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Abstract. This paper proposes a generalised inverse learning structure to control the LCL converter. A
feedforward neural network is trained to act as an inverse model of the LCL converter then both are
cascaded such that the composed system results in an identity mapping between desired response and
the LCL output voltage. Using the large signal model, we analyse the transient output response of the
controlled LCL converter in the case of large variation of the load. The simulation results show the efficiency
of using neural networks to regulate the LCL converter.

PACS. 84.30.Jc Power electronics; power supply circuits – 84.35.i Neural networks

1 Introduction

Resonant converters are widely used in many industrial
applications as supplies for CO2 laser, X-rays tubes, and
radars. This paper is concerned with the resonant con-
verter type LCL that operates over the resonant frequency
(Fig. 1) [1,2]. This converter presents the advantages of
operating at no load, full load and short load [1,2]. More-
over, due to the third order resonance, the LCL has a high
dynamic control characteristic.

The resonant converters of power electronics are vari-
able structure systems. In fact they are linear piecewise
systems whose global behaviour is strongly non-linear [3].
Many researches avoided the non-linearity problem by lin-
earising the system around a steady point and then apply-
ing linear control techniques [4,5]. However, this approach
can not be applied in the case of a large change in the load.

In the particular context of the LCL-type resonant
converter, the aim of the control scheme is to maintain the
output voltage Vs constant in spite of the large change of
the load (Rs). This paper proposes to use the generalised
inverse learning structure [5] to control the LCL converter
based on the feedforward neural networks.

Using the large signal model [7] of the LCL converter
developed in [4], the equilibrium points, characterised by
the output voltage, the operation frequency and the load,
were determined. To obtain an inverse neural model of the
LCL resonant converter, the network is trained using the
output voltage of the converter and the load as an input
vector, and the converter input frequency as the target
output. The obtained inverse system is then cascaded with
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Fig. 1. Full bridge ZVS-LCL resonant converter.

the LCL converter such that the composed system results
in an identity mapping between desired response and the
LCL output voltage. Thus the network acts directly as a
controller.

Next section presents a brief description of the LCL
converter and its operating mode. Section 3 gives the de-
tails of derivation of the discrete time domain model. Sec-
tion 4 presents an overview of artificial neural network
architecture and learning. The neural control scheme is
presented in Section 5. The transient analysis of the out-
put response is presented in Section 6.

2 Converter operation

Figure 1 presents the full-bridge ZVS-LCL resonant
converter. Figure 2 illustrates the typical waveforms
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Fig. 2. Waves forms when f
f0

= 1.04.

starting from kth instant onwards, for the continuous cur-
rent mode, in which the LCL converter operates.

In Figure 2, the diodes D1 and D4 are conducting
at time instant t0(k). This being a lagging power factor
mode of operation, the first inductor current i1 has nega-
tive value at that instant, the second inductor current i2
starts positive and becomes negative at the instant t1(k).
At t2(k) ≡ t0(k+1), T1 and T4 are turned off and the next
half cycle begins with the conduction of D2 and D3.

The second half cycle is the same as the first half cycle
except that all the variables have an opposite polarity. The
first half cycle is called the kth event and the second half
cycle is the (k+1)th event and so on. Each of these events
is divided into sub-events depending upon the polarity of
the second inductance current or the output voltage. The
total conduction angle (switch and diode) is denoted by
γ(k), as shown in Figure 2. The output voltage is controlled
by varying the angle γ(k), where

α(k) = ω0

[
t1(k) − t0(k)

]
, γ(k) = ω0[t0(k+1) − t0(k)],

ω0 =
1√
L0C

and L0 =
L1L2

L1 + L2
·

3 The discrete time domain model
and the discrete state space model

3.1 The discrete time domain of the LCL converter

Under steady state conditions, the converter shows two
possible operating modes, depending on the value of n, in
each half cycle, where σ = 1 during mode 1 (t0(k) ≤ t ≤
t1(k)) and σ = −1 during mode 2 (t1(k) ≤ t ≤ t0(k+1)).

3.1.1 kth event

The equivalent circuit shown in Figure 3 is used in
the analysis. The vector space equation for the LCL
converter is:

[Ẋ ] = [A][X ] + [B][U ], (1)

Fig. 3. The equivalent circuit.

where

[X ] =

νncinl
in2

 , [A] =

 0 1 −1
− 1
λ 0 0

1
β 0 0

 , [B] =

0 0
1
λ 0
0 −σβ

 ,
[U ] =

[
V ne
V ns

]
,K = L1/L2, γ = 1 +K,β = 1 + 1/K.

Using the normalised variables (i.e. per unit values), the
general solutions of (1) in the time interval tp−1 ≤ t ≤ tp
are:

νnc (t) =
V ne
λ

+ σ
V ns
β

+
[
νnc (tp−1)− V ne

λ
− σV

n
s

β

]
× cos(θ−θp−1)+[in1 (tp−1)− in2 (tp−1)]sin(θ−θp−1) (2)

in1 (t)− in2 (t) = −
[
νnc (tp−1)− V ne

λ
− σV

n
s

β

]
× sin(θ − θp−1) + [in1 (tp−1)− in2 (tp−1)]cos(θ − θp−1) (3)

where Vb = E, V ne =
E

Vb
, νnc =

νc

Vb
, in1 = i1 ·

Z

Vb
,

in2 = i2 ·
Z

Vb
, ωn =

ω

ω0
and Z =

√
L0

C
·

In all the above equations p = 1 in mode 1 and p = 2 in
mode 2.
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3.1.2 (k + 1)th event

The (k + 1)th event starts at the instant t0(k+1) ≡ t2(k)

which is the end point of kth event. Thus the final values
of the variables for the kth event are the initial values for
the (k + 1)th event. The equations representing the two
intervals of the (k+ 1)th event can be written in the same
way as those of the kth event.

Equations (2, 3), describing the kth event along with
those corresponding to the (k+1)th event, describe one full
cycle of the LCL converter operation. The initial values of
the (k + 1)th event are expressed in terms of the initial
values of the kth event.

3.2 The discrete state space model

3.2.1 Selection of discrete state variables

The following discrete state variables were chosen (corre-
sponding to the storage elements in the circuit) for the
kth and (k + 1)th events:

x1(k) = −νnc (t0(k)), (4)

x2(k) = −in1 (t0(k)), (5)

x3(k) = −in2 (t0(k)), (6)

x1(k+1) = νnc (t0(k+1)), (7)

x2(k+1) = in1 (t0(k+1)), (8)

x3(k+1) = in2 (t0(k+1)). (9)

Concerning the output stage of the LCL converter, we in-
troduce a current source iout(k) (Fig. 1) which represents
the disturbance in the load current. This current value is
equal to zero during the steady state [6,7].

The output equation brought back to the primary of
the transformer is given by:

x4(k+1) = x4(k) +
γ(k)

Cs/C

[
x5(k) + iout(k) −

x4(k)

Rs/Z

]
where,

x4(k) = V ns (t0(k)), (10)

x5(k) = Ins (t0(k)), (11)

x4(k+1) = V ns (t0(k+1)), (12)

where, Ins is the output current.
In order to simplify the presentation of the recurrent

equations, L1 and L2 are supposed to be equal.

3.2.2 Formulation of the model

Using the states variables defined in the equations (4)
to (12) and the equations (2) and (3), the following large
signal model, in discrete time domain, is obtained:

x1(k+1) = −cos(γ(k))x1(k) − sin(γ(k))[x2(k) − x3(k)]

+
1
2
−
x4(k)

2
−
[

1
2
−
x4(k)

2

]
cos(γ(k))

+ x4(k)cos(γ(k) − α(k)) (13)

x2(k+1) =
sin(γ(k))

2
x1(k) −

cos(γ(k))
2

[x2(k) − x3(k)]

+
[

1
4

+
x4(k)

4

]
sin(γ(k))−

x4(k)

2
sin(γ(k) − α(k))

−
x2(k)

2
−
x3(k)

2
−
α(k)x4(k)

2
+
γ(k)

4
+
γ(k)x4(k)

4
(14)

x3(k+1) = −
sin(γ(k))

2
x1(k) +

cos(γ(k))
2

[x2(k) − x3(k)]

−
[

1
4

+
x4(k)

4

]
sin(γ(k)) +

x4(k)

2
sin(γ(k) − α(k))

−
x2(k)

2
−
x3(k)

2
−
α(k)x4(k)

2
+
γ(k)

4
+
γ(k)x4(k)

4
(15)

x4(k+1) = x4(k) −
ZCγ(k)x4(k)

RsCs

+
C

Cs

[
x1(k+1)

2
+
(
x1(k) +

1
2

+
x4(k)

2

)
cos(α(k))

−
x1(k)

2
+(x2(k)−x3(k))sin(α(k))−(x2(k)+x3(k))

×
(
α(k)+

γ(k)

2

)
−α2

(k)

x4(k)

2
−
(

1
8

+
x4(k)

8

)
γ2

(k)

+α(k)γ(k)

x4(k)

2
+
α2

(k)

4
− 1

2
−
x4(k)

2
+ iout(k)

]
.

(16)

These non-linear discrete equations have the following
general form for i = 1...4:

xi(k+1) = fi(x1(k), x2(k), x3(k), x4(k), iout(k), γ(k)). (17)

3.3 Equilibrium point and constant load characteristics

3.3.1 Equilibrium point

Applying the symmetry conditions xi(k+1) = xi(k). The
equilibrium point can be determined. The variables x4(k)

and γ(k) define the equilibrium. Simultaneous solution of
the resultant equations yields the following steady-state
solution

x1(k) = −
{

[1 + cos(γ(k))]
x4(k)

β
+ [cos(γ(k) − α(k))

+cos(α(k))]
x4(k)

β

}
1

[1 + cos(γ(k))]
(18)

x2(k) =
{

γ(k)

2(λ+ β)
+
γ(k)λx4(k)

β(γ + β)
−
α(k)x4(k)

λ+ β

+
[
−β
λ

sin(γ(k))
λ+ β

+ [sin(γ(k) − α(k))

−sin(α(k))]
x4(k)

λ+ β

]}
1

1 + cos(γ(k))
(19)
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Fig. 4. Constant load characteristics.

x2(k) =
{

γ(k)

2(λ+ β)
+
γ(k)λx4(k)

β(λ + β)
−
α(k)x4(k)

λ+ β
−

sin(γ(k))
λ+ β

+[sin(γ(k) − α(k))− sin(α(k))]
λ

β

x4(k)

λ+ β

}
1

1 + cos(γ(k))
(20)

where αk is given by the following equation:

sin
(γ(k)

2
− α(k)

)
− x4(k)sin

(γ(k)

2

)
+
[
α(k) −

γ(k)

2
− x4(k)

γ(k)

2

]
cos
(γ(k)

2

)
= 0. (21)

3.3.2 Constant load characteristics

In order to have constant load characteristics, the out-
put voltage Vs ≡ x4 is represented as function of the in-
put frequency. These characteristics are drawn for Rs =
0.1, 0.3, 0.5, and 0.7 (Fig. 4).

4 Artificial neural network

This section presents an overview of the architecture and
the learning of the feedforward neural networks used in
the control of the LCL converter.

4.1 Neural architectures

The network architecture is defined by the basic process-
ing elements and the way in which they are intercon-
nected. The basic processing element of the connectionist
architecture is often called a neurone or unit by analogy
with neurophysiology. It is known that the feedforward
neural networks (NNs) are capable of implementing any
input-output mapping, provided that they have sufficient
number of hidden units with non-linear activation func-
tions [8]. The NNs consists of a set of units that consti-
tute the input layer, one or more hidden layers, and an
output layer. Both hidden and output layers are made
of computation units whereas the input layer is made of
non-computation units [9].

Fig. 5. Neural network structure.

In this paper we consider a feedforward neural network
with two input units, a single hidden layer, and single
output unit as shown in Figure 5. The input layer units
are fully connected to the hidden layer units, which are
fully connected to the output unit. The output yi of the
ith unit in the hidden layer is given by

yi = f(wi1Vs + wi2Rs + θi) (22)

where wij is the synaptic weight on the connection from
the jth unit of the input layer to the ith unit of the hidden
layer, θi is the bias of the ith unit and f is the activation
function given by

f(x) =
1

1 + e−x
· (23)

The network output is given by

ωn =
N∑
i=1

aiyi + θs (24)

where, ai is the synaptic weight on the connection from
the ith unit of the hidden layer to the output unit and θs
is the bias of the output unit.

4.2 Learning

The performance of a neural network (NN) depends on a
number of parameters, specially the weights. The correct
choice of the weights is be done by a learning algorithm.

The back-propagation algorithm (BP) is the most
widely applied training algorithm in NNs [10]. The BP is
a stochastic gradient descent optimisation procedure min-
imisation of the mean-squared error (objective function)
given bellow

E =
1

2P

P∑
p=1

K∑
k=0

(τpk − o
p
k)2

where P is the number of patterns in the training set, K
is the number of units in the output layer, and τpk is the
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Fig. 6. Structure for inverse neural network modelling.

target output and opk practical output of the kth unit when
the pth pattern is presented to the network.

The BP updates the weights after each presentation of
a subset of the training patterns (where the subset may
range from a single pattern to the whole training set) ac-
cording to the following equation

wij(t+ 1) = wij(t)− η
∂E

∂Wij

where η is called learning rate.

5 Control structure

In the particular context of LCL-type resonant converter,
the aim of the control scheme is to maintain the output
voltage constant in spite of a large change of the load.

The large-signal model of the LCL converter revealed
that the converter is strongly a non-linear system, there-
fore this paper presents a direct inverse control scheme [5]
of the LCL converter based on a neural network that is
also a non-linear system.

The direct inverse control scheme relies heavily on the
fidelity of the inverse model (i.e. the trained neural net-
work). To obtain an inverse neural model of the LCL res-
onant converter, the network is trained using the output
voltage of the converter and the load as an input vec-
tor, and the converter input frequency as the target out-
put. The obtained inverse system is then cascaded with
the LCL converter such that the composed system results
in an identity mapping between desired response and the
LCL output voltage. Thus the network acts directly as a
controller.

To obtain the inverse model of Figure 6, the network is
trained by the back-propagation learning algorithm using
the 336 equilibrium points data used to plot the charac-
teristics in Figure 4. Each equilibrium point is given by
Vs, ωn and Rs.

At each iteration of the learning, a voltage Vs and
a load Rs are presented at the networks input, and the
weights are updated such that the difference between the
practical network output and the desired output frequency
is minimised.

After the convergence of the learning process, the net-
work is tested on 336 other equilibrium points (Rs =

Fig. 7. Constant load characteristics obtained by inverse neu-
ral network model, compared with the large signal model.

0.2, 0.45, 0.65, 0.8). The results presented in Figure 7, show
that the network matches the inverse system accurately.

The trained network (i.e. the inverse system of the con-
verter) is then cascaded with the LCL converter (Fig. 8).

The desired output voltage of the converter is pre-
sented at the neural network’s input, then the network
calculates the necessary control frequency of the converter.
In the case of a large variation of the load, the network
supplies the necessary frequency to the converter such that
the output voltage is maintained constant despite of large
changes of the load.

6 Simulation results

6.1 Converter specifications

The LCL-type resonant converter designed has the follow-
ing specifications:
Input supply voltage Ve = 150 V.
Output voltage of the converter Vs = 82 V.
Maximum output power P = 150 W.
Switching frequency, f0 = 150 kHz.
The design values obtained are:
L1 = L2 = 192 µH; C = 13.3 nF; Cs = 10 mF.
The total converter is simulated using Simulink software.
MOSFET model is used to simulate the active switch.

6.2 Results

The load is passed from Rs1 = 41.35 Ω (the equilibrium
point is defined by: Vs1 = 0.525, ωn1 = 1.065 and Rs1 =
0.5192) to the value Rs2 = 0.2837 which is equivalent to
54.64% change in the load. Without any control strategy,
this variation of the load causes a change in the output
voltage which passes from Vs1 = 0.525 to Vs2 = 0.3550.
Using the proposed control scheme, the neural network
calculates the control frequency which permits to maintain
the output voltage constant Vs1 = 0.525. The adequate
control frequency is equal to ωn2 = 1.04.
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Fig. 8. Structure for neural control of the LCL resonant converter. ωn: operating frequency, Vsd: desired output voltage, Vs:
output response, Rs: load.

Fig. 9. The output voltage in the case of a large variation of
the load (Simulink results).

Figure 9 illustrates the efficiency of using the proposed
control scheme.

6.3 Transient analysis

The dynamic analysis is useful for better understanding
and designing the converter. A discrete time model for
the LCL converter is derived. The large signal analysis
determines the response of the converter when its oper-
ating conditions undergo large variations in their steady-
state values and is therefore useful for choosing appropri-
ate component ratings.

The dynamic response of the converter during the tran-
sient events is bound to govern proper design procedure
and the choice of an appropriate control scheme. Using
the large signal model, based on discrete time domain,
we analyse the output’s response when the above neural
network controls the LCL converter.

Without using any controller, the converter output
voltage changes depending on the load. A large variation
of the load results in a significant variation of the output
voltage (Fig. 10). Using the large signal model, we anal-
ysed the transient behaviour of the converter in the case of
a large variation of the load. The simulation results show
the efficiency of using the neural network controller. In
fact, when the load changes, the output voltage oscillates

Fig. 10. Output response of the LCL converter without any
controller.

Fig. 11. Output response of LCL converter using neural net-
work controller.

for a short time then stabilises at the desired output volt-
age (Fig. 11). The results show that the neural network is
a good regulator of the LCL converter.
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7 Conclusion

In this paper a discrete time domain model has been de-
rived for the LCL converter for continuous conduction
and lagging power operation modes. Using this model, a
few calculations are sufficient to predict the transient be-
haviour of the converter from a designer’s point of view.

In order to maintain the output voltage constant in
spite of a large change of the load, a neural network in-
verse model is designed. To obtain an inverse neural model
of the LCL resonant converter, the network is trained us-
ing the output voltage of the converter and the load as an
input vector, and the converter input frequency as the tar-
get output. The obtained inverse system is then cascaded
with the LCL converter such that the composed system
results in an identity mapping between desired response
and the LCL output voltage. Thus the network acts di-
rectly as a controller.

The large signal model, based on discrete time domain,
is used to predict the behaviour of the converter at the
time of the change of the load. The simulation results show
the efficiency of using neural networks to regulate the LCL
converter. These results are also verified using Simulink
software.

The prospective of this work is to improve the output
voltage response in dynamic and steady state operation
of the LCL converter. Moreover we intend to use the neu-
ral control when the converter operates in the pulse wide
modulation PWM mode.
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