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Abstract

MAP estimation of Gaussian mixtures through maximi-
sation of penalised likelihoods was used to learn models of
spatial context. This enabled prior beliefs about the scale,
orientation and elongation of semantic regions to be en-
coded, encouraging one-to-one correspondences between
mixture components and these regions. In conjunction with
minimum description length this enabled automatic learn-
ing of inactivity zones and entry zones from track data in a
supportive home environment.

1. Introduction

Context-specific spatial models can greatly reduce
the complexity of behaviour interpretation. Several au-
thors have proposed learning such models automatically
from extended observation but the resulting models are dif-
ficult to interpret since they use clusters or hidden states
that are not in one-to-one correspondence with semanti-
cally meaningful spatial regions (e.g. [6, 7, 11]). This pa-
per demonstrates how MAP estimation can be used to
obtain Gaussian mixtures in which such a correspon-
dence is more strongly enforced. The method is ap-
plied to a supportive home environment scenario in which
a ceiling-mounted camera is used to monitor an occu-
pant. Two uses for the model are fall detection (correlated
with unusual inactivity) and high-level activity summari-
sation in human-readable form. The task is to learn, from
motion trajectories, semantically meaningful spatial re-
gions of two kinds: inactivity zones and entry zones.
Inactivity zones are regions where the person typically ex-
hibits little global motion for an extended period of
time (e.g. a chair, a bed). No distinction was made be-
tween entry and exit zones in our context model since
these zones are dual purpose: they are referred to as en-
try zones.

A tracker based on an ellipse model and a particle fil-
ter yielded temporally discretised, smoothed 2D trajectories
(see top of Figure 2). Points at the beginning and end of a

track are entry and exit points respectively. Points at which
speed in the image plane drops below a threshold are la-
belled as inactivity points. This inactivity threshold was set
to the speed obtained when a person walked at a slow walk-
ing pace at the periphery of the field of view. The problems
of learning the entry zones and inactivity zones which con-
stitute the spatial context model were formulated as ones
of clustering entry/exit points and inactivity points. These
unsupervised learning problems are not straightforward be-
cause, although reasonable upper bounds can be imposed,
the number of zones of each type is not knowna priori. In
other words, model order must be estimated.

2. Gaussian mixture models

A Gaussian mixture model (GMM) is a proba-
bility density function (PDF) of the formp(x) =∑K

k=1 πkp(x|k, µk,Σk) where
∑K

k=1 πk = 1 and the mix-
ture components are Gaussian densities. The model’s pa-
rameters,θ, are the mixing weights,πk, the means,µk,
and the covariance matrices,Σk, for each Gaussian com-
ponentk ∈ 1 . . . K. Given a setX = {x1, . . . ,xN} of N
i.i.d. realisations ofx, the log likelihood is:

L(X|θ) = log
N∏

n=1

p(xn|θ) =
N∑

n=1

log
K∑

k=1

πkp(xn|k, µk,Σk)

(1)
The EM algorithm [1] provides an iterative method for
searching for a local maximum of this likelihood. Each iter-
ation consists of an E-step and an M-step. In the E-step the
posterior probability that componentk is responsible forxn

is estimated:

hn
k =

πkp(xn|k, µk,Σk)∑K
i=1 πip(xn|i, µi,Σi)

In the M-step, the parameters are re-estimated as:

πnew
k =

1
N

N∑
n=1

hn
k µnew

k =
∑N

n=1 hn
kxn

∑N
n=1 hn

k

(2)

Σnew
k =

∑N
n=1 hn

k (xn − µnew
k )(xn − µnew

k )T

∑N
n=1 hn

k

(3)



This maximum likelihood (ML) estimation algorithm, al-
though sensitive to initial conditions, can provide effective
parameter estimation. As is well known, however, ML can-
not be used to determine the number of Gaussians, i.e. the
model order. Robertset al. [10] compared six model order
selection techniques for GMMs and found that those meth-
ods with some information theoretic basis outperformed
more heuristic methods. In particular, a method based on
the minimum description length (MDL) principle [9] was
strong. This principle can be concisely stated asselect the
model that gives the shortest description of the data set.
MDL has been used to select GMM model order for cluster-
ing human gestures [13] and space-time regions for video
indexing [4]. Given parameter estimates,θ̂, the model or-
der is selected so as to minimise the description length,C,
in Eqn. (4) whereM is the number of free parameters in the
model.

C = −L(X|θ̂) +
1
2
M ln N (4)

This is in fact a simplified,two-stagedescription length
criterion [5]. The first term represents the number of nats
needed to encode the data set,X , given the estimated model,
θ̂. The second term represents the number of nats needed to
encode the model parameters,θ̂, to precision1/

√
N , which

is the magnitude of the parameter estimation error. Note that
ln 2 nats≡ 1 bit.

3. Maximum penalised likelihood

The EM algorithm in conjunction with the MDL crite-
rion can be used to estimate the order and parameters of
a GMM PDF. This has been found to work well on sev-
eral synthetic and real-world data sets in the literature al-
though some authors report a tendency for MDL to under-
estimate model order. In this paper, GMMs are used to iden-
tify semantic regions for spatial context modelling. Here,
the aim is not an accurate overall density estimation. Rather,
the model order should correspond to the number of se-
mantic regions, and the Gaussian parameters should pro-
vide a probabilistic description of the spatial characteristics
of these regions. Data from a region might be distributed
only approximately normally.

In order to obtain Gaussian components that corre-
spond to meaningful semantic regions, a penalised like-
lihood approach is adopted. A penalty term is added to
the log-likelihood function such that maximising this pe-
nalised likelihood is equivalent to the Bayesian approach of
maximising the posterior (i.e. MAP estimation) where the
penalty term is the log of the prior.

Gauvain and Lee [3] proposed MAP estimation of
GMMs for speech data using a product of a Dirichlet den-
sity and normal-Wishart densities as a prior joint den-
sity, p(θ). This choice of prior was justified by the fact that

the Dirichlet density is a conjugate density for the multino-
mial distribution (for the mixing weight parameters) and the
normal-Wishart density is a conjugate density for the Gaus-
sian distribution. It assumes independence between the
parameters of each Gaussian component and the mix-
ing weights. This choice of prior enables EM to be applied
to MAP estimation, i.e. to maximise the penalised likeli-
hood:

L(X|θ) + logD(π|γ) +
K∑

k=1

[logN (µk|νk, η−1
k Σk)

+ logW(Σ−1
k |αk,βk)] (5)

whereπ = (π1, . . . , πK), D is a Dirichlet density,N is
a normal density andW is a Wishart density. The hyper-
parameters (αk, βk, γk, ηk andνk) can be interpreted as
sufficient statistics of an additional, notional data set. In
fact, notional data sets of different sizes,ωπ, ωµ and ωΣ

can be associated with each of the different model parame-
ters. If a non-informative, uniform prior on the hyperparam-
eters is assumed, thenα = ωΣ + d andβ = ωΣS, where
S is the estimate ofΣ obtained from the notional data set.
The E-step is as before but the M-step is modified [3, 8].
In particular, in the absence of prior knowledge about the
means and mixing parameters (i.e.ωπ = ωµ = 0), the up-
dates for these parameters remain unchanged while the co-
variance update becomes:

Σnew
k =

∑N
n=1 hn

k (xn − µnew
k )(xn − µnew

k )T + βk∑N
n=1 hn

k + αk − d
(6)

4. Learning inactivity zones

The approach adopted when learning inactivity zones is
that,a priori, there is no reason to prefer any image loca-
tion over any other, nor to bias the mixing weights. There
is, however, a strong prior belief about inactivity zones’
scale and shape. In particular, the distribution characteris-
ing a zone is expected to be approximately isotropic. The
penalised likelihood method is therefore used to penalise
non-isotropic Gaussians that differ from the expected scale.
These beliefs are encoded by settingωπ = ωµ = 0 and
S = σ2I whereσ is a scale parameter andI is the iden-
tity matrix. The EM algorithm needed then uses the origi-
nal M-steps for the mixing parameters and means (Eqn. (2))
and a covariance update based on Eqn. (6). The values of
ωΣ andσ need to be determined in advance. Theσ param-
eter encodes a prior belief about spatial scale (the variation
in image translation of a person when at rest in an inactiv-
ity zone) whileωΣ encodes the strength of this prior belief.
These values do not have to be chosen very accurately be-
cause the results obtained are similar over a large range of
values.



5. Learning entry zones

Entry zones are elongated and expected to occur near the
image borders in the application considered here. Two solu-
tions are described for learning them. The first models entry
zones as 1D distributions on a closed contour near the im-
age borders. The second models entry zones as elongated
2D distributions.

Rather than treat entry zones as 2D regions, they can be
treated as 1D regions on some closed contour,B, speci-
fied to be near the image borders where entry zones will
be located. The problem is then that of clustering entry/exit
points after projecting them onto a closed contour. (Either
each 2D point is mapped to the nearest point on the con-
tour or the points at which trajectories crossB for the first
and last time are recorded). One approach would be to treat
these points as circular data and estimate a mixture of von
Mises distributions [12]. However, the data are not truly cir-
cular and so a simpler approach was preferred here that
takes advantage of the fact that every room will have a rela-
tively large distance between at least two neighbouring en-
try zones. A point onB was found in a region with a low
density of entry-exit points. This point was used to ‘break’
B so as to treat the data as linear. A 1D Gaussian mixture
clustering method similar to the one used to identify inac-
tivity zones was then used to identify entry zones. The scale
parameter,σ, was set to reflect a prior belief about the width
of room entrances (doors). The point at which to break the
contour was found using the following simple algorithm.
Points onB were ordered to give a set{x1, . . . , xN} of
points on the 1D contour relative to an arbitrary origin on
B. The break point onB was then found as(xj+δ − xj)/2
wherej = arg maxj |xj+δ − xj | and arithmetic was per-
formed moduloN . The offsetδ was set to a small fraction
of the data set size to give some robustness to outliers. In
experiments described here,δ = d0.01Ne. However, the
breakpoint found was rather insensitive to the value ofδ.

Alternatively, the spatial extent of an entry zone can be
modelled as an elongated 2D elliptical region with an ap-
propriate orientation angle,φ. In the special case of an en-
try zone which is elongated along the image’sx-axis (i.e.
φ = 0◦), a diagonal covariance matrixC = diag[σ2

x, σ2
y]

characterises the zone, whereσx > σy. The determinant
|C| encodes the spatial scale and the ratioσx/σy encodes
the elongation. However, the orientation,φ, of an entry zone
is expected to change with image location in the applica-
tion considered here. Assuming that the image coordinates
are relative to an origin in the centre of the image, a Gaus-
sian centred atµ = (µx,µy) is expected to be oriented with

an angle which can be approximated asφ = tan−1(
wµy

hµx
)

wherew andh are the width and height of the image. The
corresponding covariance matrix can then be obtained as
RφCRT

φ which is a transformation ofC such that the cor-

responding ellipse is rotated byφ whereR is a rotation ma-
trix. This suggests a modification to the M-step for updating
the covariance matrices by settingS in Eqn. (6) toRφCRT

φ .
In this way, the current estimate of a Gaussian component’s
mean is used to determineφ. The prior for a Gaussian’s co-
variance matrix thus depends on its mean.

6. Experiments

Evaluation was performed on trajectory data obtained in
a supportive home environment scenario. EM algorithms
were initialised by running K-means and setting mixing
weights to the proportion of data points in each cluster
and covariance matrices to the sample covariances for each
cluster. Figure 1 shows the description lengths obtained us-
ing Eqn. (4) from10 different runs of EM for each value
of K between 1 and 9. Plotted are means obtained over ten
runs for each model order. Error bars denote± one standard
deviation. ML estimation of inactivity zones resulted in a
minimum atK = 6 indicating that a mixture of this many
components best estimated the density. However, MAP es-
timation resulted in a minimum atK = 2, the true num-
ber of semantic regions. ML and MAP estimation of 1D
entry zones both resulted in a minimum atK = 2 which
is the true number of semantic regions (doors). Note, how-
ever, that there is increased certainty about the MAP model
order due to the reduced variance. ML estimation of 2D en-
try zones resulted in a minimum atK = 5. However, esti-
mation using the penalised likelihood resulted in a correct
minimum atK = 2. Figure 2 shows example results ob-
tained using the model orders suggested by MDL for ML
(left) and MAP (right). Image resolution was480×360 pix-
els.

It should be noted that prior parameters (ωΣ = 0.2N ,
σ = 40, σx = 40 andσy = 20 pixels) were deliberately
not set carefully: the spatial scale parameters chosen were
in fact rather too large for the scene used here. Sensitivity to
the value ofωΣ was investigated by examining the propor-
tion of the mixing weights accounted for by the strongest
two Gaussian components when clustering inactivity points
using K = 6. This proportion was greater than0.99 for
0.05 < ωΣ < 10, indicating that the result was rather in-
sensitive over this large range of values.

7. Conclusions

In summary, the use of the penalised likelihoods resulted
in MDL estimates that recovered the true semantic regions.
On the other hand, unpenalised ML estimation with MDL
resulted in the number of Gaussians being overestimated.
Furthermore, modifications to the simplified MDL to more
accurately estimate description length (e.g. [2]) are likely to
further increase the model order estimated with ML.
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Figure 1. Description lengths for inactivity
zones (top), 1D entry zones (middle) and 2D
entry zones (bottom). Left: ML. Right: MAP.

Future work could usefully explore learning temporal
context with this approach. The method could also be ex-
tended to cope with outliers by, for example, assigning one
Gaussian in the mixture a low mixing weight and large vari-
ance priors.
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