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ABSTRACT
Human motion in cluttered scenes is often tracked using
particle filtering. However, poorly modelled inter-frame mo-
tion is not uncommon, resulting in poor priors for the filter-
ing step. Alternatives to the Condensation algorithm in the
form of an Auxiliary Particle Filter (APF) and Iterated Like-
lihood Weighting (ILW) are described. Experimental results
comparing these filters’ accuracy and consistency are pre-
sented for a scenario in which a person is tracked in an over-
head view using an ellipse model with a likelihood based on
colour and gradient cues. ILW is not intended to give un-
biased estimates of a posterior but rather to reduce approxi-
mation error. It is shown to outperform both Condensation
and the APF on sequences from this scenario.

1. INTRODUCTION

Consider tracking human motion in a scenario such as that
shown in Figure 1. Here a person’s head is tracked in an ex-
tremely cluttered overhead view using a method which will
be described in Sections 5 and 6. Motion models will not al-
ways be reliable; in this example the person falls over, lead-
ing to relatively large and unpredictable inter-frame motion.
In many applications it is important to track through these
poorly modelled motions in order to allow rare but salient
events such as falls to be recognised.

Visual tracking is often formulated from a Bayesian per-
spective as a problem of estimating some degree of belief in
the statext of an object at time stept given a sequence of
observationsz1:t. Bayesian filtering recursively computes a
posterior density using a Markov assumption:

p(xt+1|z1:t+1) ∝ p(zt+1|xt+1)p(xt+1|z1:t) (1)

where the prior is the previous posterior propagated using
a dynamic model:

p(xt+1|z1:t) =

∫
p(xt+1|xt)p(xt|z1:t)dxt (2)

Specific dynamic models for expected activities could be
constructed using learning (e.g. [1, 2, 3]). However, when
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Fig. 1. Frames from a sequence in which the head is tracked using
ILW. The person is tracked through a sudden fall. The white ellipse
represents the most heavily weighted particle.

true motion deviates from that predicted by such specific
models, tracking failure becomes likely. If the range of ac-
tivities is varied and includes salient but rare movements, a
more generic model results in more reliable tracking. There-
fore, the approach taken in this paper is to adopt a very gen-
eral motion model (a Gaussian random walk). Measure-
ments from the current image are used to encourage explo-
ration of high probability regions of the state space.

The posterior density in (1) cannot be computed an-
alytically unless linear-Gaussian models are adopted. As
is well-known, linear-Gaussian models are unsuitable for
many visual tracking problems. Instead, simulation-based
particle filters are often used to propagate what are often
non-Gaussian, multimodal densities over time. This paper
explores the use of particle filtering for tracking human mo-
tion. It compares, in the context of an overhead tracking
application, alternatives to the widely used Condensation
algorithm that can improve both the accuracy and consis-
tency of tracking: an auxiliary particle filter (APF) [4] and
iterated likelihood weighting (ILW) [5].



2. RELEVANT WORK

Particle filtering [6] has become popular for visual track-
ing since it was applied by Isard and Blake in the form of
Condensation [7]. They later suggested using a secondary
tracker to generate an importance function for sampling [8].
Condensation’s behaviour with finite particle sets was in-
vestigated by King and Forsyth [9]. Several authors have
suggested alternative sampling schemes (e.g. [4, 10, 11, 12,
13, 14, 15, 16, 17]). For example, Choo and Fleet [11] used
a hybrid Monte Carlo filter to sample the posterior. Rui
and Chen [16] used an unscented Kalman filter to gener-
ate importance densities. Deutscheret al. [12, 13] proposed
annealed and partitioned particle filtering.

3. SAMPLING IMPORTANCE RESAMPLING

The widely used Sampling Importance Resampling (SIR)
algorithm [6] (otherwise known as Condensation [7]) ap-
proximatesp(xt|z1:t) at each time stept by a set ofN parti-
cles{xn

t , wn
t }N

n=1 where each particle is a weighted random
sample and

∑N
n=1 wn

t = 1. The filtered posterior is then

p(xt+1|z1:t+1) ∝ p(zt+1|xt+1)

N∑
n=1

wn
t p(xt+1|xn

t ) (3)

where the prior is now a mixture withN components. The
SIR filter involves (i) selecting thenth mixture component
with probabilitywn

t , (ii) drawing a sample from it, and (iii)
assigning the sample a weight proportional to its likelihood.
Resampling is used to obtain samples with equal weights
in order to facilitate sampling from the mixture in (3). The
dynamic (motion) model is encapsulated by the transition
densityp(xt+1|xn

t ). Typically, a sample can be drawn from
it by adding random process noise and then applying deter-
ministic dynamics (drift).

In general, sequential importance sampling filters oper-
ate by drawing samples from an importance density,q(x),
and weighting them using (4) to give a particle representa-
tion of the posterior density.

wn
t+1 ∝ wn

t

p(zt+1|xn
t+1)p(xn

t+1|xn
t )

q(xn
t+1|xn

t , zt+1)
(4)

SIR is a sequential importance sampling filter in which the
prior is used as the importance density. This is a convenient
choice because an unbiased, asymptotically correct estimate
of the posterior can be obtained by simply weighting the
samples with their likelihood. The resulting algorithm is
therefore intuitive and easily implemented. However, the
prior is certainly not the optimal choice of importance func-
tion since it does not take into account the most recent ob-
servation,zt+1. Sampling using SIR is particularly ineffi-
cient when the likelihood is in the tails of the prior or if the
likelihood is narrow and peaked compared to the prior. Al-
though SIR gives an asymptotically correct estimate of the

Forn = 1 . . . N
Computeµn

t+1

Computewn
t+1 = wn

t p(zt+1|µn
t+1)

For each particle
Choose an indexn with probability

proportional town
t+1

Draw a samplexm
t+1 from p(xt+1|xn

t )
Assign weightwm

t+1 = p(zt+1|xm
t+1)

p(zt+1|µnm
t+1)

Normalise weights so that
∑N

n=1 wn
t+1 = 1

Table 1. The auxiliary particle filter

posterior, its behavior with finite sample sets is often not
good [9]. In human tracking, the dynamic models used can
often result in poor priors due to unexpected motion. In such
cases, SIR will place many samples in the wrong regions of
the state space. As a result, very large particle sets can be
required in order to achieve acceptable performance.

4. AUXILIARY PARTICLE FILTERS

The APF was proposed as a way of filtering with an im-
portance density that depends on the most recent observa-
tion [4]. It is an extension of SIR that approximates the
filtered posterior of (3) as

p̂(xt+1|z1:t+1) ∝
N∑

n=1

wn
t p(zt+1|µn

t+1)p(xt+1|xn
t ) (5)

whereµn
t+1 is some value likely to be generated by the dy-

namic modelp(xt+1|xn
t ). The algorithm consists of sam-

pling m = 1 . . . N times from this mixture and then weight-
ing the samples using

wm
t+1 ∝ p(zt+1|xm

t+1)

p(zt+1|µnm
t+1)

(6)

whereµnm
t+1 is the value associated with the component

p(xt+1|xnm
t ) from which themth sample was drawn. The

algorithm is summarised in Table 1.
Specifically, if the dynamic model is zero-mean Gaus-

sian noise andµnm
t+1 is taken to be the expected value of

p(xt+1|xn
t ) then an APF is obtained by (i) choosing a com-

ponentn with probability proportional town
t p(zt+1|xn

t ),
(ii) drawing a samplexm

t+1 fromp(xt+1|xn
t ) and (iii) weight-

ing the sample as:

wm
t+1 ∝ p(zt+1|xm

t+1)

p(zt+1|xn
t )

(7)

APF generates particles from an importance density condi-
tioned on the most recent observation and then samples the
posterior using this importance density. When compared to
SIR, this requires an extra likelihood evaluation per particle.
However, this can be more than offset in terms of computa-
tional efficiency since fewer particles are likely to be needed
due to the more efficient sampling of the posterior.



5. ITERATED LIKELIHOOD WEIGHTING

Great care is usually taken to ensure that an unbiased esti-
mate of the posterior is obtained when applying particle fil-
tering to tracking. The importance sampling steps of (4), (6)
and (7) are bias-correcting schemes used to obtain such an
unbiased estimate. However, it is well known in statistical
inference that approximation error depends not only on the
bias but on the variance. If the importance density is rea-
sonably accurate, the correction step may in fact increase
approximation error for all but very large particle sets [18].

Furthermore, the prior density is often poor and noisy
and it therefore makes little sense to attempt to obtain a
computationally expensive, high accuracy approximation to
the posterior. This is particularly true in many human track-
ing applications where inter-frame motion is often poorly
modeled by the dynamic model (transition density).

A scheme is proposed here in which only a subset of
the particles at each time step is sampled from the ‘poste-
rior’. The remainder of the particles are used to increase
sampling in regions of high likelihood via a simple itera-
tive search using the most recent observation. This is use-
ful when the prior (dynamic model) is poor. It can prevent
tracking failure in the case of unexpected motion, for exam-
ple. Rather than attempt to perform a (potentially expen-
sive) bias-correction step for those particles used to search
high-likelihood regions, they are weighted at each iteration
based on their likelihood. The resulting algorithm (Table 2)
is not an unbiased, Bayesian particle filter within the usual
Markov framework. After an intial iteration of SIR, the
sample set is split uniformly at random into two sets of equal
size. One of these sets is propagated to the next time step
unaltered while the samples in the other set are subjected
to further iterations of diffusion, likelihood weighting and
resampling. This has the effect of migrating half of the par-
ticles to regions of high likelihood while the other half are
sampled using the prior as the importance function. The ef-
fectiveness of ILW is demonstrated empirically in Section 7
where it is compared to SIR and APF over multiple runs.

6. LIKELIHOOD MODEL

In order to apply the above filtering schemes to tracking, a
state,x, and a likelihood model,p(z|x), must be defined.
Head shape is reasonably well approximated as an ellipse
in the image irrespective of pose. Previous authors have
used constrained ellipses to track frontal-profile views of
the head [16, 19, 20]. As orientation and elongation vary
with pose and position, particularly in an overhead view, all
five ellipse parameters were estimated here.

The likelihood model combined intensity gradient infor-
mation along the head boundary with a colour model of the
ellipse’s interior region as described in an earlier paper [5].
The region likelihoodp(rt|xn

t ) was based on divergence of

1. DrawN samplesxn
t+1 ∼ p(xt+1|xn

t )
2. Assign weightswn

t+1 = p(zt+1|xn
t+1)

3. Normalise weights so that
∑N

n=1 wn
t+1 = 1

4. Resample with replacement to obtain
samplesxn

t+1 with equal weights
5. Split the sample set at random into two sets of

sizeM = N/2: {xm
t+1,1}M

m=1 and{xm
t+1,∗}M

m=1

6. Fork = 1 . . . K
DrawM samplesxm

t+1,k+1 ∼ p(xt+1,k+1|xm
t+1,k)

Assign weightswm
t+1,k+1 = p(zt+1|xm

t+1,k+1)
Normalise weights so that

∑M
m=1 wm

t+1,k+1 = 1
Resample with replacement to obtain

M samplesxm
t+1,k+1 with equal weights

7. Form = 1 . . . M
xm

t+1 = xm
t+1,∗

xM+m
t+1 = xm

t+1,K+1

Table 2. The ILW filter. Herep(xt+1,k+1|xm
t+1,k) is a transition

density with expected valuexm
t+1,k.

a colour histogram of the ellipse’s interior from a model his-
togram. The boundary likelihoodp(bt|xn

t ) was computed
by searching for maximal gradient magnitude points near
the ellipse boundary. Assuming conditional independence,
the likelihood was obtained using Equation (8). Figure 2 il-
lustrates the characteristics of the likelihood and compares it
to the use of boundary cues and region cues alone. It varies
in a well behaved manner under translation and scaling.

p(zt|xn
t ) = p(bt|xn

t )p(rt|xn
t ) (8)

7. EXPERIMENTS

Results are reported here for scenarios in which a person is
tracked moving around a home environment using a wide-
angle, ceiling-mounted camera. Whilst the articulated struc-
ture of the body will not always be readily apparent, it can
be assumed that the head will nearly always be visible. The
target application is a monitoring system to help extend in-
dependent living for older people in their own homes. Here
we give indicative results on typical sequences of interest.

Likelihood computation is the main computational ex-
pense during tracking and the different filters require differ-
ent numbers of likelihood evaluations per frame. In order to
obtain a fair empirical comparison, the number of particles
used with each filter was chosen so that the number of like-
lihood evaluations per frame was equal. All filters were run
with the same transition density and the same noise param-
eters. Particle set sizes for SIR, APF and ILW were2000,
1000 and400 respectively. ILW used an additional8 itera-
tions per frame giving a total of2000 likelihood evaluations.



(a) Translation

(b) Scaling

Fig. 2. Likelihoods as the ellipse (a) translates and (b) changes
scale away from the correct ellipse. Dashed: gradient likelihood.
Dotted: colour likelihood. Solid: combined likelihood (8).

Frame 30 Frame 50

Frame 55 Frame 60

Fig. 3. Frames from the sequence in Figure 1 tracked using SIR.
The tracker loses lock in frame 56 and is unable to recover.

Figures 1, 3, 4 and 5 show typical runs of SIR and ILW.
A red ellipse indicates the mean estimated from the particle
set and a white ellipse indicates the most heavily weighted
particle for that frame. In Figure 3 the SIR filter loses track

Frame 1 Frame 75

Frame 200 Frame 400

Fig. 4. Frames from a 400-frame sequence in which the occupant
stands up, moves around the room, sits on a chair, leans over and
finally sits on the floor. ILW tracked successfully throughout.

Frame 40 Frame 50

Frame 60 Frame 80

Fig. 5. Frames from the sequence of Figure 4 showing the SIR
tracker losing lock after frame 50. It did not recover.

when the person falls due to the sudden, poorly modelled
motion. However, Figure 1 shows this sequence being suc-
cessfully tracked using ILW. Similarly, Figure 4 shows ILW
successfully tracking a 400-frame sequence while the SIR
filter was easily distracted by clutter (Figure 5).

Although the above runs were typical for these sequences,
isolated runs of particle filters are not sufficient to evaluate
performance. The filters were compared over multiple runs
on the sequence shown in Figure 1. This is a challenging
sequence in several respects. The carpet, in particular, con-
tains strongly structured edge clutter and many regions with
similar colour distributions to the head being tracked. The
sequence also contains large inter-frame motion when the



(a) Sampling Importance Resampling (SIR)

(b) Auxiliary Particle Filter

(c) Iterated Likelihood Weighting

Fig. 6. The mean ellipse (left) and the most highly weighted par-
ticle (right) after55 frames for each of twenty runs.

person falls over. Figure 6 compares the mean and strongest
ellipses obtained after55 frames in20 separate runs of the
three filters on the sequence. SIR failed in the great majority
of runs. In only 3 of the 20 runs did it provide a reasonable
estimate in terms of the most heavily weighted particle. The
mean did not provide good estimates of the state indicating
that the distribution was clearly multimodal due to clutter.
APF gave reasonable estimates in 9 of the 20 runs. ILW
gave good estimates in terms of both the mean and the most
heavily weighted particle in all but one run.

Figure 7 shows trajectories obtained by20 separate runs
of each of the three methods from identical initial condi-
tions. Ground-truth data were acquired by manually fitting
an ellipse to the head in each frame. The distances of the es-
timated ellipse centres from the ground-truth centres were
computed for each frame. Figure 8 plots these errors for
each filter averaged over20 runs. At about frame40 some
of the trackers lost lock due to a strong mode in the distri-
bution over the carpet but many subsequently recovered at
around frame50. After frame55 the person begins to fall
over causing many of the trackers to fail.
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Fig. 8. Distances between estimated and ground-truth ellipse cen-
tres averaged over20 runs of each filter.

8. DISCUSSION

King and Forsyth [9] point out that expectations computed
using Condensation have high variance so that different runs
of the tracker lead to very different answers. They also com-
ment that “the tracker will appear to be following tight peaks
in the posterior even in the absence of any meaningful mea-
surement”. The experiments conducted here show that the
variance can indeed be high while the approximation accu-
racy is often poor. The use of an APF improved matters a
little. However, ILW (a simply implemented modification to
SIR) yielded better accuracy and lower variance. In particu-
lar, it was able to successfully track motion that was poorly
accounted for by the dynamic model.

It should be stressed that the effect of the ILW algo-
rithm is not the same as that obtained by simply increasing
the variance of the motion model (or adopting a model with
heavier tails) in the SIR filter. Asymptotically, the implied
dynamics in ILW is aK times convolved version of the orig-
inal dynamic kernel but because the particle set is finite and
a sampling step is applied at each iteration of ILW, the out-
come is very different.

This paper has compared ILW with SIR and an unbi-
ased filter motivated by exploring regions of high likeli-
hood (APF). Other particle filters have been suggested that
share some of the motivations discussed here. It would be
interesting to compare these in furture work. Partitioned
sampling [14, 15] was proposed for tracking multiple or
articulated objects and as such is not appropriate for the
application presented here. Layered sampling [17] can re-
duce the complexity of factored sampling when the likeli-
hood function is narrow. It was developed to address the
problem of “overloading” when observations are made at a
fine spatial scale. Annealed particle filtering [12] uses an
heuristic annealing process to avoid Markov chains becom-
ing trapped in a mode near the starting point. It is useful
when the likelihood is very peaked. Rather than propagate



SIR APF ILW

Fig. 7. Trajectories obtained by20 runs of each of SIR, APF and ILW.

the posterior, it finds the configuration that gives the maxi-
mum value using a weighting function. Both annealed and
layered sampling were proposed to cope with peaked like-
lihoods. In contrast, the likelihood function used here was
carefully designed to be broad and ILW search was effec-
tive. The likelihood function and sampling scheme are in-
timately related and should be considered in conjunction.
ILW, in common with annealed filtering, is partly heuristic
in nature. Future work should more fully explore the bias-
variance trade-offs made by this and related schemes, shift-
ing the emphasis from asymptotic properties to the more
important approximation performance with finite, typically
small, sample sets.
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