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Abstract

A vision system suitable for a smart meeting room
able to analyse the activities of its occupants is
described. Multiple people were tracked using a
particle filter in which samples were iteratively re-
weighted using an approximate likelihood in each
frame. Trackers were automatically initialised and
constrained using simple contextual knowledge of the
room layout. Person-person occlusion was handled
using multiple cameras. The method was evaluated
on video sequences of a six person meeting. The
tracker was demonstrated to outperform standard
sampling importance re-sampling. All meeting par-
ticipants were successfully tracked and their actions
were recognised throughout the meeting scenarios
tested.

1 Introduction

The idea of the ‘smart’ meeting room, able to unob-
trusively sense and interpret the rich stream of ac-
tivity of its occupants, has generated significant re-
cent interest. The reader is referred, for example,
to the Multi-Modal Meeting Manager (M4) project
(EU IST-2001-34485) and recent workshops with em-
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phasis on evaluation of tracking for smart meeting
rooms [11] and analysis of meeting data [2]. The idea
is beginning to show promise as a realisable and po-
tentially highly useful technological application. A
successful smart meeting room with robust opera-
tion will probably require multiple sensing modali-
ties. Desirable capabilities include localisation, iden-
tification and tracking of meeting participants as well
as recognition of their speech, gestures, actions, emo-
tions and their focus of attention [4, 13, 26, 27, 28].
A meeting room endowed with these perceptual abili-
ties could provide advanced meeting support services,
reacting appropriately to users’ needs and facilitating
effective interaction during a meeting. Another im-
portant strand of applications is archiving, indexing
and retrieval. We often forget information shared
at meetings and whilst written meeting minutes pro-
vide retrieval cues for our human memories, it seems
clear that audio-visual information can provide a far
richer record, provided that such data can be appro-
priately (automatically) annotated and efficiently re-
trieved [17].

This paper makes a contribution towards achieving
a subset of the above goals by describing a computer
vision system that tracks participants in a meeting
room and recognises some of their actions. The sys-
tem was evaluated using the PETS-ICVS [11] smart
meeting room video sequences. The aim was to au-
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tomatically track and annotate certain actions of the
meeting participants based on video data. A premise
of this work was that reliable tracking of the head of
each person would yield interesting annotation data
in terms of motion trajectories and that these in turn
could be used to recognise actions such as standing
up, sitting down, entering, exiting and walking to
the whiteboard. The system needed to be able to
simultaneously track multiple people, perform auto-
matic initialisation, handle person-person occlusion
and combine data from two cameras to annotate the
activity of all six participants throughout a meeting.

The remainder of this paper is organised as follows.
Section 2 briefly reviews some related work on track-
ing using particle filters. Section 3 describes the Sam-
pling Importance Resampling (SIR) filter and dis-
cusses its limitations. Section 4 describes and moti-
vates the modified filter, Iterated Likelihood Weight-
ing (ILW) used here. Section 5 describes the head
model and the approximate likelihood measurement
based on combined region (color) and boundary (gra-
dient) cues. The mechanisms used for initialisation
and occlusion handling are described in Section 6.
Empirical results are reported in Section 7 for track-
ing (using SIR, ICondensation and ILW) and action
recognition. Finally, some conclusions are drawn in
Section 8.

2 Tracking using Particle Fil-

ters

Visual tracking is often formulated from a Bayesian
perspective as a problem of estimating some degree of
belief in the state xt of an object at time step tgiven
a sequence of observations z1:t. Bayesian filtering
recursively computes a posterior density that can be
written using Bayes rule as:

p(xt+1jzt+1) / p(zt+1jxt+1)p(xt+1) (1)

Applying a Markov assumption, the prior density is
the posterior density propagated from the previous
time step using a dynamic model:

p(xt+1) =

Z

p(xt+1jxt)p(xtjzt)dxt (2)

The posterior in (1) cannot be computed analyti-
cally unless linear-Gaussian models are adopted, in
which case the Kalman filter provides the solution.
As is well-known, linear-Gaussian models are unsuit-
able for tracking in visual clutter. Instead, particle
filters are often used to propagate what are often non-
Gaussian, multimodal densities over time. A modi-
fication to the frequently used Sampling Importance
Resampling algorithm was used here to improve the
accuracy and consistency of tracking [21].

Isard and Blake suggested particle filtering for vi-
sual tracking in the form of Condensation [14]. Par-
ticle filtering [12] is now popular for tracking and
several authors have suggested alternative sampling
schemes. For example Choo and Fleet [6] used a hy-
brid Monte Carlo filter to sample the posterior for
human tracking. Rui and Chen [25] used an un-
scented Kalman filter to generate importance densi-
ties for particle filter-based tracking. Deutscher et

al. [9, 10] proposed annealed and partitioned par-
ticle filtering for human tracking. Isard and Mac-
Cormick [16] described a multiple blob tracker with
a prediction algorithm based on there being a fixed
probability of a new object entering the scene at each
time step. Sample positions for any such new ob-
ject were drawn uniformly over a fixed region of the
scene. Thus some particles at each time step could
be in regions of state space with low temporal priors
as determined by previously tracked objects. Isard
and Blake [15] used importance sampling to fuse in-
formation from a skin color detector with a contour
tracker. In this approach, the effect of the color cue
was to ensure that samples were made in image re-
gions of appropriate color which might otherwise not
have been sampled sufficiently due to their temporal
prior density being low. The auxiliary particle filter
of Pitt and Shephard [23] uses a proposal distribu-
tion that is a mixture that depends on both the past
state and the most recent oservation. Other varia-
tions on basic particle filtering have been proposed
outside the vision literature (see e.g. [5, 20]). Aru-
lampalam et al. [1] provide a useful tutorial.
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3 Sampling Importance Re-

sampling

Sampling Importance Resampling (SIR) [12] (Con-
densation [14]) approximates the posterior density
p(xtjzt) at each time step t by a set of N particles
fxnt;w

n
tg

N
n=1 where each particle is a weighted ran-

dom sample and
P N

n=1
w n
t = 1. The filtered posterior

is then

p(xt+1jzt+1) / p(zt+1jxt+1)
N
X

n=1

w
n

tp(xt+1jx
n

t )(3)

where the prior is now a mixture with N compo-
nents. The SIR filter involves (i) selecting the nth

mixture component with probability w n
t , (ii) draw-

ing a sample from it, and (iii) assigning the sample
a weight proportional to its likelihood. Resampling
is used to obtain samples with equal weights in order
to facilitate sampling from the mixture in (3). The
algorithm is given in Table 1 for completeness. The
dynamic (motion) model is encapsulated by the tran-
sition density p(xt+1jx

n
t ). Typically, a sample can be

drawn from it by adding random process noise and
then applying deterministic dynamics (drift).

In general, sequential importance sampling filters
operate by drawing samples from an importance den-
sity, q(x), and weighting them using (4) to give a
particle representation of the posterior density.

w
n

t+1 / w
n

t

p(zt+1jx
n
t+1)p(x

n
t+1jx

n
t )

q(xn
t+1jx

n
t;zt+1)

(4)

The SIR filter is an example of a sequential impor-
tance sampling filter in which the prior is used as
the importance density. This is a convenient choice
because an unbiased, asymptotically correct estimate
of the posterior can be obtained by simply weighting
the samples with their likelihood. The resulting algo-
rithm is therefore intuitive and easily implemented.
However, the prior is certainly not the optimal choice
of importance function since it does not take into ac-
count the most recent observation, zt+1. Sampling
using SIR is particularly inefficient when the likeli-
hood is in the tails of the prior or if the likelihood is
narrow and peaked compared to the prior. Although
SIR gives an asymptotically correct estimate of the

Table 1: The Sampling Importance Resampling Al-
gorithm

Draw samples x
n
t+1 � p(xt+1jx

n
t )

Assign weights w n
t+1 = p(zt+1jx

n
t+1)

Normalise weights so that
P N

n=1
w n
t+1 = 1

Resample with replacement to obtain
samples x

n
t+1 with equal weights, (w n

t+1 = 1=N 8n)

posterior, its behaviour with finite sample sets is of-
ten not good. Expectations computed using SIR have
high variance so that different runs of the tracker can
lead to very different results. In human tracking, the
dynamic models used can often result in poor priors
due to unexpected motion. In such cases, SIR will
place many samples in the wrong regions of the state
space. As a result, very large particle sets can be
required in order to achieve acceptable performance.
King and Forsyth [18] comment that SIR “will ap-
pear to be following tight peaks in the posterior even
in the absence of any meaningful measurement”.

SIR’s use of the prior as the importance function
in Equation (4) results in a simplified algorithm but
ignores the most recent observation when sampling.
An alternative approach named ICondensation [15]
generates some of the samples as in SIR and some
of the samples using an importance function that de-
pends on the most recent observation but ignores the
dynamics, i.e. q(xnt+1jx

n
t;zt+1) = q(xnt+1jzt+1). Isard

and Blake [15] demonstrated a hand tracking sys-
tem using this approach with a contour-based like-
lihood model and an importance function based on
skin color blob detection.

4 Iterated Likelihood Weight-

ing

Great care is usually taken to ensure that an unbiased
estimate of the posterior is obtained. The importance
sampling step of (4) is a bias-correcting scheme used
to obtain such an unbiased estimate. However, ap-
proximation error depends not only on the bias but
on the variance (the bias-variance dilemma). If the
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importance density is reasonably accurate, the cor-
rection step may in fact increase the approximation
error for all but very large particle sets (see [29] for
examples of this phenomenon). In other words, bias
is reduced at the cost of higher variance which can
lead to a poorer approximation. Furthermore, the
prior density is often poor and noisy and it therefore
makes little sense to attempt to obtain a computa-
tionally expensive, high accuracy approximation to
the posterior. This is particularly true in many hu-
man tracking applications where inter-frame motion
is often poorly modeled by the dynamic model (tran-
sition density).

A scheme is used here in which only a subset of
the particles at each time step are sampled from the
‘posterior’. The remaining particles are used to in-
crease sampling in regions of high likelihood via a
simple iterative search using the most recent obser-
vation. This is useful when the prior is poor and
can prevent tracking failure in the case of unexpected
motion, for example. Rather than attempt a (poten-
tially expensive) bias-correction step for those parti-
cles used to search high-likelihood regions, they are
weighted at each iteration based on their likelihood.
The resulting particle set is not, asymptotically, an
unbiased representation of the posterior. The algo-
rithm is asymptotically biased. It can be thought
of as SIR combined with an iterative application of
SIR several times on the same observation. The al-
gorithm, called Iterated Likelihood Weighting (ILW),
is given in Table 2. After an intial iteration of SIR,
the sample set is split uniformly at random into two
sets of equal size. One of these sets is propagated to
the next time step unaltered while the samples in the
other set are subjected to further iterations of dif-
fusion, likelihood weighting and resampling. Given
the broad likelihood responses, this has the effect of
migrating half of the particles to regions of high likeli-
hood while the other half are sampled using the prior
as the importance function. In a situation where the
prior is good, its use as an importance function by
half the particles will result in useful samples. How-
ever, if the prior is poor, the iterated particle set will
still explore regions of high likelihood.

In the special case of a Gaussian transition den-
sity, the ILW diffusion step (step 6.(a) in Table 2)

Table 2: The Iterated Likelihood Weighting Filter.
Here p(xt+1;k+1jx

m
t+1;k

) is a transition density with
expected value x

m
t+1;k

.

1. Draw N samples x
n
t+1 � p(xt+1jx

n
t )

2. Assign weights w n
t+1 = p(zt+1jx

n
t+1)

3. Normalise weights so that
P N

n=1
w n
t+1 = 1

4. Resample with replacement to obtain
samples x

n
t+1 with equal weights

5. Split the sample set at random into two sets of
size M = N =2: fxmt+1;1g

M
m =1 and fxmt+1;�g

M
m =1

6. For k= 1:::K
(a) Draw M samples x

m
t+1;k+1

� p(xt+1;k+1jx
m
t+1;k

)

(b) Assign weights w m
t+1;k+1

= p(zt+1jx
m
t+1;k+1

)

(c) Normalise weights so that
P M

m =1
w m
t+1;k+1

= 1

(d) Resample with replacement to obtain
M samples x

m
t+1;k+1

with equal weights

7. For m = 1:::M
x
m
t+1 = x

m
t+1;�

x
M +m

t+1 = x
m
t+1;K +1

amounts to applying these transition dynamics. In
general, however, only step 1. of the algorithm ap-
plies dynamics.

5 Head Model

In order to apply the above filtering scheme to the
tracking problem, the state vector, x, and the likeli-
hood model, p(zjx), must be defined. A well designed
likelihood model can significantly improve tracking
performance [24].

Head shape is reasonably well approximated as an
ellipse in the image irrespective of pose. Rui and
Chen [25] used a fixed ellipse and tracked its 2D
translation using Canny edges. Nummiaro et al. [22]
used an ellipse with fixed orientation and a likelihood
based only on color. Birchfield [3] used an ellipse
constrained to be vertically-oriented and of a fixed
eccentricity leaving only three parameters to be esti-
mated. Here eccentricity is allowed to vary with pose
and position while orientation is fixed. Therefore,
four ellipse parameters were estimated.
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The approximate likelihood model used combines
intensity gradient information along the head bound-
ary with a color model of the ellipse’s interior region.
The color-based measurement  (xnt ) is obtained by
computing the intersection of a 3-D color histogram
of the ellipse’s interior and a stored model color his-
togram. Histograms were formed in RGB space with
8� 8� 8 bins. The gradient-based measurement �(xnt )
involves searching for maximum gradient magnitude
points along short radial search line segments cen-
tered on the ellipse boundary. There are 30 such
lines, each 5 pixels long. The overall likelihood was
formulated heuristically as:

p(ztjx
n

t ) =
( (xnt )�(xnt ))2

P N

n=1
( (xnt )�(xnt ))2

(5)

This has characteristics preferable to the use of
boundary cues or region cues alone. The boundary
cue alone results in a noisy reponse with many lo-
cal maxima. The region cue alone results in a re-
sponse that varies more slowly with translation but
which does not decrease appropriately with reduced
scale. The combined cue, on the other hand, gives a
clear maximum in the correct location and varies in
a well-behaved manner as both translation and scale
change.

6 Initialisation and Occlusion

Handling

Tracker initialisation and occlusion handling made
use of scene-specific contextual information as illus-
trated in Fig. 1. The room layout and the maximum
height of a person meant that the heads of people on
the far side of the table always appeared between the
upper and lower horizontal lines in Fig. 1. There-
fore, no particles were ever propagated outside this
bounding box.

When people pass in front of the camera on the op-
posite wall (visible in the upper centre of Fig. 1) they
occlude the view of the people on the near side of the
table from that opposing camera. The boxes near the
centre of Fig. 1 indicate regions in which this occurs.
When such an occlusion event is detected, any tracks

Figure 1: Scene constraints used to perform tracking,
initialisation and occlusion handling.

in the corresponding regions of the opposing camera’s
field of view are suspended until the occlusion is over.
Provided that the occluded people do not move too
much while occluded, their trackers will recover and
continue to track them.

Initialisation was performed in expected entry and
exit regions indicated in Fig. 1 by filled rectangles.
A background subtraction algorithm was applied in
each frame within these regions. Whenever signifi-
cant change was detected, an initial particle set of
head ellipses was instantiated centred within the re-
gion and a tracker was initialised. Color histograms
were learned from a single frontal head view taken
from elsewhere in the PETS-ICVS data set. No his-
togram adaptation was needed. When a tracker’s
estimated head ellipse left the field of view in the
direction of the whiteboard, that tracker waited for
the background subtraction routine to signal re-entry.
When a tracker’s estimated head ellipse left the view
in the direction of the exit, the tracker was termi-
nated.
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Figure 2: Occlusion handling. Frames 17125, 17130, 17135 and 17140 of Scenario C viewed from Camera
1. Suspended tracks are shown as green ellipses. (The halo effect around the occluding head is due to
interlacing.)

7 Evaluation

The tracking methods were implemented using a
Gaussian transition density with diagonal covariance
matrix. Specifically, the variance parameters were
�2 = 112 pixels for the ellipse centre parameters
and �2 = 22 pixels for the ellipse major and minor
semi-axis parameters. In common with similar previ-
ous work on particle filter tracking, a person can be
tracked comfortably in real-time (25H z) on a stan-
dard PC. Computational cost scales linearly with the
number of people to be tracked. The current C++
implementation cannot simultaneously track all the
meeting participants in real-time. However, this goal
has not been pursued. The method is amenable to
parallel implementation.

7.1 The Meeting Room and Video

Data Sets

The method was evaluated using sequences pro-
vided by the consortium of Project FGnet (IST-2000-
26434) for the PETS-ICVS Workshop [11]. Image
size was resampled to 450 � 360 pixels. The meeting
room had a table with seating for six participants,
three seats on each side of the table. Video was pro-
vided from two wall-mounted cameras on opposite
sides of the meeting room. Scenario C (“Going to
the white board”) in particular was used to illustrate
performance (Figs. 2– 7). This scenario began with
each of six meeting participants in turn entering and
then sitting down. Subsequently, each in turn stood

up, walked to the whiteboard, wrote something and
then returned to his seat, twice. Finally, each person
in turn exited the room. This scenario and a second
scenario (B: “Performing Face and Hand Gestures”)
were used to evaluate the performance of the sys-
tem in terms of its ability to track each of the people
throughout entire meeting sequences. Furthermore,
its ability to recognise the actions of entering, exiting,
sitting down, getting up, and going to the whiteboard
was evaluated.

7.2 Head Tracking Results

The method of initialisation, reinitialisation and ter-
mination was 100% successful on both Scenarios B
and C. There were no false initialisations, people were
always tracked after returning from the whiteboard
and trackers were terminated only when people left
the room.

The occlusion handling mechanism was successful
in all the sequences tested here. Fig. 2 shows an
example in which each of the trackers for the three
people on the far side of the room were suspended
and recovered in turn due to a person near the camera
moving left to right across its field of view.

All the meeting participants were successfully
tracked throughout both the Scenario B and C se-
quences using ILW. Figs. 3 and 4 show a selection of
frames from each of the two camera views for Scenario
C. For each person, a red ellipse is used to indicate
the mean estimated from the particle set and a white
ellipse to indicate the mean of the 10 most heavily
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Figure 3: Frames 10950, 11270, 13630, 13720, 14280, 14840, 17200 and 19100 of Scenario C from Camera 1 in which
persons (4), (5) and (6) are tracked using ILW entering the room, sitting down, going to the white-board (to the
right of the field of view) returning to their seats and finally exiting the room (to the left of the field of view).

Figure 4: Frames 10500, 11065, 11940, 12810, 13615, 15790, 16500 and 19200 of Scenario C from Camera 2 in which
persons (1), (2) and (3) are tracked using ILW entering the room, sitting down, going to the white-board (to the left
of the field of view), returning to their seats and finally exiting (to the right of the field of view).

weighted particles for that frame. In these examples,
these two estimates were very similar. The mean of
the 10 strongest particles gave a temporally smooth
estimate of the location of the strongest mode of the

distribution. Fig. 5 shows the trajectories of the cen-
tres of each person’s head for the entire sequence.

Standard SIR filtering performed relatively poorly.
Fig. 6 shows example frames from a typical run
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Figure 5: The estimated trajectories for the head cen-
tres for the entire duration of Scenario C. The positions
are shown for each frame using a different color for each
person, overlaid on images of the empty meeting room.
The upper image shows the view from Camera 1 and the
lower image the view from Camera 2. The horizontal
white lines were used for action recognition.

with Camera 2. Trackers lost lock, became attached
to background clutter and subsequently tracked the
wrong person. The performance of SIR was better
with Camera 1 because there was less background
clutter. However, tracking failures in the Camera 2
view confused the occlusion management algorithm

Figure 6: Frames 10400, 10500, 10550, 11070, 11090 and
11300 of Scenario C seen by Camera 2. Here the SIR
tracker loses person 1 and later tracks person 3 with two
ellipses simultaneously.

which in turn led to the trackers in Camera 1 failing.

Although the above runs were typical for these se-
quences, isolated runs of particle filters are not suf-
ficient to evaluate performance due to the variance
of the filters. Likelihood computation is the main
computational expense during tracking and the dif-
ferent filters require different numbers of likelihood
evaluations per frame. In order to obtain a fair em-
pirical comparison, the number of particles used with
each filter was chosen so that the number of likelihood
evaluations per frame was equal, i.e. 200 particles for
the SIR, and 50 for ILW, respectively. ILW used 6 it-
erations. Likelihood evaluations per frame were thus
the same for each method. Both filters were run with
the same transition density (a Gaussian centered on
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Figure 7: Head estimates at frame 10520 of Scenario
C after 50 different runs of the tracking algorithm start-
ing from the first frame of the sequence. The upper im-
age shows the results using SIR and the lower image the
results using ILW. Each ellipse is the mean of the ten
strongest particles.

the previous sample) and the same noise parameters.
Fig. 7 compares multiple runs of the two filters on the
same sequence. The SIR filter failed in the majority
of runs. The SIR trackers for person 1 and person
2 maintained lock in only 30% and 38% of runs re-
spectively. At least one of the SIR trackers lost lock
in 84% of the runs. In contrast, ILW lost lock in
only 2% of cases. One of the ILW trackers always
maintained lock.

Ground-truth data for the eye positions were avail-
able for a section of Scenario B in which the par-
ticipants were seated. While the system was never
intended to accurately estimate eye positions, these
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Figure 8: Top: Distributions of the displacement errors
for the left and right eyes. Ground-truth is at the origin
in the centre of the plots. Bottom: Example images at
the same scale as the plots illustrating the extent of head
rotation.

data were nevertheless used to provide an indication
of the accuracy and consistency of head tracking un-
der an upright, frontal face view assumption. Per-
formance was quantitatively evaluated using these
ground-truth data under the simplistic assumption
that the face was always in a frontal, upright view.
The eye positions can be estimated under this as-
sumption relative to the head ellipse. This method
will clearly become innaccurate when the assump-
tion is violated by head rotation. The distribution
of displacement errors is shown in Fig. 8. The mean
displacement in the y-direction was 0:5 pixels with a
standard deviation of � = 6:3. This variance was due
to both slight head tilt violating the frontal view as-
sumption and small head tracking errors. Given that
a head appears approximately 80 pixels in height, the
error is relatively small and indicates accurate head
tracking. Errors in the x-direction were of course
larger due to the severe violation of the frontal view
assumption when people turned their heads from side
to side. The mean displacements for the left eye and
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right eye were 1:7 pixels and � 5:6 pixels with stan-
dard deviations of 11:5 and 10:9 respectively. This
can be regarded as a baseline performance against
which to compare eye position estimators. The esti-
mates were always within the true head region.

7.3 Comparison with ICondensation

A method based on ICondensation [15] in which the
most recent observation is used to generate an im-
portance function, was also implemented for head
tracking. In particular, an importance function was
generated from the current frame as a 10-component
mixture of 2 � D Gaussians. This mixture was fit-
ted using Expectation-Maximization to a pixel color
likelihood computed using the head color histogram.
Similarly to Isard and Blake [15], a mixed sampling
scheme was adopted. At each frame, half the samples
were generated using standard factored sampling (as
in SIR) and half using color importance sampling. In
the latter case, the ellipse state was first sampled us-
ing standard factored sampling and the translation
parameters were subsequently replaced by sampling
from the color importance function.

Figure 11: Head estimates at frame 10571 of Scenario C
after 20 different runs of ICondensation starting from the
first frame of the sequence. For each run, a red ellipse
denotes the mean for the tracker initialised on the left-
most person and the white ellipse the mean for the tracker
initialised on the other person.

Figs. 9 and 10 illustrate example results computed

using ICondensation. In both Figures, a tracker ini-
tialised on one person jumps to another person when
the color cue becomes temporarily unreliable due to
unusual head poses. Fig. 11 shows results obtained
over multiple runs using ICondensation with 400 par-
ticles. Although two trackers were initialised, one per
person, an extreme head pose resulted in both track-
ers locking onto to the same person in every run.
This behaviour can be explained by considering the
global nature of the color importance function. When
the color cue for a head becomes temporarily unre-
liable, sampling from the color importance function
results in particles being placed on other head col-
ored regions in the scene. In the presence of other
similar objects (heads), the dynamic prior is insuffi-
cient to constrain the tracker and it jumps to another
object. Whilst the global nature of the color impor-
tance function can enable robust tracking of large
motions, the presence of other similar objects in the
scene makes it liable to lose lock on the intended tar-
get.

7.4 Action Recognition

Given the reliable head tracking just described, recog-
nition of several actions in the meeting Scenario C
became straightforward. These actions were enter-
ing, exiting, going to the whiteboard, getting up and
sitting down. The first three can be recognised by de-
tecting where trackers initialise and terminate. Sit-
ting down and getting up can be recognised by de-
tecting when the head centre crosses the horizontal
lines shown in Fig. 5. In particular, a person is clas-
sified as sitting if their head is below the lower line
and as standing if their head is above the upper line.
When between the two lines, they are classified as
transitioning between sitting and standing, i.e. “sit-
ting down” or “getting up”. Table 3 gives a detailed
action annotation obtained. This is given here to al-
low other researchers to compare their results on this
public domain data set. This temporal segmenta-
tion into actions was qualitatively correct throughout
both Scenarios B and C. No actions were falsely de-
tected or missed. The order of events was recovered
correctly.

This action recognition method obviously relies

10



Figure 9: An ICondensation tracker locking on to the wrong person. An unusual head pose resulted in
a poor importance function causing the tracker to jump to another person rather than track through this
temporary change in color distribution.

Figure 10: Four images from a run of a single ICondensation tracker showing the (unweighted) particle sets
propagated. This tracker was initialised for the person on the right side of the image. The importance
function results in large numbers of samples placed on the other people and on background color clutter. A
temporary unusual head pose results in the tracker jumping to another person who is tracked from then on.

heavily on scene-specific constraints. Since only a
few examples of these actions occurred in the data
provided it was not possible to properly evaluate the
method’s ability to generalise. Methods based on
learning more complex models of action become feasi-
ble only with larger data sets of example actions. The
approach adopted here was to fit a simple method to
the available data. Recognition of these actions was
made relatively simple by virtue of the success of the
head tracker.

8 Conclusions

All meeting participants were successfully tracked
throughout long image sequences with automatic ini-
tialisation and termination of tracking. They were
tracked through occlusion using views from two dif-
ferent cameras. Given some simple scene-specific con-
straints, the tracking results enabled the actions of

entering, exiting, going to the whiteboard, sitting
down and getting up to be recognised. All such ac-
tions were detected without false detections.

Two trackers based on SIR and ILW were com-
pared. The experiments show that the variance of
SIR can be high while the approximation accuracy is
often poor. The ILW tracker yielded better accuracy
and lower variance. There are several other particle
filtering schemes that should also give better perfor-
mance than standard SIR. For example, the auxil-
iary particle filter uses the most recent observation
when computing an unbiased estimate of the poste-
rior [23]. In a previous overhead tracking experiment
performed by the authors it was, however, outper-
formed by ILW [21].

It should be noted that there exist tracking meth-
ods not based on particle filtering, such as kernel-
based tracking as proposed by Comaniciu et al. [7, 8],
that are likely to perform competitively in this ap-
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Table 3: The temporal segmentation obtained of Scenario C into activities.
Activity Person 1 Person 2 Person 3 Person 4 Person 5 Person 6

Enters room 10306 10487 11061 11219 10676 10852

Walking 10306 - 10408 10488 - 10559 11061 - 11061 11219 - 11303 10677 - 10757 10852

Sitting down 10409 - 10412 10560 - 10564 11062 - 11066 11304 - 11313 10758 - 10765 10929 - 10934

Sitting 10413 - 11905 10565 - 12424 11067 - 12937 11314 - 14821 10766 - 14264 10935 - 13676

Getting up 11906 - 11910 12425 - 2431 12938 - 12946 14822 - 14827 14265 - 14269 13677 - 13680

Walking to whiteboard 11911 - 11979 12432 - 12496 12946 - 13040 14828 - 14850 14270 - 14325 13681 - 13771

At whiteboard 11980 - 12278 12497 - 12790 13041 - 13572 14851 - 15160 14326 - 14684 13772 - 14070

Walking from whiteboard 12279 - 12356 12791 - 12852 13573 - 13651 15161 - 15168 14685 - 14764 14071 - 14183

Sitting down 12357 - 12360 12853 - 12857 13652 - 13658 15189 - 15193 14765 - 15768 14184 - 14190

Sitting 12361 - 15435 12858 - 15890 13659 - 16465 15194 - 18459 15769 - 17733 14191 - 17115

Getting up 15435 - 15438 15891 - 15896 16466 - 16470 18460 - 18469 17734 - 17737 17116 - 17122

Walking to whiteboard 15438 - 15450 15897 - 15986 16471 - 16560 18470 - 18486 17738 - 17824 17123 - 17279

At white board 15450 - 15800 15987 - 16326 16561 - 17100 18487 - 18856 17825 - 18262 17280 - 17514

Walking from whiteboard 15801 - 15827 16327 - 16399 17101 - 17189 18857 - 18866 18263 - 18350 17515 - 17518

Sitting down 15828 - 15833 16400 - 16405 17190 - 17196 18896 - 18904 18351 - 18357 17643 - 17648

Sitting 15834 - 20001 16406 - 19170 17197 - 19827 18905 - 19597 18358 - 19347 17522 - 17642

Getting up 20002 - 20006 19171 - 19177 19828 - 19834 19598 - 19608 19348 - 19360 19005 - 19009

Walking from room 20007 - 20101 19178 - 19269 19835 - 19851 19608 - 19704 19361 - 19455 19010 - 19107

Leaves room 20102 19270 19852 19705 19456 19108

plication. It would be interesting to perform direct
empirical comparisons with such methods in future
work.

In conclusion, the following points can be made
regarding performance evaluation of tracking and
surveillance systems such as those used here.

� It is not sufficient to compare performance based
on single runs, even on long sequences. Instead,
multiple runs should be used so that the vari-
ation due to the stochastic nature of the algo-
rithms can be analysed.

� When comparing different algorithms, free pa-
rameters should be adjusted so that computa-
tional expense per frame is comparable. In
the case of comparing SIR and ILW, this was
achieved by varying the size of the particle set
so that the number of likelihood evaluations was
the same.

� When evaluating a tracker, its role in the overall
system needs to be considered. In many cases,
frame-by-frame accuracy is not as important as
ensuring that a tracker does not lose lock alto-
gether. The system presented here did not lose
lock at all throughout the sequences tested. The
role in the overall system also determines to some
extent what ground-truth data are appropriate.

� Good tracking performance simplifies action
recognition. Simple rules based on head loca-

tion were sufficient to classify actions for data
used here.

In the future, the method proposed here should be
evaluated in meeting room environments other than
that of the PETS-ICVS data sets. Although the oc-
clusion handling and initialisation methods described
worked well for these scenarios, a system applica-
ble to a wide range of meeting room configurations
would doubtless require extensions to be made. For
example, in the PETS-ICVS sequences, heads being
tracked on the far side of the table never occlude one
another. A solution to the problem of how to track
through such occlusions could make use of clothing
color to help disambiguate such situations [19].
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