

order to get the particles back to a position that is correct within the threshold, they 

are projected onto the equation condition that describes the infinite springs.  This is 

done by either pushing the particles together, or away from each other directly, based 

on their deviation from the threshold.  Each set of particles is iterated through and this 

method is carried out for each set locally.  This procedure of relaxation is carried out 

for a set number of iterations, until eventually all the sets of particles in the model are 

back within their threshold and the model is stable [29]. 
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Verlet integration is a finite difference method for integrating equations of motion. 

This integration method is perfect for working with the Jacobian relaxation, as there is 

no explicit velocity term to affect the data.  This results in it being far more stable 

when particles are transferred to a new position, than an integration method that 

includes velocity.  As a result, the collision response is more stable [30]. 

 

However, this technique does have its downsides. The Verlet integration requires two 

time steps during initialization hence the initial conditions are crucial, and using this 

relaxation technique can also result in slightly rubbery cloth, as the process ripples 

through the cloth. 

12.8 Collision Prediction 

When using a velocity correction method, it was felt that the simulation would benefit 

from having the collisions predicted in advance.  Anticipating collisions a step ahead 

of the current time step enables the new velocity to take effect to prevent the cloth 

from penetrating the object.  Implementing collision prediction effected not only 

collision detection and response, but also the integration methods. 

 

This method was developed by having two integration steps in each time step.  The 

first integration step calculated the new position and velocity values for the cloth, 

which was then passed into the collision detection and response.  

 

The second integration cycle calculated what the values would be at dt + 1, the next 

time step.  These values were finally passed into the collision detection to predict if a 

collision would occur at the next step.  If it was found that a collision would occur, 

the appropriate collision response was calculated. 

 

Finally, a method to update each particle would get called after all these calculations 

were made, to assign the appropriate values to the particles.  The following rules were 

applied during the assignment: 

1. If a particle is found to have no collisions either during this time step or 

predicted for the next, then it is assigned the velocity values from the first 

integration step. 
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2. If a particle is found to have collisions during this time step, then it is assigned 

the velocity values from the current step, collision response calculations. 

3. If a particle is found to have a predicted collision then its velocity is set to the 

predicted response velocity, in order to prevent the collision from occurring at 

the next time step. 

12.9 Test Environment 

A test environment was built to accurately test the collision detection and the 

appropriate collision response methods.  It consisted of a sphere with its associated 

AABB tree and a Cloth Sheet object.  The collision detection and response classes 

were unchanged from the main cloth simulation. 

 

Initially the test environment was used to test the response from collisions between 

the cloth and the polygons of the sphere.  The method was implemented for correcting 

the velocity of the cloth particles based on the collision normal and the components of 

the cloth velocities, as described in Section 12.4.  Results for this test found that 

collision response only worked when the sphere was static. 

 

To improve on these initial tests and to account for a moving rigid body, it was 

necessary to implement a response method that took account of the momentum of the 

sphere, as described in Section 12.5. 

 

The test environment allowed for greater control over collision testing by: 

• Using simple collision objects with low polygon counts 

• Adding control over the movement of the objects 

• Providing visual feedback 

• Speeding up the simulations 

Figure 12.9.1 below shows the flow chart for collision response. 

Page 60 



 

 

Figure 12.9.1: Flow chart for collision response 
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Chapter 13     Polygon Models 

13.1 Obj Loader Class 

The collision response test environment initially used a polygon sphere constructed 

from vertex data gathered from Maya™ using a simple MEL script.  In order to 

further test the collision algorithms with more complex models, it was necessary to 

construct an Obj Loader class. 

The Wavefront® .obj ASCII file format allows Maya polygonal data to be exported as 

a text file.  The following list outlines some of the data types included: 

• Vertex data 

o Geometric vertices (v) 

o Texture vertices (vt) 

o Vertex normal (vn) 

• Elements 

o Point (p) 

o Line (l) 

o Face (f) 

• Grouping 

o Group name (g) 

o Object name (o) 

 

A square polygonal face that measures one unit along each side would be described in 

an .obj file as follows: 

v 0.000000 1.000000 0.000000 

v 0.000000 0.000000 0.000000 

v 1.000000 0.000000 0.000000 

v 1.000000 1.000000 0.000000 

f 1 2 3 4 

The Obj Loader class consists of a number of switch statements and string parsing 

methods for loading an .obj file into various data arrays.  One caveat for the models 

exported from Maya™ is that they must only consist of triangular or quadrilateral 

faces.  This is due to the polygon definition used within the cloth simulation 
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application.  Figure 13.1.1 below shows the cloth sheet colliding with a polygon 

model imported from an .obj file. 

 

Figure 13.1.1: Cloth sheet and polygon model 

The Obj Loader class also contains a method for rendering the polygon model as a 

RenderMan subdivision mesh.  Additional information on RenderMan subdivision 

meshes can be found in Section 15.5. 
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Chapter 14     OpenGL Display 

14.1 Camera Class 

Although OpenGL has standard tools for setting up a camera in a scene, it was 

necessary to produce a Camera class for the application.  This class is used for the 

OpenGL and RenderMan graphics pipelines.  Figure 14.1.1 below shows the general 

form of the camera in its default position [2]. 

 

Figure 14.1.1: The camera in its default position 

The eye is positioned at the origin of an axis with the pyramid aligned to the z-axis.  

The rectangular pyramid defines the viewing volume with its opening set to the 

viewing angleθ.  The near plane and the far plane are defined perpendicular to the 

axis of the pyramid.  Two rectangular windows are formed where these planes 

intersect the pyramid and the aspect ratio of the windows can be set in the application.  

Any points within the viewing volume are projected on to the view plane and any 

points outside are clipped off. 

 

The shape of the camera’s view volume is contained in the projection matrix.  The 

transformations of the camera away from the default position are part of the 

modelview matrix.  The modelview matrix is the product of the matrix M that 

expresses the modelling transformations applied to objects and matrix V that 

expresses the transformations that position the camera.  Figure 14.1.2 over the page 

shows a coordinate system attached to the camera to define its orientation [2]. 
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Figure 14.1.2: Attaching a coordinate system to the camera 

 

The three axes of the coordinate system are usually defined by the vectors u, v and n.  

The camera looks down the negative n-axis, the v-axis points upwards and the u-axis 

points to the right. 

 

The Camera class has a series of methods to create and manage the modelview 

matrix, projection matrix and shape of a camera.  It also has methods for transforming 

the camera in space.  Although position is fairly trivial to describe, orientation proves 

more difficult.  Figure 14.1.3 below, uses the aviation terms to help specify 

orientation. 

 

Figure 14.1.3: A plane’s orientation relative to the “world” 
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• Pitch: The angle between the horizontal plane and its longitudinal axis, which 

involves a rotation about the u-axis. 

• Roll: The angle between the horizontal plane and its latitudinal axis, which 

involves a rotation about the n-axis. 

• Yaw: The angle between the vertical plane and its longitudinal axis, which 

involves a rotation about the v-axis. 

A new camera is instantiated by providing: 

• Eye: The location of the camera. 

• Look: The point that the camera is looking at. 

• Up: The up direction of the camera. 

• Information pertaining to the shape of the camera. 

n must be parallel to the eye vector, 

∴ n = eye – look 

u is perpendicular to up, 

∴ u = up × n 

v is perpendicular to u and n, 

∴ v = n × u 

Normalize u, v and n 

It is worth noting that u points to the right as viewed down the negative n-axis. 

 

As well as these three rotations a “slide” method was also implemented.  This allows 

the camera to move along its own axes providing three additional degrees of freedom. 

14.2 Cloth Object 

The cloth object is rendered as a series of polygons in the OpenGL view.  The Cloth 

class implements a simple draw method that iterates though the cloth polygons 

displaying them as OpenGL triangles.  Additionally, the draw method can display the 

cloth particles, the three different spring types and the polygon normals.  The normals 

are displayed as OpenGL lines, where the endpoints of each line are defined as the 

centroid of the polygon and the top of the normal. 
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14.3 FBX Object 

The FBX object is rendered as a series of lines in the OpenGL view. The 

FBXInterface class implements a simple draw method that iterates through all the 

FBX polygons displaying them as one continuous OpenGL line loop. 
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Chapter 15     RenderMan Rendering 

15.1 RibExporter Class 

The RibExporter class contains methods for writing RenderMan Interface Bytestream 

(RIB) file commands.  The Open method opens a stream interface to a RIB file whose 

filename is related to the current frame of the simulation. If the rendering flag is 

enabled, each frame of the cloth simulation produces a separate RIB file, which is 

essentially just a text file.  Once the relevant information has been added to the RIB 

file, the file stream is closed. 

 

The main C++ application scripts contain a render function that sets the key RIB file 

attributes.  Some of these include the file format, camera information, light sources, 

colours and calls to RIB writing methods within the Cloth and FBX Interface classes.  

A much reduced version of a RIB file is shown in Appendix E, highlighting its major 

features.  Additional information on the Cloth and FBX Interface RIB writing 

methods is given below. 

15.2 Camera Class 

One of the main reasons for implementing a Camera class was to ensure that the 

simulation scene viewed in the OpenGL window could be rendered out using Pixar’s 

RenderMan.  The Camera class includes a method to write out the camera information 

to the RIB file. 

 

The RenderMan specification requires both the position of the camera and the 

projection of the camera view onto the image.  Fortunately there are numerous 

similarities between RenderMan and OpenGL when it comes to defining cameras and 

rendering parameters. 

 

OpenGL requires the view angle, aspect ratio and near and far clipping planes to 

define the perspective projection.  This information can be used directly in the RIB 

file with the appropriate commands. 

15.2.1 Clipping 

Firstly, the clipping data is written to the RIB file using the following command. 
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Clipping nearplane farplane 

Clipping sets the near and far clipping planes that are used by RenderMan to optimise 

the perspective projections.  This command is important as the mathematics involved 

in perspective divides can waste floating point accuracy and the default values should 

be overridden [13]. 

15.2.2 Projection 

The projection data is written to the RIB file using the following command. 

Projection type parameterlist 

Projection specifies the type of camera projection and where on the projection plane 

objects in the scene will appear.  A common parameter supplied to this command is 

the field of view, which is the same value as that used for the OpenGL scene.  

Specifying a different field of view has the effect of zooming the image [13]. 

15.2.3 Scale 

The scale command is written to the RIB file using the following command. 

Scale sx sy sz 

This command is very important in the context of converting the OpenGL camera 

information to RenderMan.  This is due to the direction of the z-axis.  The positive z-

axis for OpenGL points out of the screen, whilst the positive z-axis for RenderMan 

points into the screen. Therefore to convert the handedness of the data, a scale of 

negative one in the z-axis is required. 

15.2.4 ConcatTransform 

The ConcatTransform command is written to the RIB file using the following 

command. 

ConcatTransform matrix 

ConcatTransform premultiplies the matrix parameter into the current transformation 

matrix [13].  The matrix supplied to this command contains the same sixteen floating 

point numbers as the OpenGL modelview matrix. 
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15.3 RenderMan Polygons 

The RenderMan specification implements two types of polygons – convex and 

concave.  Convex polygons fall under the heading of polygons and can be defined by 

the condition that every vertex can be connected to every other vertex by a line that 

stays within the polygon [13].  Concave polygons fall under the heading of general 

polygons and can contain indentations or holes. 

 

In addition to the polygon packaging style, RenderMan also provides polyhedra where 

sets of polygons share vertices.  Polyhedra provide the benefit of improved database 

descriptions due to the reduction of redundant vertex information of describing 

individual polygons.  Figure 15.3.1 below, shows examples of each of the four types 

of polygonal primitives. 

 

Figure 15.3.1: Examples of each of the four types of polygonal primitives 

Vertex information for a polygon is stored in a parameter list which is an array of 

floating-point 3D vertex coordinates.  For example, a square would have an array of 

twelve floating-point numbers.  Various polygon types were used in the FBX 

Interface class and are discussed in section 15.7. 

 

The Polygon command is written to the RIB file using the following command: 

Polygon parameterlist 
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The PointsPolygons command is written to the RIB file using the following 

command: 

PointsPolygons nverts vertids parameterlist 

15.4 RenderMan Parametric Patches 

Parametric patches are commonly utilised as the primitives for most RenderMan 

scenes [13].  They are four sided and have two pairs of opposing sides called 

parametric directions.  Patches are curved and hence they do not suffer from 

polygonal approximation artefacts. 

 

RenderMan implements three general primitives – bilinear patches, bicubic patches 

and non-uniform rational B-splines (NURBS).  Bicubic patches are defined by the 

cubic curves on each edge, characterized by their basis functions [13].  There are 

several basis functions built into RenderMan and additional functions can be added. 

Vertex information for a patch is stored in a parameter list in a similar manner to that 

for polygons. 

 

The Patch command is written to the RIB file using the following command: 

Patch type parameterlist 

15.5 RenderMan Subdivision Meshes 

Subdivision meshes combine some of the good properties of several of the different 

surface types.  They are smooth when compared to polyhedral meshes and they don’t 

have the limitation of having to be rectangular.  Subdivision meshes also require far 

fewer points than polyhedral meshes to produce a good quality smooth surface fit 

[13]. 

 

The SubdivisionMesh command is written to the RIB file using the following 

command: 

SubdivisionMesh scheme nverts vertids tags nargs intargs 

floatargs parameterlist 
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15.6 Cloth Object 

The Cloth class has two methods for writing the Cloth object information to the RIB 

file, one for bicubic patches and the other for a subdivision surface.  The bicubic 

patch construction algorithm simply loops through the cloth particles grouping sets of 

sixteen vertices.  The subdivision surface construction algorithm is more complex as 

the vertex information requires an additional sorting pass before writing the data to 

the RIB file. 

15.7 FBX & Obj Objects 

The FBX and Obj objects can be written to the RIB file as Polygons, PointsPolygons 

or Subdivision surfaces.  During the RIB construction process, the application passes 

a list of polygons to the RibExporter class that implements methods for each of the 

surface types.  Figure 15.7.1 shows the FBX character rendered as polygons and as a 

subdivision surface. 

 

Figure 15.7.1: FBX character rendered using polygons and subdivision surfaces 
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15.8 Rendering Process 

From the RIB file example shown in Appendix E, it is possible to see placeholders for 

certain key parameters, for example: 

Surface "__SURFACE1__" __PARAMETERS1__ 

These placeholders were replaced during the rendering process by running a bash 

script.  This method of rendering enabled multiple shaders, opacity and matte 

information to be changed without having to re-run any simulations.  Shadow mattes 

for the skirt simulation were also rendered efficiently using a similar process.  The 

bash scripts can be found in Appendix F. 

 

Figure 15.8.1 below shows a RenderMan render of the FBX character and cloth skirt. 

 

Figure 15.8.1: RenderMan render of the FBX character and cloth skirt 
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Chapter 16     Pipeline & Project Management 

16.1 Project Management 

In order to produce a completed project on time, it was important to look at some of 

the main theories of project management. 

 

Project management in the modern sense began in the early 1960’s, where businesses 

realised the benefits of organising work around projects and the need to co-ordinate 

and communicate this work between departments and professions.  The United States 

space program was one of the first organisations to employ project management. 

Project management can be summarised using the following diamond shown in 

Figure 16.1.1 below. 

 

Figure 16.1.1: Project management diamond. 

 

A project goes through four phases during its life.  These phases are briefly discussed 

with regard to this project. 

16.1.1 Project definition 

The main goal for the project was to produce a simple C++ and OpenGL application 

to simulate cloth.  Some of the objectives and critical success factors set out at the 

start of the project included implementing: 

• A mass spring model for the cloth 

• Various integration methods 

• Collision detection and response 

• The use of motion capture data 
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•  A RenderMan rendering pipeline. 

16.1.2 Project Initiation 

A number of systems were put in place before any work commenced.  These included 

timescales and deadlines for each group member, a set of project requirements, 

version control and unit testing of the code base, and strategies for dealing with 

unforeseen problems.  A large amount of research was also undertaken before any 

coding was started in earnest. 

16.1.3 Project Control 

To ensure that the project stayed on track, regular meetings, progress reporting and 

code reviews were held.  This process quickly highlighted any potential issues and 

provided reasoned solutions to any problems.  It also allowed all members of the 

group to remain familiar with the code base.  There were numerous occasions where 

an issue was quickly resolved by brainstorming and coding as a group.  This was one 

of the major strengths of the project. 

16.1.4 Project Closure 

This simply involved final review meetings, commenting of the code base and 

production of the simulation renders. 

 

Employing a number of key project management doctrines allowed the project to 

progress successfully, be monitored to minimise any potential problems, and keep the 

group members motivated.  Some of the systems that were put in place are described 

below. 

 

16.2 Version Control 

In essence, version control manages changes to information over time.  It is a well 

established tool for programmers who often make changes to software source files 

and then need to revert to previous versions.  It also allows multiple programmers to 

work on the same source files and then enables future integration of the data. 

 

Subversion [9], which is a free / open-source version control system, was selected for 

this project.  It works by placing a tree of files into a central repository.  The 
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repository acts much like a file server, except that it remembers every change made to 

a file or folder. 

 

At the start of the project, a Subversion central repository was created.  The basic 

empty folder structure for the project was imported into the repository.  Each member 

of the group then exported the project from the repository to create their own working 

copy.  At regular intervals during the development process each member would 

update their local copy, make any necessary amends and then submit these changes 

back to the repository.  Hence, Subversion uses a “copy-modify-merge” model. 

 

At the start of the project there was an issue with the repository locking and 

corrupting.  This meant that the entire repository had to be re-built and each group 

member had to export a new working copy.  Through investigation, it was discovered 

that the repository uses a series of database files to store the log messages that are 

committed each time a user submits a change.  When one of these database files 

exceeds one Megabyte of data, a new database file is created.  Due to the file 

permissions system on Linux, if a member of the group caused a new database file to 

be created, it would have file read / write permissions pertaining to that member.  The 

next time any group member attempted to run an update, Subversion would throw an 

exception and the repository would be corrupted. 

 

As the group did not have root access on the server, it was not possible to implement 

Subversion’s own server process to overcome this issue.  However, a solution was 

found by creating a Bash script that could be run every time data was submitted to the 

repository.  This basic script would check the database files in the repository created 

by the group member running the script and update any file permissions to be read / 

writable to everyone.  The bash script is shown in Appendix F.  Version control 

proved to be an invaluable tool for this project. 

16.3 Data Backups 

To reduce the risk of losing important data, daily backups of the Subversion 

repository and each group members’ working copy were made onto a portable USB 

hard drive.  Coupled with version control, this process helped to ensure the integrity 

of the data. 
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16.4 Communication & Tasks 

Communication and strategic direction are key areas that can affect the success of a 

group project.  Some of the processes that were implemented to ensure that each 

group member was kept informed and motivated are discussed in the next four 

sections. 

16.5 Project Plan 

At the start of the project, the group held a brainstorming and application design 

meeting.  After the initial application design had been agreed, a Gantt chart was 

produced showing the tasks and timescales.  This visual aid was important for keeping 

the project on track.  The Gantt chart had a few minor revisions as the project 

progressed, but did not differ substantially from the initial plan.  The final project 

Gantt chart is shown in Appendix G. 

16.6 Daily Meetings 

Every day during the project, the group would have a quick informal meeting to 

discuss what was being worked on, any potential issues and to update the project plan 

as necessary.  There was however a deliberate effort to ensure that these meetings 

were kept short and to the point. 

16.7 Code Reviews 

Regular code reviews were held during the development lifecycle of the project.  

These reviews helped to ensure the quality of the code and allowed all members of the 

group to have a shared understanding of the application. 

16.8 Pair Programming 

Towards the end of the project, the relatively recent practise of pair programming was 

used.  This involves two software developers working side-by-side at one computer, 

collaborating on the same algorithm, design or test.  This process improved the shared 

understanding of the application, often produced higher quality code and sped up bug 

fixing. 

16.9 Unit Testing 

Unit testing was used increasingly during the project to isolate separate components 

of the application.  One of the main areas where it was used was in testing the 

collision detection and response classes.  Developing and debugging these classes 
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with the FBX data, skirt cloth object and collisions enabled would have been a slow 

process.  To overcome these difficulties a unit test was developed by implementing 

the following. 

• Sphere class: A polygon sphere was created in Maya™ from Alias® and a 

simple MEL script was used to obtain the vertex information.  The vertex data 

was used in the Sphere class constructor to create a polygon sphere.  This 

method of creating the sphere object was used before the Obj Loader class was 

created.  The Sphere class also had basic methods for drawing and moving the 

sphere in the OpenGL window. 

• Simple Cloth Object: A simple square cloth object was defined with 

considerably less polygons than the skirt object. 

By using the simple polygon objects it was possible to provide real-time visual 

feedback.  By drawing the axis aligned bounding boxes, colour coding the collision 

points and from the movement of the cloth, it was possible to quickly test and 

implement various methods in the collision classes.  Another important feature of unit 

testing is its ability to separate interface from implementation.  By testing the collision 

classes by this means, it is possible to minimise the dependencies within this complex 

area of the application. 
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Chapter 17     Cloth Shaders 

17.1 Introduction 

As part of the project, several RenderMan shaders were created to texture the cloth 

models.  This was necessary to enhance the visual appearance of the cloth, and to give 

the viewer a clue as to the type of fabric the model was simulating.  There are several 

parameters that can be changed within the cloth model, which result in behaviour that 

would be typical of a particular type of cloth.  These include increasing the springs to 

a high degree of stiffness, which will cause the cloth to behave like wool, however if 

the cloth is given a high degree of elasticity, it behaves more like Lycra™. 

 

The shaders created for the cloth include two types of wool, satin, velvet, Lycra™, 

and tartan.  The following sections detail the structure of the RenderMan shaders. 

17.2 Wool 1 

The appearance of the first wool shader is to simulate a stiff, knitted skirt.  Woollen 

textures are slightly more complex than woven fibres [32].  The knit is visible through 

the pattern, so to achieve this effect, the shader is composed of two parts; procedural 

pattern generation, and an imported texture file. 

 

The texture file is simply a magnified image of a swatch of woven wool.  It was 

converted to the RenderMan .tx file format, which is standard for RenderMan texture 

files.  It was then used as a bump map to give the impression of knitted fabric. 

 

The stripe pattern is generated based on the s and t coordinates of the current point 

being shaded.  These coordinates are multiplied by a frequency value which is then 

used to generate a noise value (separate ones for the s and t direction).  These values 

generate the stripes and are then used to blend between the colours of the stripes on 

the skirt. 

 

The two sets of stripes are generated (horizontal and vertical) and then added together.  

The stitching texture is then multiplied by this value to give it the textured 

appearance.  Figure 17.2.1 below shows the wool 1 shader. 
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Figure 17.2.1: Wool 1 Shader 

17.3 Wool 2 

The second wool shader is based on the heavy woven wool fabric that is used in 

tailoring suits and skirts.  It also takes in a texture file, however this time it is taken in 

as float values instead of colour values.  These float values are used in the bump 

mapping to generate the appearance of threads.  

 

The colour of the threads is generated using two mix functions, and the colours are 

mixed based on pseudo-noise values generated by dividing the t component by the s 

component or the s component by the t component.  

 

The resulting value is multiplied by a high frequency number and then used to 

generate the noise value.  The two colours from the mix functions are multiplied 

together along with the float value from the texture file.  Figure 17.3.1 below shows 

the wool 2 shader. 
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Figure 17.3.1: Wool 2 shader 

17.4 Tartan 

The tartan shader is generated using the same technique as the method used to create 

the stripe pattern on the wool shader.  The s and t coordinates of the current point 

being shaded are multiplied by a large frequency value, and are then used to generate 

a noise value.  This is performed separately for the s and t directions, and these values 

are used to generate the different stripes and blend between the colours.  Figure 17.4.1 

below shows the tartan shader. 

 

Figure 17.4.1: Tartan shader 
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17.5 Satin 

Satin fabric appears very smooth and tactile.  It is recognizable because of its light 

reflectance properties; it is highly reflective, and if it is blended from fibres of 

different colours, its appearance can change colour in the light [33]. 

 

The Satin shader is a modified version of the anisotropic shader from Essential 

RenderMan [34].  Anisotropic surfaces reflect their light in one direction and so an 

important part of the shading calculations are based on the lights in the scene.  It 

utilises an illuminance loop, which loops through each light in the scene for the 

current point on the cloth being shaded.  This then calculates the shine of the fabric 

based on the reflectance properties of satin material. 

 

Anisotropic materials reflect the light according the direction of their threads.  In 

satin, all the threads are facing the same direction, so the resulting light reflection is 

all in the same direction.  This gives satin its smooth appearance.  In order to 

reproduce this in a shader, the lights in the scene need to be broken down and each 

light needs to be considered separately.  Every time around the illuminance loop, the 

angle of the light hitting the cloth and its reflected ray is calculated, by computing the 

dot product of the incident ray and the ray towards the viewer. 

 

The direction of these threads is considered to be the u direction. When the material is 

at a 90 degree angle to the light, the brightness will be at its greatest.  Therefore, the 

size of the angle between the incident ray and the surface normal is included so the 

areas of higher reflectance can be calculated.  The size of this angle is then also used 

to blend between different colours to generate a specific shine colour.  Figure 17.5.1 

over the page shows the satin shader. 
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Figure 17.5.1: Satin shader 

17.6 Lycra™ 

Lycra™ fibres are incredibly elastic and are always blended with other fibres to create 

Lycra™ fabric.  It is durable and stretchy, and often the elastic fibres in the cloth 

cause shininess due to the light reflecting off them [32]. 

 

In order to simulate this fabric, the shader was broken into two parts.  It is composed 

of a texture file, used to generate a subtle bump map, which is then in turn used in an 

illuminance loop to calculate the reflectance. 

 

The texture file is simply a cross hatching to give the appearance of microscopic 

stitching.  The information read in from this file is then used to create a bump map, 

which calculates a new value for the surface point PP and its normal. These values are 

then passed into an illuminance loop. 

 

The illuminance loop takes the dot product of the new normal from the bump map and 

the vector in the direction of the viewer.  This is then used to calculate the reflectance 

angle.  When the light shines on areas that are specific values from the texture file, 

they change colour between the fabric colour and the colour of the underlying elastic 

threads.  These colours are parameterized and can be passed in to the shader by the 

user.  Figure 17.6.1 below shows the Lycra™ shader. 
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Figure 17.6.1: Lycra shader 

17.7 Velvet 

Velvet is a rich soft fabric, in which the cut threads are evenly distributed, with a short 

dense pile that gives its distinctive feel [35].  Velvet can be made from any fibre, and 

the sheen from the threads depends on their orientation. 

 

The surface shader for velvet is based on the orientation of the light to the surface and 

the way it is reflected.  Despite the threads being cut evenly, the surface of velvet is 

bumpy, so the light is scattered.  However the treads are smooth which means the 

falloff of light is smooth with the edges being very soft. 

 

In order to produce this effect with a shader that will have a noticeable sheen 

depending on its orientation to the light, an illuminance loop must be used to get the 

values of each light in the scene. 

 

Initially, the derivative of the surface point P along the u direction is found and 

normalized.  This value is then used in the illuminance loop, to calculate the angle 

between the fibres along the u direction and the light reflectance vector towards the 

user.  This angle is then multiplied by a reflectance value and a highlight value 

resulting in the sheen value [36]. 

 

Next the scattering is calculated using the angle between the surface normal and the 

vector in the direction of the viewer.  The size of this angle determines how much 
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scatter the viewer can see and is added to the sheen value.  Figure 17.7.1 shows the 

velvet shader. 

 

Figure 17.7.1: Velvet shader 
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Chapter 18     Conclusion 

The cloth simulation project undertaken was a success.  A motion capture driven CG 

model wearing a skirt was successfully simulated in an OpenGL environment and 

exported to RIB files for rendering in a RenderMan compliant renderer.  After two 

weeks of independent research, the entire application was implemented in six weeks.  

Two successful renders of a stable clothed CG model have been produced as well as 

two test renders of a sheet interacting with a static arbitrary object. 

 

The application has scope for extension and improvement.   A more robust collision 

framework could be implemented to eradicate any cloth / model intersections; a user 

interface could be developed as a front end for more flexible interactivity with the 

cloth simulation, motion capture driven model and the computer generated 

environment; and aerodynamics and the ability to stitch panels of cloth together 

would allow for the creation of more interesting items of clothing.  Finally, an implicit 

integration solver would allow for more dynamic FBX data to be used during 

simulation due to its increased stability.  

 

Excellent group dynamics, communication and project management meant that 

milestones were routinely achieved and weekly reviews and pair programming 

allowed for efficient and effective problem solving.  Ultimately, hard work and 

motivation from all members of the team has resulted in a highly successful project. 
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Chapter 21     Appendix A 

21.1 Class Diagram 

The details for each class are shown in the following four pages. 
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Chapter 22     Appendix B 

22.1 OpenGL View of the Cloth Sheet’s Springs 

 

22.2 OpenGL View of the Cloth Sheet’s Polygons 
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Chapter 23     Appendix C 

23.1 OpenGL View of the Cloth Skirt’s Springs 

 

23.2 OpenGL View of the Cloth Skirt’s Polygons 
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Chapter 24     Appendix D 

24.1 Derivations for implicit integration 

An element Kij is a 3x3 matrix in the K3nx3n matrix which is derived for each of the 

three pairs of vertices in a triangular element and represents the change  in the force at 

vertex i with respect to the position of vertex j. 

 

So: 

 

Kij = ∂fi / ∂xj = -k ( (∂C(x)/∂xi) * (∂C(x)T / ∂xj) + (∂2C(x) / ∂xi∂xj) * C(x) ) (equation 

1) 

If: 

 

fi = ( fix, fiy, fiz ) 

xj = ( xj, yj, zj ) 

 

Then: 

 

Kij = ∂fi/∂xj = [∂fix/∂xj, ∂fix/∂yj, ∂fix/∂zj, ∂fiy/∂xj, ∂fiy/∂yj, ∂fiy/∂zj, ∂fiz/∂xj , ∂fiz/∂yj, 
∂fiz/∂zj) (equation 2) 

 

Given the energy function which is derived from conditional functions: 

 

EC = k/2 * C(x)TC(x) 

     = k/2 * ∑n
i=1 C(i)(x)TC(i)(x) 

     = k/2 * ∑n
i=1 (C(i)

n)2 + (C(i)
n)2 (equation  3) 

 

Now for all the triangles M that contain the vertex i: 

 

fi = - (∂EC/∂xi) = -k * ∑M [(∂C(M)
u / ∂xi)*C(M)

u + (∂C(M)
v / ∂xi)*C(M)

v] (equation  4) 

 

For any other triangle, the Kth triangle, that does not contain the ith vertex: 

 

∂C(K)/∂xi = 0 
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Now if N is the index of all the triangles which contain both vertex i and j: 

 

Kij = -k * ∑N [(∂C(N)
u/∂xi) * (∂C(N)T

u/∂xj) + (∂C(N)
v/∂xi) * (∂C(N)T

v/∂xj) + 

(∂2C(N)
u/dxidxj) * C(N)

u + (d2C(N)
v/∂xi∂xj) * C(N)

v] (equation 5) 

 

To obtain the derivatives defined in equation 5: 

 

C(I)(x) = a * (C(I)
u(x)) 

                    (C(I)
v(x)) 

 

C(I)(x) = (a (WuTWu)1/2 – abu) 

              (a (WvTWv)1/2 – abv) 

 

∂C(I)
u(x)/∂xi = ∂[ a(WuTWu)1/2 – abu ] / ∂xi  

                                 = a * ∂[  a(WuTWu)1/2 ] / ∂xi (equation 6) 

 

Using the chain rule: 

 

                    = (½) * a * (1/(WuTWu)1/2) * ∂(WuTWu)/∂xi 

 

Wu
TWu  can be solved from equation BLAH. 

 

Wu
TWu = ( 1 / ∆u1∆v2 - ∆u2∆v1 )2 * [ ∆v2

2∆x1
T∆x1 – 2∆v1∆v2∆x1

T∆x2 + ∆v1
2∆x2

T∆x2] 

 

Now, recall that each triangle has three vertices defined as XI, XJ and XK.  This means 

that for  ∂C(I)u / ∂xi, ∂C(I)v / ∂xj, ∂2C(I)u / ∂xixj, ∂2C(I)v / ∂xixjthere are three cases to be 

solved for. 

 

Solving for ∂C(I)u / ∂xi: 

 

Case 1:  xi refers to XI in the triangle: 

 

It is known: 
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∆X1 = XJ – XI 

∆X2 = XK – XI 

 

Since the partial derivation is for XI: 

 

∂∆x1 / ∂xi = ∂x1 / ∂XI = [ -1, 0, 0, 0, -1, 0, 0, 0, -1 ] 

∂∆x2 / ∂xi = ∂x2 / ∂XI = [ -1, 0, 0, 0, -1, 0, 0, 0, -1 ] 

 

Therefore: 

 

∂(WuTWu) / ∂xi = (1 / ∆u1∆v2 - ∆u2∆v1 )2 * [-2∆v2
2∆x1 + 2∆v1∆v2∆x2 + 2∆v1∆v2∆x1 - 

2∆v1
2∆x2 ] 

 

Substituting equation 6 we have solved for ∂C(I)u / ∂xi for XI: 

 

∂C(I)u / ∂xi = a(1 / (WuTWu)1/2) * (1/ ( ∆u1∆v2 - ∆u2∆v1) 
2) * ((-∆v2

2 + ∆v1∆v2)∆x1 + (- 

∆v1
2 + ∆v1∆v2)∆x2))  

 

Case 2:  xi refers to XJ in the triangle: 

 

Since the partial derivation is for XJ: 

 

∂∆x1 / ∂xi = ∂x1 / ∂XJ = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] 

∂∆x2 / ∂xi = ∂x2 / ∂XJ = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

 

Substituting equation 6 we have solved for ∂C(I)u / ∂xi for XI: 

 

∂C(I)u / ∂xi = a(1 / (WuTWu)1/2) * (1/ ( ∆u1∆v2 - ∆u2∆v1) 
2) * (∆v2

2∆x1 - ∆v1∆v2∆x2)  

 

Case 2:  xi refers to XJ in the triangle: 

 

Since the partial derivation is for XK: 
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∂∆x1 / ∂xi = ∂x1 / ∂XK = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

∂∆x2 / ∂xi = ∂x2 / ∂XK = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] 

 

Substituting equation 6 we have solved for ∂C(I)u / ∂xi for XK: 

 

∂C(I)u / ∂xi = a(1 / (WuTWu)1/2) * (1/ ( ∆u1∆v2 - ∆u2∆v1) 
2) * (∆v1

2∆x2 - ∆v1∆v2∆x1)  

 

Solving for ∂2C(I)u / ∂xixj: 

 

For Case 1 of ∂C(I)u / ∂xi : 

 

∂C(I)u / ∂xi = a(1 / (WuTWu)1/2) * (1/ ( ∆u1∆v2 - ∆u2∆v1) 
2) * ((-∆v2

2 + ∆v1∆v2)∆x1 + (- 

∆v1
2 + ∆v1∆v2)∆x2))  

 

For simplification, this can be rewritten as: 

 

d = [ a / ( ∆u1∆v2 - ∆u2∆v1) 
2 ] 

e(x) = [ (-∆v2
2 + ∆v1∆v2)∆x1 + (- ∆v1

2 + ∆v1∆v2)∆x2
 ] 

 

Therefore: 

∂C(I)u / ∂xi = (d / (WuTWu)1/2) * e(x) 

 

Using substitution: 

 

∂2C(I)u / ∂xixj = (∂ / ∂xj) * (∂Cu / ∂xi) 

          = (∂ / ∂xj) * d * e(x) * (WuTWu)-1/2 + (d / (WuTWu)1/2) *  (∂e(x1) / ∂xj) 

                     = (-1/2) * (WuTWu)-3/2 * d * e(x) * (∂(WuTWu) / ∂xj) + (d / (WuTWu)1/2 * 

(∂e(x1) / ∂xj) 

 

To derive (∂e(x1) / ∂xj) 

 

(∂e(x) / ∂xj) = ∂[ (-∆v2
2 + ∆v1∆v2)∆x1 + (- ∆v1

2 + ∆v1∆v2)∆x2
 ] / ∂xj 

 

This in turn needs to be solved for three cases: 
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Case 1.1: where xj is XI 

 

∂∆x1 / ∂xj = ∂∆x2 / ∂xj = [ -1, 0, 0, 0, -1, 0, 0, 0, -1 ] 

 

We can now calculate: 

 

(∂e(x) / ∂xj) = (∆v1 - ∆v2)2 

 

Case 1.2: where xj is XJ 

 

∂∆x1 / ∂xj = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] 

∂∆x2 / ∂xj = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

 

We can now calculate: 

 

(∂e(x) / ∂xj) = (∆v1∆v2 - ∆v2
2) 

 

Case 1.3: where xj is XK 

 

∂∆x1 / ∂xj = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

∂∆x2 / ∂xj = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] 

 

(∂e(x) / ∂xj) = (∆v1∆v2 - ∆v1
2) 

 

Finally, Case 2 and Case 3 of ∂C(I)u / ∂xi can be solved for ∂2C(I)u / ∂xixj in the same 

way. 
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Chapter 25     Appendix E 

25.1 Reduced Version of a Simulation RIB File 

 
#====================================================== 
# Script: ribFiles/sheet_807.rib 
# Author: Rib generated from Cloth Simulator 
# Description: Parameters and bicubic patches for 
# cloth simulation object 
#====================================================== 
 
 
#====================================================== 
# Initialise display parameters 
#====================================================== 
Display "./renders/sheet_807.tiff" "file" "rgba" 
 
#====================================================== 
# Initialise camera parameters 
#====================================================== 
Clipping 1 24000 
Projection "perspective" "fov" [60] 
Scale 1 1 -1  
ConcatTransform [ 0.995054 0.0616784 0.0778465 0 0 0.783798 -0.621009 
0 -0.0993196 0.617937 0.779921 0 -7.10949 0.412747 -187.418 1 ] 
Format 720 576 1 
 
#====================================================== 
# The geometry and lighting 
#====================================================== 
WorldBegin 
 
LightSource "distantlight" 1 "intensity" [ 0.8 ] "lightcolor" [ 1.0 
1.0 1.0 ] "from" [ 20 40 60 ] "to" [ 0 0 0 ] 
 
LightSource "shadowspot" 2 "shadowname" [ "__SHADOWMAP__" ] 
"intensity" [ 40000 ] "coneangle" [90] "conedeltaangle" [1] 
"lightcolor" [ 1.0 1.0 1.0 ] "from" [ 170 250 0 ] "to" [ 0 0 0 ]  
 
TransformBegin 
 
AttributeBegin 
 
Color [0.7 0.7 0.7] 
 
Surface "__SURFACE1__" __PARAMETERS1__ 
 
Opacity [__OPACITY1__] 
 
Matte __MATTE1__  
 
#====================================================== 
# Obj Object 
#====================================================== 
SubdivisionMesh "catmull-clark" [ 3 3 3 ……………………… 
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AttributeEnd 
 
AttributeBegin 
 
Color [0.21 0.43 0.57] 
 
Surface "__SURFACE2__" __PARAMETERS2__ 
 
Opacity [__OPACITY2__] 
 
Matte __MATTE2__  
 
#====================================================== 
# Cloth Object 
#====================================================== 
SubdivisionMesh "catmull-clark" [ 3 3 3 ……………………… 

 

AttributeEnd 
 
AttributeBegin 
 
Color [0.21 0.43 0.57] 
 
Surface "__SURFACE3__" __PARAMETERS3__ 
 
Opacity [__OPACITY3__] 
 
Matte __MATTE3__  
 
#====================================================== 
# Environment Object 
#====================================================== 
PointsPolygons [ 3 3 3 ……………………… 

 

AttributeEnd 
 
TransformEnd 
 
WorldEnd 
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Chapter 26     Appendix F 

26.1 Bash Script to Fix the Subversion Log File Issues 

#!/bin/bash 
 
########################################################## 
# Script: fixSvnLog.sh 
# Author: Gavin Harrison <gavin@gavinharrison.co.uk> 
# Abstract: Finds all files with $USER and changes their 
# file permissions. 
########################################################## 
 
# Counter 
counter=0 
 
# List all files with the relevant username 
for i in $(find /masters/gharrison/subversionRepos/db/ -user $USER -
type f); do 
 
 # Change the file permissions 
 chmod 777 $i 
 
 # Increment the counter 
 counter=`expr $counter + 1` 
 
done 
 
echo "Number of files amended: " $counter 
 
 
 
 

26.2 Bash Script to Render the Sheet Simulations 

#!/bin/bash 
 
########################################################## 
# Script: rmSheet.sh 
# Author: Gavin Harrison <gavin@gavinharrison.co.uk> 
# Abstract: Opens Renderman RIB files with a filename 
# starting with "sheet_" and sets the surface 
# parameters, opacity and matte, then renders 
# 
# Note: Had issues supplying variables to sed, hence the 
# hard-coded surface and parameter values 
########################################################## 
 
# Counter 
counter=0 
 
# List all the filenames starting with "sheet_" 
for i in $(ls sheet_*); do 
 
# Get number 
number='sheetShadow_'${i:6:3}'.shad' 
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  # Open the file, substitute the surface and parameter values, 
opacity and matte, then render 
  cat $i | sed 's/__SHADOWMAP__/'$number'/g' \ 
      | sed 's/__SURFACE1__/plastic/g' | sed 's/__PARAMETERS1__//g' \ 
      | sed 's/__OPACITY1__/1.0 1.0 1.0/g' \ 
      | sed 's/__MATTE1__/0/g' \ 
      | sed 's/__SURFACE2__/tartan2/g' | sed 's/__PARAMETERS2__//g' \ 
      | sed 's/__OPACITY2__/1.0 1.0 1.0/g' \ 
      | sed 's/__MATTE2__/0/g' \ 
   | sed 's/__SURFACE3__/plastic/g' | sed 's/__PARAMETERS3__//g' 
\ 
      | sed 's/__OPACITY3__/1.0 1.0 1.0/g' \ 
      | sed 's/__MATTE3__/1/g' \ 
      | render 
 
  # Print the count 
  echo "Rendered frame: " $counter 
 
  # Increment the counter 
  counter=`expr $counter + 1` 
 
# Finished 
done 
 
 
 
 

26.3 Bash Script to Render the Skirt Simulations 

#!/bin/bash 
 
########################################################## 
# Script: rmSkirt.sh 
# Author: Gavin Harrison <gavin@gavinharrison.co.uk> 
# Abstract: Opens Renderman RIB files with a filename 
# starting with "skirt_" and sets the surface 
# parameters, opacity and matte, then renders 
# 
# Note: Had issues supplying variables to sed, hence the 
# hard-coded surface and parameter values 
########################################################## 
 
# Counter 
counter=0 
 
# List all the filenames starting with "skirt_" 
for i in $(ls skirt_*); do 
 
# Get number 
number='skirtShadow_'${i:6:3}'.shad' 
 
  # Open the file, substitute the surface and parameter values, 
opacity and matte, then render 
  cat $i | sed 's/__SHADOWMAP__/'$number'/g' \ 
      | sed 's/__SURFACE1__/plastic/g' | sed 's/__PARAMETERS1__//g' \ 
      | sed 's/__OPACITY1__/0.0 0.0 0.0/g' \ 
      | sed 's/__MATTE1__/1/g' \ 
      | sed 's/__SURFACE2__/velvet/g' | sed 's/__PARAMETERS2__//g' \ 
      | sed 's/__OPACITY2__/1.0 1.0 1.0/g' \ 
      | sed 's/__MATTE2__/0/g' \ 
   | sed 's/__SURFACE3__/plastic/g' | sed 's/__PARAMETERS3__//g' 
\ 
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      | sed 's/__OPACITY3__/0.0 0.0 0.0/g' \ 
      | sed 's/__MATTE3__/1/g' \ 
      | render 
 
  # Print the count 
  echo "Rendered frame: " $counter 
 
  # Increment the counter 
  counter=`expr $counter + 1` 
 
# Finished 
done 
 
 
 
 

26.4 Bash Script to Render the Skirt Simulation Shadows 

#!/bin/bash 
 
########################################################## 
# Script: rmSkirtShadow.sh 
# Author: Gavin Harrison <gavin@gavinharrison.co.uk> 
# Abstract: Opens Renderman RIB files with a filename 
# starting with "skirtShadow_" and renders 
# 
# Note: Had issues supplying variables to sed, hence the 
# hard-coded surface and parameter values 
########################################################## 
 
# Counter 
counter=0 
 
# List all the filenames starting with "skirtShadow_" 
for i in $(ls skirtShadow_*); do 
 
  # Open the file and render 
  cat $i | render 
 
  # Print the count 
  echo "Rendered shadow frame: " $counter 
 
  # Increment the counter 
  counter=`expr $counter + 1` 
 
# Finished 
done 
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Chapter 27     Appendix G 

27.1 Project Plan 
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27.2 Project Plan (Continued) 
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