
COLOUR MANAGEMENT AND SPECTRAL RAY TRACING

MASTERS THESIS

A DEVELOPMENT OF THE TRADITIONAL RAYTRACER TO
INCORPORATE PHYSICAL TREATMENT OF LIGHT ACTING

AS ELECTROMAGNETIC WAVES

Figure 1: Refractive Glass Cube

LUCY WARD

N.C.C.A. BOURNEMOUTH UNIVERSITY

2nd September 2005

1


COLOUR MANAGEMENT AND SPECTRAL RAY TRACING...1
MASTERS THESIS...1

N.C.C.A. BOURNEMOUTH UNIVERSITY ...1
2nd September 2005...1

CONTENTS..2

LIST OF FIGURES...5

LIST OF TABLES ..6

LIST OF EQUATIONS...7

CHAPTER 1 INTRODUCTION..8

2.1 INTRODUCTION...9
2.2 HISTORY OF RAY TRACING..9
2.3 WHY COLOUR MANAGEMENT WAS DEVELOPED..9

Methodology for image storage and display :...10
ideal methodology: ...10
current practice:..10

CHAPTER 3. TECHNICAL BACKGROUND...11

3.1 RAY TRACING ...11
3.2 PHYSICS OF LIGHT..11

Refraction and Reflection..12
Total Internal Reflection..12
Absorption, Reflection and Transmission..12

3.3 MATERIAL PROPERTIES...13
3.4 SPECTRAL POWER DISTRIBUTION (SPD)...13

CHAPTER 4. SOLUTION..14

4.1 READING THE LIGHT AND MATERIAL DATA...14
The Light Data File..14
The Material Data File...14

4.2 PARSER...15
Class Diagram...15

Pushing data...16
Retreiving data...16

4.3 COLOUR MANAGEMENT ...16
where xr, yr, zr are the chromaticity coordinates of the red phosphor, xg, yg, zg of the green and
xb, yb and zb of the blue.[] ...16

4.3.1 CALCULATING THE RGB VALUES..17
4.3.2 Colour scaling and correction...17

Chosen Scaling Method ..17
Gamma Correction...17

4.4 READING IN THE SCENE FILE...18
4.5 SPECTRAL RAY TRACER EXTENSION...19
4.5.1 SPLITTING THE RAYS..19

4.5.2 Refraction of each ray..20
4.6 LIGHT INTERACTION WITH OBJECTS IN THE SCENE..21

4.6.1 Fresnel..22
4.7 THE CORNELL SCENE...23

Metamerism..23
Additive Mixture..23

4.8 THE PRISM SCENE...24
4.8.1 Spotlight..24

2

4.8.2 Prism...25
4.9 LENS ..26

4.9.1 Chromatic Aberration..27

5. CONCLUSIONS AND FUTURE WORK...29

6. APPENDIX A...30

Example of the light data used to find the light’s overall intensity and colour...................................30
Example of the material data used to find the material’s overall intensity and colour.......................31

APPENDIX B...32

CHAPTER 7. REFERENCES...34

CONTRIBUTIONS AND CHANGES..34
Files added to original Raytracer...34

BIBLIOGRAPHY..35

3

List of Figures

FIGURE 1: REFRACTIVE GLASS CUBE..1

FIGURE 2: COLOUR HANDLING PIPELINES..8

FIGURE 3: CLASSICAL RECURSIVE RAY TRACING [REF]..9

FIGURE 4 : REFRACTION...10

FIGURE 5: RGBSTACK CLASS DIAGRAM..13

FIGURE 6: COLOUR BANDING...16

FIGURE 7: TOTAL COLOUR OF LIGHT SPLIT INTO N RAYS..18

FIGURE 8: GRAPH OF INTENSITIES OF LIGHT...21

FIGURE 9: SIMILAR COLOURED OBJECTS ACTING SEPARATELY UNDER VARYING
LIGHTING...22

FIGURE 10: PRISM..22

FIGURE 11: PRISM DIMENSIONS...23

FIGURE 12 : RAY PASSING THROUGH PRISM...24

FIGURE 13: CHROMATIC ABERRATION OF A LENS...25

FIGURE 14: CHROMATIC ABERRATION WHEN LIGHT SPLIT INTO 3 RAYS...................25

4

List of Tables

TABLE 1: PLANES OF THE PRISM...23

5

List of Equations

EQUATION 1: SNELL'S LAW OF REFRACTION...10

EQUATION 2: TOTAL INTERNAL REFLECTION...10

EQUATION 3 : XYZ CALCULATION FROM SPD..11

6

Chapter 1 Introduction

This thesis outlines the design and implementation of a spectral extension to a ray tracer. The extended
program handles the behaviour of light with improved physical accuracy. The developed ray tracer can
handle refraction and splitting of light such as is seen in a rainbow or prism.

The first part of the project is a colour management system. Light and material data are converted from
physical tables of spectral intensities, into the standard CIEXYZ colour space, and then from XYZ into
RGB colour space. This system needed to maintain a degree of accuracy not usually required by
standard ray tracers because the light needed to behave with more physical accuracy when interacting
with the objects in the scene.

The second phase of the project was to develop the ray tracer, provided by Jon Macey [06HIL] to
handle spectral light properties. A standard ray tracer casts a single ray for each pixel. The solution
implemented casts a bundle of rays. These rays split up the light information to span the visible
spectrum. The change in refractive index with frequency was implemented, making it possible to
simulate prismatic effects and chromatic aberrations.

Chapter 2 briefly introduces ray tracing and colour management. Chapter 3 briefly describes the
process of ray tracing, the physics of refraction and reflection and colour handling. Chapter 4 describes
the program, how it works and problems that arose. Chapter 5 details what extra work could be done to
improve the ray tracer.

The Appendices include an example of the light and material file.

The HTML and pdf documentation of the programs is presented in the C.D. at the end of this
document.

7

Chapter 2. Previous Work

2.1 Introduction

To create a spectral ray tracer the light frequency data is converted into RGB using the colour
management system. The light needs to be divided into a number of rays to represent electromagnetic
waves acting independently with varying frequency. The average colour of each ray, calculated from
averaging the spectral intensities for each ray needs to be determined, and scaled in intensity. For
instance, if the light is very blue, with little red, the ray which covers the blue end of the spectrum will
need to be more intense than the red. Once each ray’s colour is determined each ray is traced through
the scene separately then the colours from each ray is combined to create the final image.

Jon Macey provided a ray tracer, based on F.S. Hill’s book on Computer Graphics using OpenGL
[06HIL], which was then adapted to cope with the extra rays. A Colour Management system also
needed to be implemented to treat the light correctly.

2.2 History of Ray Tracing

Ray tracing is a realistic way of rendering images. It traces the path of a ray of light as it moves
through the scene, calculating the reflection, refraction or absorption of a ray when it hits an object.
Because of the structure of ray tracing it is simple to implement reflection and shadows, which are less
straightforward in other rendering methods.

For each pixel on the screen a ray is shot directly into the scene until it hits an object. The pixel is
given a colour, determined by the material properties and the interaction of the light with the object.

Scientists at the Mathematical Applications Group, Inc in New York in the late sixties were the first to
use ray casting for computer graphics by calculating how the rays bounced off surfaces and penetrated
objects and refracted within. Initially the ray casting was used to help the government with military
applications, but the company set up a commercial animation studio in 1972, using ray casting to
produce films and commercials. These first ray tracers only sent one ray into the scene per pixel, and
the process didn’t recurse to produce more rays upon hitting a surface.

Turner Whitted made the next big jump in 1979 when he extended the ray tracer to carry the ray on
when it hit a surface, with reflection, refraction and shadow rays.[13WIL]

Ray tracing is limited because it traces rays from the camera, the opposite direction to the rays of light.
This leads to problems with caustics and diffuse light calculations. Due to this constraint other methods
have been developed, such as radiosity algorithms which produce photon maps. These send out
photons from the light source, and have the disadvantage of being very slow and wasteful, as the whole
scene is traced, including areas not seen from the camera.

2.3 Why colour management was developed
In the CG industry it is important that colour can accurately be reproduced on different monitors,
printers and screen with consistent results. The transformations required to keep the colour consistent
when using different devices require tables, equations and other tricks.

8

Methodology for image storage and display :

ideal methodology:

current practice:

Figure 2: Colour handling pipelines [05HAL]

Monitors vary significantly in colour characteristics of their phosphors, and the amount of light emitted
for a particular applied voltage.

CIE, the Commission Internationale d’Eclairage system of colourimetry is the standardised method of
representing colour. The CIEXYZ space is the colour space to which display monitors can be
calibrated. From this colour space the correct colours of the image can be calculated taking into
account the method of display, such as the printer or monitor, which will have varying white points,
and display colour with differing linearity. [05KIN]

9

spectrally
sampled image
computation

sampled to
RGB

RGB
Compression

RGB file monitor
display

RGB image
computation

RGB clamp
or scale

RGB file Gamma
correction
(lookup

monitor
display

Chapter 3. Technical Background

3.1 Ray tracing

When a light hits the surface it generates a possible three more rays, a reflected ray, a refracted ray and
a shadow ray.

The reflected ray is traced until it hits another object in the scene, and the colour of the second object
where it is hit is multiplied by how reflective the object is and added to the pixel colour. A refracted
ray travels through the object and the colour when it next hits a surface is added, multiplied by how
transparent the object is. The shadow ray is a ray traced between the hit point on the surface and the
light. It tests whether the surface is visible to the light by checking if there is any opaque object
between the surface and the light.

For each pixel in image
{
 Create ray from eyepoint passing through this pixel

Initialize nearestT to INFINITY and NearestObject to NULL

 For every object in scene
{
 If ray intersects this object
 {
 If t of intersection is less than NearestT
 {
 Set NearestT to t of the intersection

Set NearestObject to this object
}

}
}

 If NearestObject is NULL
{

 Fill this pixel with background color
}
Else
{

Shoot a ray to each light source to check if in shadow
If surface is reflective, generate reflection ray: recurse
If transparent, generate refraction ray: recurse
Use NearestObject and NearestT to compute shading function

 Fill this pixel with colour result of shading function
 }
}

Figure 3: Classical recursive ray tracing [13HIL]

3.2 Physics of Light
Light is the small, visible, part of the electromagnetic radiation. Electromagnetic radiation acts both as
a particle, photon, and a wave. White light can be separated into a range of colours which form a

10

spectrum of white light, from violet with a wavelength of about 3.8x10^-7, to red with wavelength of
about 7.7*10^-7. Electromagnetic waves have frequency, f, and wavelength, , and speed, c such that

c = f 

The speed of light is approximately 3∗108 m /s . The energy of a wave is proportional to the

square of the amplitude of the wave [04DOB].

Refraction and Reflection

 C1 ⊖1

⊖2
 ?
 C2

Figure 4 : refraction

2

1

2

1

sin

sin

c

c
n ==

θ
θ

,

Equation 1: Snell's law of refraction [04DOB]

where n = refractive index , c1 is the speed in the first medium, c2, the speed in the second medium.
The refractive index of a material is the constant factor of how much the light slows down as it enters
the material. Because lights of different frequencies travel at different speeds they will refract by
different amounts. This is why prisms produce a spectrum of light from white light, because the light
separates as it travels through the prism. The blue light deviates more than the red light. [04DOB]

Total Internal Reflection

When light is travelling inside an object, if the angle of incidence of a ray exceeds the critical angle, c,
for the medium, total internal reflection occurs. When this happens no light passes through, all light is
either absorbed or reflected. This has been implemented in the ray tracing code.
Total internal reflection occurs when:

() 0.11 2

2

2

1 <











−×





− dirN

c

c
,

Equation 2: Total internal reflection [05HAL]

where N = normal, dir = direction of incident ray

Absorption, Reflection and Transmission

Initially the light's energy is determined by the sum of all the frequencies emitted from the light source.
When it hits an object, the reflectivity and absorption of the object is taken into account. The
absorption coefficient determines how much the energy of the light is decreased on contact with the

11

surface, the remaining light is divided between the reflected ray and the transmitted ray. The
reflectivity determines what proportion of the light is reflected. The final factor to be accounted for is
the angle at which the ray hits the surface. The smaller the angle, the larger the energy of the refracted
ray, which decreases linearly until no energy is transmitted at the critical angle. The amount of energy
reflected or refracted is calculated by Fresnel’s equation, described in chapter 4.

3.3 Material Properties

A material has electrical properties. The magnetic field of the wave affects the electrons in the
material. How free the electrons in the material are controls the optical properties. There are two types
of material, dielectric, which allows light through, or conductors, which reflect all light. There are also
composites which allow for subsurface scattering type effects.

Dielectrics have very stable electrons so are mostly unaffected by the light, hence light is largely
unaffected as it passes through the dielectric material. Refraction is the la=rgest factor, and the change
of speed.

Conductors reflect light because the electrons are freer and oscillate when hit by the wave. As there are
still damping forces on the electrons there is not total energy conservation, the absorption index of the
material needs to be taken into account.

An illuminated surface needs to maintain energy equilibrium,

energy in = energy reflected + energy refracted + energy absorbed

Reflection and refraction have two components, coherent and incoherent (scattered). Incoherent
components can't be recorded as there's no phase information about them but the incoherent
components can be estimated by diffuse calculations. [05HAL]

3.4 Spectral Power Distribution (SPD)

Light is defined by its spectral power distribution, the power of the light at each wavelength along the
visible spectrum. The SPD contains all the basic physical data of the light. It can be measured by a
spectrophotometer. From this the luminance and chromaticity of a colour can be determined to find the
CIExyz colour. The SPD of light from an illuminated surface is the product of the percentage of
reflectance of the surface and the SPC of the incident light on the surface. [5]
P (?) = spectral power. XYZ can be determined by the following equations:

() λλ λ dxPX ∫= , () λλ λ dyPY ∫= and () λλ λ dzPZ ∫= ,

Equation 3 : XYZ calculation from SPD [05HAL]

 where λλλ zyx ,, = colour matching functions. However a more ‘forced’ method is often used, taking

a spectrophotometer to measure the spectral power of the emitted light, and hence calculate the XYZ
values by calibration either by parameterised functions of an interpolated table. This is what was
implemented in the colour management system. This provided sufficient accuracy as it matched the
accuracy of the spectral data of the light.

12

Chapter 4. Solution

The purpose of this project was to treat light and colour with better physical accuracy. The emphasis
was on the representation of light as electromagnetic waves of varying frequency, rather than a visually
stunning piece.

4.1 Reading the Light and Material Data

Originally the ray tracer first produced an openGL scene but as this was irrelevant this part was
removed.

Firstly the user specifies the scene file to ray trace, then the number of rays the light is to be split into.
SceneRib.::scene() is called which passes the material and light files to be read in the SceneReader file.

The light file is loaded by the function loadlight(), which is a parser, developed from a piece of code
written by Jon Macey which has been adapted. This reads through the light file, finding the key words,
followed by their relevant values. Each light is pushed onto the lightStack class, written by Chris
Ward, which holds the intensity value and the name of the light. The lights are separated by the term
‘endfilter’. The light spectral data is passed into the FreqList array, which is accessed in the
SceneReader::getLightColour() function. The material file is read in the same way, but the material
stack holds more information.

The Light Data File
The light data file, lights.filter holds the overall intensity of the light and the intensities at each of the
frequencies. See appendix A for an example of the file.

The Material Data File
The material data file, all.mtl holds the reflectivity, specular exponent, transparency, diffuse amount,
emissive amount, specular mount, ambience, speed of light values and the intensities at each of the
frequencies. See appendix A for an example of the file.

13

4.2 Parser

Class Diagram

Figure 5: rgbStack class diagram

14

Colours

rgb * top
name[25]
constructor
destructor

MatlColours

reflectivity
transparency
specularExponent
diffuseAmount
emissiveAmount
specularAmount
ambience
speedOfLight
Vnum
matlColours * next
Push()

LightColours

Intensity
LightColours * next
Push()

Rgb

r, g, b
rgb * next

lightStack

lightColours * top
constructor
destructor
lightColours * push()
lightColours * find()

matlStack

matlColours * top
constructor
destructor
matlColours * push()
matlColours * find()

rgb

rgb

rgb

rgb rgb

rgb

rgb rgb

rgb

MatlStack /
lightStack light/

matl
light/
matl

light/
matl

light/
matl

rgb

rgb

rgb

Pushing data
The push functions in the lightStack and matlStack classes are used to add a new member to the list of
colours. These push functions return the address of the newly created colour. The caller then pushes all
the rgb items onto the colours using the address passed back.
Retrieving data
In Scene::getObject the name is used to find the material in the stack. The materials list is scanned
through, taking off all the rgb values.

4.3 Colour Management
The first part of the project involves writing a colour management system, which treats light accurately
by taking the frequency data of the material or light and converting that through to the standard
CIExyz then through to RGB values for displaying on the monitor.

In the SceneReader::getLightColour() function the light spectral data is converted through the colour
management system into CIEXYZ colour space by multiplying the spectral data by the XYZ
conversion tables in spectralLocus.h. The polyfit program was implemented in an attempt to replace
the tabular lookup between spectral data and XYZ, but the accuracy given by the tables in
spectralLocus.h was sufficient for the accuracy of the ray tracer. These XYZ values are summed to get
the total X, Y and Z value, then normalised before being passed to the
SceneReader::convertXYZtoRGB() to get the RGB values.

In the convertXYZtoRGB function the XYZ data is scaled by a matrix which takes into account the
monitor specifications, the white point, red, green and blue values, and the gamma value, how non-
linear the screen is. The values are obtained from ColourProfile.h, which holds information for various
monitors. The white point can be specified separately, in LightPoint.h, as the white point on the
monitor can be changed.

The relationship between the primaries’ luminance and the colour’s CIE tristimulus values is given by
T = C*L
where L is a vector containing the primaries luminances.
T is the vector containing the colour’s tristimulus values.

C is the 3x3 matrix:

where xr, yr, zr are the chromaticity coordinates of the red phosphor, xg, yg, zg of the green and xb, yb
and zb of the blue.[1]

RGB values are now obtained, however, because of the nature of frequency light being represented by
RGB, not all visible colours can be represented by RGB in the 0 to 1 range. The problem with RGB
colour, when converted from frequency data of the light spectrum, is it doesn’t stay in the positive
octant, which it needs to for displaying purposes.. CIEXYZ is the standard hypothetical primary set of
all visible colours in the positive octant. It is a standardised method of measuring colours. Knowing the
XYZ co ordinates allows the image to be reproduced easily and exactly in many different media, and
on screens with varying monitors.

CIE chromaticity coordinates for an object can be calculated by first measuring the objects spectral
power at each wavelength by the weighting factor from each of the three colour matching functions.
Summing these gives the three tristimulus values, X, Y and Z, and then normalised. [05HAL]

15





















B

B

G

G

R

R

B

B

G

G

R

R

y

z

y

z

y

z

y

x

y

x

y

x

111

The CIE procedure converts the spectral power distribution (SPD) of light from an object into a
brightness parameter, Y, and two chromaticity coordinates, x and y, (where z=1-(x+y)). The
chromaticity coordinates map the colour with respect to hue and saturation on the 2D CIE chromaticity
diagram.

4.3.1 Calculating the RGB values
Converting XYZ into RGB for a screen is done using a transformation matrix generated from the
monitor phosphors and the white point by expressing the chromacity relationships in matrix form.
RGB has several problem areas. Firstly, information is lost when the spectral curves are sampled and
represented by only three colours. Secondly, RGB Sampling functions are not selected on the basis of
sampling theory, but only on what the viewer perceives visually to create the correct colour, looking
only at colour reproduction, not colour computation requirements. Thirdly, RGB sampling functions
are specific to the RGB primaries used. Computations in different RGB colour spaces may not produce
the same result.

() () ()
() () ()
() () () 































=

















B

G

R

bSgSrS

bSgSrS

bSgSrS

Z

Y

X

zbzgzr

ybygyr

xbxgxr

red phosphor : xr , yr , ()yxz rrr +−=1

green phosphor : xg , yg , ()yxz ggg +−=1

blue phosphor : xb , yb , ()yxz bbb +−=1
white point : wx, wy, wz=1-wx-wy
[05HAL]

4.3.2 Colour scaling and correction

When RGB values are computed from XYZ they may fall outside the range 0-1, the RGB gamut.
There is no perfect way to deal with this problem, the simplest approach is to clamp the RGB values
into this range, by truncating any values which fall outside the range, however this changes the hue and
saturation. The method chosen is to scale the RGB values, preserving the hue and saturation but
changing the intensity. The hue and saturation was more important than the intensity, however the
intensity of each ray did cause problems. It may have been better to scale all the values by the range of
the RGB which fall furthest outside the gamut, but this wasn’t implemented due to time constraints.

Chosen Scaling Method

For example if the rgb value was {0.4, -0.6, 1.2} the smallest value is 0.6 below the lower limit, 0, and
the largest value is 0.2 above the upper limit, 1. The total amount out of range is $0.6+0.2=0.8$. The
first step is to shift all the values up so the minimum is 0, then divide by the range, 1.8,

{0.4, -0.6, 1.2} ? {1.0,0.0, 1.8} ? {0.556,0,1}

Gamma Correction

The next crucial stage is gamma correction. Images are stored in files of linear intensity byte data, one
byte for each red, green and blue value for each pixel. By this method RGB{0.5, 0.5, 0.5} would have
half the intensity of RGB{1.0, 1.0, 1.0}. However video colour monitors and the human visual system
is non-linear. Colour computations are based on linear intensity values.

16

Lookup value γ1Intensity= , where gamma, ?, is the non-linearity of monitor, this value is usually

between 2 and 3, where 1 is linear. If gamma is miscalculated the images won't have the correct
intensity. As the shape of the graph goes, lower colours are more compressed than high ones, which,
when they go through the process of Gamma correction, can lead to the lower intensity regions being
banded.

The RGB values need to be multiplied to the power γ1= . For the above example, RGB{0.556, 0, 1},

with a gamma value of 2.2 becomes { γ1556.0 , γ10 , γ11 } = { 2.21556.0 , 2.210 , 2.211 } = {0.766,

0, 1} . Because the outer ranges of 0 and 1 are preserved, the gamma value only changes the red value.
Using the wrong value of gamma will result in incorrect image contrast and chromaticity shifts. If
gamma is too large it will result in intensities being mapped too bright, if gamma is too small the image
will be less intense than it should be.[1]

When an image has been stored with the wrong intensity, and the image is brightened the effects of
banding can be seen. The lower 10% of the intensity values in the image are stretched into the lower
35% of the display resolution range. The image file is mapped into a larger increment for display, thus
the available resolution of the display system in the low intensity range, where the visual system is
most sensitive, is not being used. The observable result is that images tend to be banded in the low
intensity regions due to intensity quantizing to a lower resolution that the available resolution of the
display device. The gamma function can be applied to the computed colour values from the
illumination model before they are converted to byte values for storage.

The image below shows how the banding is more evident on the lower range of colours when an image
is brightened after storage:

original image after brightening

Figure 6: Colour banding

4.4 Reading in the scene file
Once all the lights and materials have been stored with the RGB data evaluated the program returns
from the SceneRib file and calls the Scene::read() function, where it reads the scene file.

Each light specified in the scene file has a name, position, and locality. The name is used to find the
relevant colour data, from the lightStack class. When the correct light is found the RGB values for each
ray need to be found and stored for the light colour. The rgb values are stored in a stack, which is
looped through and assigned for each ray:

17

For each object in the scene a material is assigned by the command UseMaterial materialName. The
material data is assigned in much the same way as the light, only because the material has a diffuse,
specular, ambient, emissive, reflective and transmissive colour, the process is more complex. The
colour value found is scaled by the reflectivity, transparency, specular, diffuse, emissive and ambient
terms to get each of the respective colours.

4.5 Spectral Ray Tracer Extension

The second stage of the project is the spectral extension for the ray tracer which, when refracting and
reflecting light will take into account the frequency of the light hitting the object, and hence reflect and
refract the correct frequencies at the correct angles.

4.5.1 Splitting the rays

In a standard ray tracer the ambient, diffuse and specular terms have one RGB value each and one light
ray is sent out into the scene from each pixel. Light is usually a combination of electromagnetic waves
of different frequencies. When one RGB value is found for a light it is, in effect, averaging the values
of all the waves to get one ray of light. The program created allows the light to be represented by up to
81 rays.

The rays are divided up into n rays, depending on the accuracy required. The frequency data will be
split up into n sections. The rgb value will then be calculated by each of these.

Light and material colour frequency data has been put into an array of 81 intensities of frequencies
ranging from 380nm to 780nm. If the accuracy is changed from 1 ray to 3 this states that 3 rays which
start at the same light source and start with the same angle are to be traced through the scene. These
rays are divided into different frequencies, low, medium and high. These frequencies are then
converted into 3 RGB values.

The first step in splitting up the light is to divide the 81 values by three groups of 27:

273
81 =

The first colour is taken by summing the first group of XYZ colours and leaving the other XYZ values
to be used by the other groups.

For each ray the spectral frequency data is multiplied by the XYZ conversion table, summed, then
normalised.

For the second step the XYZ value is converted, as is standard practice when dealing with the usual,
single ray, into an RGB value. For instance, if the light is split up into 9 rays, 9 RGB values are found,
which span the spectrum

giving the combined ray colour below

The third step sees the RGB value stored in the rgbStack to be collected in Scene::shade().

18

n=0;
for(rgb value at top of the light; while currLight not null; go to next rgb value on stack)
{

assign the rgb values to the nth light ray colour
increment n.

}

These 9 RGB values need to be scaled to have the same combined intensity as when the light was only
one ray. Because the XYZ values are normalised this isn’t straightforward. The way this was
approached was to find the sum of the spectral values, and calculate the sum of intensities in each ray,
and divide it by the total sum of values. This still didn’t work completely. Because of the way the
values fall outside the gamut, when the rays are split they may need to be scaled more or less than
before. When only one RGB value is found for a light, this is much more of an oversimplification than
when one ray is calculated. As can be seen in the diagram below, the summed colour of the rays gets
darker when the colour is divided into more rays. However, it clearly shows the colour calculation gets
more accurate as the colours are almost indistinguishable when the colour is split into 27 or 81 rays.

Figure 7: Total Colour of light split into n rays

In Scene::shade()

Loop for(each ray)
{

add the light contributions, taking as the light colour, material diffuse colour, and material
specular colour the individual colour from the rgbStack.

}

This is done while looping for each light, so the light contribution can interact more accurately with the
objects in the scene.

4.5.2 Refraction of each ray
The refractive index needs to be calculated for each frequency. For instance, if the accuracy is 3 when
the frequency bands are split, the boundaries are calculated as follows:

380 780
 | |

The band width () 3380780 −= , with the middle points of the boundaries at






×





+

3
380/780

2
1

380 , 




×





+

3
380/780

2
3

380 and 




×





+

3
380/780

2
5

380 .

At these frequencies the refractive angles need to be found.

To take a more accurate frequency to find the refractive index from a better method would be to sum
up the total intensities in the group and divide by 2. Then find which frequency the half point of the
intensities was found at and use that to find the refractive index, instead of just the midway point
between the boundaries.

19

With 81 frequency values the colour can be split up into:

1 group of 81 (default) Low Level 1
3 groups of 27 Level 2
9 groups of 9 Medium Level 3
27 groups of 3 Level 4
81 groups of 1 High Level 5

When it came to determining the change in refractive index of a light with frequency when passing
through a particular material there were several methods written. The first method used the polyfit
program to estimate the refractive index for frequency. Data was used from a table of refractive indices
of crystal quartz at 20 degrees C, from Chance Catalogue OC1, 1962, but it wasn’t successful at getting
a good fit of the tabular data, even with considerable accuracy:

RefractiveValue = 1.816731 – 1.85629*frequency+3.514845*pow(frequency, 2)-3.12787*pow
(frequency, 3)+1.310301*pow(frequency, 4) – 0.2085667*pow(frequency, 5);

The second method takes the end values and linearly interpolates. The refractive index at 380nm us
1.56973. At 780nm it is 1.54769.

This gives a linear interpolation of

RefractiveValue = 1.56973 – 0.000054419*frequency

The third method takes the general refractive index of the material into account and scales the second
method to get the range change in refractive index.

RefractiveValue = speed of light + range/2 – range * frequency/405

Naturally, the chromatic effect is very subtle, so to show the effect in transparent, refractive objects,
the change in refractive index was heavily multiplied.

4.6 Light Interaction with objects in the scene
For each pixel rendered in the scene the colour is calculated. The light for each of these pixels is built
up in layers.

Firstly the first object hit is found, if nothing is intersected the background layer is given and nothing
further is done. If the ray hits an object the colour is initially set to the scene’s global ambient colour
the object’s emissive colour, the glow, is added, along with the ambient term of the object.
For each light in the scene the light contribution to the object hit is added. There are two equations the
light term adds, the diffuse colour and the specular colour.
The next part is the ray tracing part, where the reflected and refracted rays are determined and added.
In this next recursion they are traced until they hit another object where their colour contribution,
scaled by how reflective and transmissive the object is, is added to the next hit point, like the light
contributions are.

The total light intensity observed by the eye, consisting of the ambient, diffuse and specular
components, is

I(?) = ambient + diffuse + specular + transmitted
f

sspddaa phongIlambertIII ×+×+= ρρρ ,

 where aI is the ambient intensity and sI is the intensity of the light source and where we define

20











=

ms

ms
lambert

.
,0max and 










=

mh

mh
phong

.
,0max

da ρρ , and sρ are reflection coefficients and f is the specular exponent, as is declared in Hill’s

OpenGL book.[]

Specular light is calculated as below:

()urecularColomaterialSprlightColousvnormal ponentspecularEx ××+).(

and diffuse light is calculated as below:

() rlightColourffuseColoumaterialDinormals ××.
[05HAL]

To create further physical accuracy the change in refractive index with frequency is taken into account.
The light is split up into a number of rays which span the visible light spectrum. Each of these rays are
traced separately, in effect, different passes are done.

Because a light source is a combination of electromagnetic waves which create an overall emissive
colour, these waves can be divided up. The XYZ value is calculated for each frequency.

The tables used provide light data composed of 81 intensities of frequencies, ranging from 380 to 780.
These can therefore be divided into up to 81 different rays, each with a different light colour and
intensity.

4.6.1 Fresnel

Fresnel equations calculate how much light is reflected / refracted which is dependent upon the
polarization of the incoming light. Light polarized parallel to the reflecting surface:

() ()2121 coscos/coscos θεθθεθ +−=parap

() ()2121 coscos/coscos θεθεθθε +−=perpp

Combined reflected light, () ()22

2

1
perpparar ppF +=θ

combined transmitted light, () ()θθ rt FF −=1 , where ? is the angle of incidence. [12STE]

?1

 ?2

21

The Fresnel calculations were attempted, but unfortunately, due to time constraints, it wasn’t possible
to ensure these were working correctly so the reflection and refraction were merely multiplied by the
constants reflectivity and transparency. This meant that when ray tracing a sphere, instead of the sphere
being more reflective at the edges, it was a constant transparency and reflectivity. This is a fairly subtle
difference but it does add to the realism.

4.7 The Cornell scene

Metamerism

Metamerism is when light of different spectral composition can be seen as the same colour. Spectral
light compositions can be split into sets of metamerism colours, a group which all look the same and
these can then be translated into another colour system.

Additive Mixture

An additive mixture is when two colours are close enough together to be seen as a single colour.
Two objects with different colours can look the same under certain lights. The reason for this is the
range of frequencies which combine to give the object its overall colour will match the overall colour
of the other object which is produced by a different sum of frequencies. [05HAL]

Figure 8: graph of intensities of light

22

intensity

wavelength, nm

intensity

wavelength, nm

whole light, illuminates both objects light completely illuminates back

 sphere but not front sphere

 light completely illuminates front
 sphere but not back sphere

Figure 9: Similar coloured objects acting separately under varying lighting

4.8 The prism scene

Figure 10: Prism

4.8.1 Spotlight
The first things which needed adding to create a prism to demonstrate the light splitting when it
refracts through the prism, was a spotlight. A narrow beam of light was needed, heading in one
direction and hitting the prism.
RtLight is amended to hold direction and angle data.

23

4.8.2 Prism
The ray tracer only provided for simple object shapes, such as the sphere, cube and tapered cylinder. A
prism was created as an equilateral triangle with height. Normals were calculated, which with the
equations of the planes and a point on each of these planes gave the data to alter the cube class into a
prism class.

The prism is designed as follows:

Figure 11: Prism dimensions

Plane name Equation Outward normal Spot

0 Top Y=1 (0,1,0) (0,1,0)
1 Bottom Y=-1 (0,-1,0) (0,-1,0)
2 Front Z=1 (0,0,1) (0,0,1)
3 Left Z= - ?3 x-2 (-?3/2,0,-1/2) (-?3/2,0,-1/2)
4 right Z= +?3 x-2 (+?3/2,0,-1/2) (+?3/2,0,-1/2)

Table 1: planes of the prism

To determine whether a ray is inside or outside an object each plane in turn needs to be considered. If
the equation of the plane is know, and the normal of the plane, the hit point can be found at

() 0. =−+ Bctsm . This equation can be reordered to find for t,
()

denom

numer

cm

sBm
t =−=

.

.

Where m is the normal of the plane, B is a point on the plane, S is the start point of the ray and c is the
direction of the ray. By finding the top and bottom half of the equation it is possible to determine
whether the ray is entering, exiting or running parallel to the plane at this hit point. [12HIL]

24

x

z

-1

2*3^0.5

2 y

x

1

-1

-3^0.5 3^0.5

If the exitingdenom ⇒> 0
 enteringdenom ⇒< 0
 paralleldenom ⇒= 0 , a further test is then done.

⇒> 0numer wholly outside the object

⇒< 0numer wholly inside the object

Figure 12 : ray passing through prism

Each plane is tested in turn to find the CI, the candidate interval, the interval of time in which the ray is

inside the object. The CI starts at ()∞∞− , . In the above case the first plane will change it to ()∞,5.1
, the second plane to ()9.2,5.1 and plane three, completing the test will give the final CI of ()3.2,5.1

4.9 Lens

The Lens object is based on the boolean class. The lens is created by taking the intersection of two
spheres. This gives the necessary details of the lens, the refractive index and the radius of each surface,
which is determined by the size of each sphere.

The lens is called in the scene file by, where the lens class acts as a simple, standard ray tracing
intersection class.

25

pla ne 1 pla ne 3

pla ne 2

ray

t=1.5 t=2.3

t=2.9

lens
 sphere
 push
 translate 1 0 0
 sphere
 pop

4.9.1 Chromatic Aberration

Figure 13: Chromatic Aberration of a lens

A major problem for makers of cameras is the effect of chromatic aberration in a lens. The larger the
aperture of the lens, the more light passes through but the more aberration occurs. Aberration is the
blurred focus point. In cheap cameras the slit is smaller so it doesn't have to account so much for
aberration, but as a result it will sacrifice resolution. A larger aperture will have better resolution but
more aberration. In the image below the view through the lens is blurred and the separation of the light
is visible.

Figure 14: Chromatic Aberration when light split into 3 rays

26

The spectral ray tracer has taken parts of other peoples code, which are combined to produce a
coherent program. The concepts behind the program were taken from Physics ideas of refraction and
mostly using the concepts put forward in Roy Hall’s book on Illumination and Colour in Computer
Generated Imagery. However, all the ideas of how to split and ray trace the spectral light were original.

The program is based on Jon Macey’s ray tracer. For the Conversion of spectral data to RGB part of
Ian Stephenson’s colour management system was used. Jon Macey provided parser code used in
SceneReader::loadLight(), SceneReader::loadMaterial() and SceneReader:Tokenize(). The code was
then adapted to the format needed for the material and light files. Chris Ward wrote the data stack
functions in rgbStack.h and rgbStack.cpp which store the light and material data in
SceneReader::loadMaterial and SceneReader::loadLight. Graeme Webster provided code which creates
a polynomial function out of tabular data. This is not currently used but the option can be switched on
for the change of refractive index. Finally, Jon Macey helped change the code to render the image in
tiff format. This was done by storing the rgb colours for each pixel in an array and passing that to the
tiff writer.

27

5. Conclusions and Future work

The ray tracer achieved the goal it was set to. A ray tracer was extended to deal with spectral data of
light and to treat that light with more physical accuracy. The colour management part of the program
successfully converts spectral data into RGB data for each ray of colour. The ray tracer successfully
loops for each ray, adding up the colours for the final image.

Most of the time assigned for the project was spent on the theory, design and implementation of the
code. With more time, better images could be created with relatively little effort, but with the time
allowed, it was necessary to assign most of the time to the programming of the ray tracer.

The program could be improved by making further improvements to the physical accuracy. Ideally the
Fresnel equation would have been implemented to have the reflection and refraction ratio of a surface
vary accurately.

When 27 or 81 rays are specified the renders get too long. If this problem was solved, anti aliasing
could also be implemented, as is evident in the renders of the cube and the prism in particular. To solve
this problem each ray was rendered out separately and composited in Shake. In the Scene::shade()
function the loop for each ray was only run for the individual ray, leaving the ray tracer to do all other
calculations as normal, only skipping the other ray calculations in the shade function.

Ideally the ray tracer would be developed further to deal with refractive effects better, what was
touched on was only a small part of what can be done with it. A rainbow scene was planned which
wasn't created and the prism image wasn't completed, because there wasn’t time to work on the
shadows. The initial ray tracer just sent out a feeler ray from the hit point to each light, and if the feeler
ray hit any object the hit point was declared as being in shadow from that light, and no further colour
contributions were added for that light. This is a huge oversimplification of physical reality, and this is
an area that ray tracing falls down on in general, because of the way the light is traced through the
scene. The problem comes when the object between the hit point and the light is at all transparent. It is
not possible to trace a ray directly to the light because when the ray hits the object it will be refracted
and will miss the light source it would have hit if there was no refraction. This problem is solved in
computer graphics by rendering the image by the process of photon mapping and radiosity, where light
is traced from the light source, instead of from the camera. Given more time I would have liked to
attempt to solve the problem of shadows by sending out multiple rays from the hit point in shadow
towards the light with an offset. If enough extra rays were sent at different angles, a fairly accurate
image could be created.

28

6. Appendix A

Example of the light data used to find the light’s overall intensity and colour
filter 2a
{

intensity 0.85
colour 81 0.000 0.000 0.000

 0.000 0.000 0.000
 0.040 0.023 0.420
 0.580 0.740 0.784
 0.827 0.842 0.856
 0.863 0.870 0.876
 0.881 0.885 0.888
 0.891 0.894 0.896
 0.897 0.898 0.900
 0.901 0.902 0.902
 0.903 0.903 0.904
 0.904 0.905 0.905
 0.906 0.906 0.906
 0.907 0.907 0.907
 0.907 0.907 0.908
 0.908 0.908 0.908
 0.909 0.909 0.909
 0.909 0.909 0.909
 0.910 0.910 0.910
 0.910 0.910 0.911
 0.911 0.911 0.911
 0.911 0.450 0.000
 0.000 0.000 0.000
 0.000 0.000 0.000
 0.000 0.000 0.000
 0.000 0.000 0.000
 0.000 0.000 0.000

}
endfilter

29

Example of the material data used to find the material’s overall intensity and colour

def StrongOrangeYellow
{

reflectivity 0.5
specularExponent 12.8
transparency 0.1
diffuseAmount 0.3
emissiveAmount 0.0
specularAmount 0.2
ambience 0.3
speedOfLight 1.33
Vnum 1
freqBreakdown 81 0.0538 0.0552 0.0564

 0.0576 0.0585 0.0591
 0.0595 0.0592 0.0596
 0.0594 0.0591 0.0590
 0.0592 0.0602 0.0619
 0.0646 0.0679 0.0720
 0.0766 0.0817 0.0873
 0.0934 0.0999 0.1070
 0.1147 0.1235 0.1337
 0.1460 0.1619 0.1831
 0.2107 0.2460 0.2918
 0.3420 0.3870 0.4292
 0.4692 0.5054 0.5350
 0.5577 0.5761 0.5916
 0.6049 0.6165 0.6265
 0.6347 0.6415 0.6471
 0.6518 0.6561 0.6599
 0.6633 0.6665 0.6694
 0.6720 0.6745 0.6767
 0.6786 0.6804 0.6819
 0.6833 0.6847 0.6860
 0.6875 0.6890 0.6907
 0.6924 0.0000 0.0000
 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000

}
endmaterial

30

Appendix B

File Order

Raytest

SceneRib Scene RayCamera

SceneReader Scene

lightColours matlColours ColourSystem WhitePointCoord

 rgb rgb

31

Added or Changed Classes

SceneRib

+light0_position
+objectNumber

assignM()
assignL()
scene()

32

SceneReader

+*Lfreq
light0_pos

SceneReader()
~SceneReader()
convertrXYZtoRGB()
getLightColour()
Tokenize()
loadLight()
loadMaterial()

Prism

Prism()
hit()

WhitePointCoord

+ *name
+ xWhite
+yWhite

ColourSystem

+ *name
+ xRed
+ yRed
+ xGreen
+ yGreen
+ xBlue
+ yBlue
+ xWhite
+ yWhite
+ gamma

RtLight

pos
dir[3]
spot_angle
colour[81]
LightNo
LightMode
rgbColour[81][3]
freq[81]

+ setPosition()
+ setColour()
+ RtLight()
+ RtLight()
+ RtLight
+ Disable()
+ Enable()
+Enable()
+ *getNextLight()
+ Show()
+ getPos()
+ getAngle()
+ getDir()
+ getColour()

Lens

+ *left
+ *right

Lens()
hit()

Chapter 7. References

Contributions and Changes
Because the project undertaken involves changing code already written, it is important to stress which
areas of the code are added to the original ray tracer, and to reference code written by other people for
myself.

Files added to original Ray tracer

.cpp files .h files other
SceneRib.cpp SceneRib.h All.mtl
SceneReader.cpp SceneReader.h Lights.filter
Lens.cpp Lens.h Lens.sdl
Prism.cpp Prism.h PrismA.sdl
rgbStack.cpp rgbStack.h PrismB.sdl

LightPoint.h PrismC.sdl
SpectralLocus.h Cube.sdl

Rainbow.sdl
Cornell.sdl
Sphere.sdl

Chris Ward, a professional programmer, gave me advice on C++ and debugging. He wrote a large
proportion of the new parser used in sceneReader.cpp, and wrote the group of rgbStack classes.

Jon Macey provided the original ray tracer. An attempt to record all the changes has been made, by the
insertion of ‘//!!’ at the end of lines which have changed. He also wrote a parser to read in the material
and light files, which has now been heavily altered.

Ian Stephenson has provided me with code with changes frequency data into RGB data, which was
drawn on to produce the colour management system.

Graeme Webster provided an analytical programme which takes tabulated data and estimates a

function of the form 13
4

2
321 ... −+++++= n

n xaxaxaxaay , for n coefficients. This was used to

find a formula for the change of refractive index with frequency.

33

Bibliography

[01AIM] www.aim-dtp.net/aim/technology/cie_xyz/cie_xyz.htm, accessed 18/07/2005

[02CAM] Campeanu, R.I. & McFall, J. D., “Colour Monitor Calibration Based on CIE
Standards”

[03RIT] www.cs.rit.edu/ncs/color/t_convert.html, accessed 18/07/2005

[04DOB] Dobson, K. et al, 1997 “Physics”, Collins Educational, 77-85 Fulham Palace Road,
London

[05HAL] Hall, R., 1989, “Illumination and Color in Computer Generated Imagery”, Springer-
Verlag New York Inc., New York.

[06HIL] Hill, F. S. Jr., 1990, “Computer Graphics Using Open GL”, Second Edition,
Macmillan Publishing Company, New Jersey.

[07HYPA] http://hyperphysics.phy-astr.gsu.edu/hbase/vision/ciecal.html , accessed15/08/2005

[08HYPB] http://hyperphysics.phy-astr.gsu.edu/hbase/vision/cie1976.html#c1, accessed
05/08/2005

[09KIN]King, J. C., “Why Color Management”, Adobe Systems Incorporated.

[10KEN] Kenton, F., 1989.“Prisms and Rainbows: A Dispersion Model for Computer
Graphics”. Proceedings of Graphics Interface 1989.

[11KOL] Kolb, C. et al., 1995. “A Realistic Camera Model for Computer Graphics”.
Proceedings of SIGGRAPH ’95, ACM SIGGRAPH, 1995, pp. 317-324.

[12STE]Stephenson, I. (Ed.) 2005, “Production Rendering, Design and Implementation”, Springer
London Limited 2005, USA.

[13WIL] Wilkipedia, http://en.wikipedia.org/wiki/Ray_tracing, accessed 01/09/2005

34

1

