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Abstract
Endoscopic surgery routinely produces video data. Automated understanding of these data has
applications both online (visual servoing for telemanipulation) and offline (procedure analysis,
annotation and content-based retrieval). As a step towards such applications, a method for tracking
surgical instruments in endoscopic video without modifications to instruments or endoscopic equipment
is described. The shape model used is flexible enough to track a variety of surgical instruments. Colour
distributions are used to compute measurements that drive particle filter-based tracking. The method is
demonstrated using routinely obtained video from laparoscopic cholecystectomy.
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1 Introduction

A routinely performed endoscopic surgical proce-
dure is laparoscopic cholecystectomy (gall bladder
removal). The video endoscope is inserted through
a small incision near the navel. The abdomen is
inflated with carbon dioxide to provide space for
the surgery to be viewed and performed. Vari-
ous instruments are inserted through further entry
ports. These enable the surgeon to pick up the gall-
bladder, move intestines around and to safely dis-
sect and remove the gallbladder and stones. Fur-
ther instruments are used to apply clips to the
dissected gallbladder artery and bile duct. Laparo-
scopic cholecystectomy typically takes between 30
and 60 minutes.

Clearly, endoscopic surgery routinely produces
enormous amounts of image sequence data,
although much of it is not currently recorded.
These data are usually, though not always,
monoscopic. We are interested in using computer
vision for video understanding in this domain.

An online application is visual servoing for an en-
doscopic robot. It is common practice for a human
assistant to hold and move the endoscope during
surgery in order that appropriate views are ob-
tained for the surgeon. This is costly and has
a number of limitations. For example, suitably
trained assistants can be a scarce resource other

than in teaching hospitals. Furthermore, the hu-
man operator is likely to become fatigued, may
introduce motion tremor and is open to errors of
communication with the surgeon. Telemanipula-
tion, in which a robot holds and moves the endo-
scope based on a combination of automatic video
understanding and surgeon control, provides an
alternative.

Potential offline applications of endoscopic video
understanding are indexing, retrieval and analysis
of surgery. Despite widespread interest in
content-based visual information retrieval, tools
for retrieval of video specialised to the medical
domain do not yet exist [1]. In particular, there
are no tools available to automatically annotate
endoscopic surgery videos. Content-based access
of these videos would benefit large domains of
teaching and research, facilitating training and
outcomes studies.

As a step towards such applications, this
paper presents a method for tracking surgical
instruments in endoscopic video. The resulting
track data could be used to help infer the
desired field of view for servoing a robot or for
modelling and recognising surgical actions and
activities for video annotation. The aim here is to
perform tracking without modifications to surgical
instruments or endoscopic equipment. The video



data are acquired as normal during surgery using
a standard endoscope and routinely used surgical
instruments. In particular, the use of special
visual markers on the surgical instruments is
avoided. This means that the method developed
is applicable to pre-existing video data which
will have been acquired without such markers.
Furthermore, requiring the use of visual markers
has other disadvantages. Painted markers would
present a biological hazard. Tape-based markers
can be awkward to fit and problematic if the
instrument is to be introduced down a port with
very little radial clearance. Moulded features
would not be retrofittable, and etched or shot
blasted markers would not yield high colour
contrast.

The remainder of the paper is organised as follows.
Section 2 reviews previous research on endoscope
control and instrument tracking. Section 3 de-
scribes the tracking method. Section 4 presents
results from video of laparoscopic cholecystectomy.
Finally, conclusions and directions for future work
are given in Section 5.

2 Previous Work on Endoscope
Telemanipulation and Instrument
Tracking

Various command interfaces to enable the surgeon
to control the endoscope directly have been devel-
oped. Systems have been based on speech (AE-
SOP, Computer Motion (discontinued); [2]), glove
control (Zeus, Computer Motion) and head move-
ment (EndoAssist, Armstrong Healthcare Ltd.) for
example. The latter used a wireless head-mounted
device to enable camera pan, tilt and zoom control
in response to small head movements in combina-
tion with a footswitch. There is evidence that this
can reduce operation times [3]. A force sensor was
used for safety to deactivate movement. Nishikawa
et al. [4] investigated a computer vision-based face
tracker as a means of allowing the surgeon to con-
trol the laparoscope.

Previous attempts at ‘self-guided’ telemanip-
ulation systems (visual servoing) have also
been reported. The idea here is that a robot
automatically controls the endoscope pose and
zoom parameters. This has to date consisted of
attempts to centre the field of view near the tip(s)
of relevant surgical instruments. Several research
groups used instruments with special coloured
or patterned markers on them and attempted to
detect the instruments’ positions [5, 6, 7, 8]. The
image analysis methods used were ‘bottom-up’,
typically consisting of colour thresholding and
subsequent binary image analysis. These systems
showed preliminary success but were not reliable

enough. For example, simple colour thresholding
has problems due to inter-reflections, varying
illuminant position and specular highlights.
Zhang and Payandeh [9] described some simplified
endoscope calibration methods and proposed
tracking markers on the instrument tips in
monochromatic images to recover robot control
parameters including zoom. The calibration
methods aimed to correct for barrel distortion
due to the wide-angle lenses used as well as
determining other intrinsic (focal length, image
centre) and extrinsic (position and orientation
relative to robot) parameters. Asari et al. [10] also
considered distortion correction for endoscopic
images. A related problem of bringing the
instruments into the endoscope’s field of view was
tackled by Krupa et al. [11] who used lasers fitted
to the instruments to project a structured light
pattern which was then automatically analysed to
guide the endoscope.

Roubert [12] attempted to detect instruments
without markers using frame differencing and
least squares line fitting but the lack of strong
models and a tracking framework meant that
performance was not robust. Computer Motion
Inc. also investigated vision-based control [13, 14]
based on colour cues, low-level grouping and
simple temporal filtering.

3 Method

A pixel’s colour values provide a strong discrimina-
tory cue for whether or not it is occupied by a surgi-
cal instrument. In particular, given a pixel’s RGB
values, denoted γ, and ignoring all other data, the
posterior probability of a surgical instrument at
that pixel is given by Bayes’ rule:

P (ι|γ) =
P (γ|ι)P (ι)

P (γ|ι)P (ι) + P (γ|¬ι)(1− P (ι))

where ι and ¬ι denote the instrument and non-
instrument classes, respectively. Figure 1 shows
an image of such posterior probabilities computed
using P (ι) = 0.3 and likelihoods, P (γ|ι) and
P (γ|¬ι), estimated as RGB histograms from
manual segmentations of four images selected
at random from other image sequences of this
surgery. Whilst this provides a strong local cue,
using it to drive low-level grouping without shape
constraints will clearly be insufficient.

A variety of surgical instrument designs are
used and these designs will be adapted over
time. Therefore, rather than use models specific
to particular instruments, a middle ground is
adopted here by using a generic model with two-
dimensional shape constraints that are satisfied



Figure 1: An image of instrument posterior proba-
bilities computed pixelwise using RGB histograms.
Hypotheses for two instruments are overlaid along
with their adjacent background region contours.

by the images of the instruments to be tracked.
The instrument state model has six degrees of
freedom and specifies three line segments, referred
to as the side segments and the tip segment.
The side segments each have an endpoint at the
image boundary and they are constrained to be
approximately parallel. The angles between the
tip segment and the side segments are constrained
to lie between 75◦ and 105◦.

Figure 1 shows two hypothesised instruments over-
laid on a pixel colour posterior probability image.
The inner contours represent the hypothesised in-
strument boundaries. The regions enclosed be-
tween the inner and outer contours are referred to
as the instruments’ adjacent backgrounds. Let P̄R
and P̄B denote the average pixel posterior proba-
bility within the instrument region and the adja-
cent background region, respectively. Intuitively,
a good hypothesis should have large P̄R and small
P̄B. A reasonable approximation to the likelihood
of the state is P̄R(1− P̄B).

Instrument tracking was performed using a particle
filter to propagate an estimate of the state pos-
terior over time. Specifically, iterated likelihood
weighting [15] with zero-mean Gaussian dynamics
(σ = 20 pixels) was used. This method combines
sampling importance resampling with local likeli-
hood search.

4 Results

Figures 2 and 3 show example frames from two
sequences in which instruments are tracked. Over-
laid for each tracker is the mean of its 10 most
strongly weighted particles. The images had 720×
576 pixels and each sequence was acquired at a
frame rate of 24Hz.

In order to provide a quantitative indication of
accuracy, ‘ground-truth’ data were manually an-
notated for the two main instruments in the sub-
sequence represented in Figure 2 by clicking points
on the sides of the instruments in each frame and
fitting lines through them in order to give an in-
strument orientation in the image plane. The mean
absolute difference between the orientation recov-
ered by the tracker and the manually annotated
orientation was computed. For the instrument on
the right side of the images, it was 5.2◦. The instru-
ment on the left side had a larger mean absolute
difference of 11◦ due to the relatively small fraction
of its length that was visible.

5 Summary and Future Work

A method for tracking surgical instruments in
monocular endoscopic video was presented as
a step towards automated video understanding
in this domain. Whereas previous research has
tended to focus on tracking instruments with
special markers, this paper has demonstrated the
feasibility of tracking unmodified instruments. The
results presented were on subsequences extracted
from video of laparoscopic cholecystectomy. The
method is computationally efficient enough to
run in real-time (video frame-rate) on current PC
hardware.

Robust tracking of entire surgical procedures will
require further work. The current method needs to
be extended to cope with situtions in which signif-
icant partial occlusion by tissue and other instru-
ments occurs. Other challenges include abrupt mo-
tion and periods in which smoke partially obscures
the view. Further work is also needed to determine
the extent to which reliable 3D information can be
extracted in order, for example, to perform visual
servoing.
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Figure 2: Tracking result showing example frames at intervals of 20 frames.

Figure 3: Tracking result showing example frames (786, 798, 817 and 835).
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