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SUMMARY A new learning algorithm is proposed to en-
hance fault tolerance ability of the feedforward neural networks.
The algorithm focuses on the links (weights) that may cause er-
rors at the output when they are open faults. The relevances of
the synaptic weights to the output error (i.e. the sensitivity of the
output error to the weight fault) are estimated in each training
cycle of the standard backpropagation using the Taylor expan-
sion of the output around fauli-free weights. Then the weight
giving the maximum relevance is decreased. The approach taken
by the algorithm described in this paper is to prevent the weights
from having large relevances. The simulation results indicate
that the network trained with the proposed algorithm do have
significantly better fault tolerance than the network trained with
the standard backpropagation algorithm. The simulation results
show that the fault tolerance and the generalization abilities are
improved.

key words: feedforward neural network, learning algorithm, rel-
evance of synaptic weights, essential link, open faults

1. Introduction

Feedforward neural networks (NNs), trained with the
backpropagation algorithm have been applied success-
fully in variety of diverse areas such as speech recogni-
tion, optical character recognition, control, and medical
analysis[1]. The algorithm seeks to minimize the error
in the output of NN as compared to a target, or de-
sired response[2]. Although it was thought that NNs
are fault tolerant as they consist of parallel processing
elements, the existing learning algorithms do not make
optimal use of redundant resources. Recently extensive
research has proved that NNs are not intrinsically fault
tolerant, and the fault tolerance has to be enhanced by
adequate scheme[3],[4]. A number of methods have
been proposed to enhance the fault tolerance ability of
NNs. The influence of learning rate, training time and
training with noisy input data on the performance of the
NN under the existence of fault have been studied [3].
In[5] it was found that training on noisy input data
also enhance the fault tolerance ability of NNs. The
effect of analog noise injection on the synaptic weights
during multilayer neural network training on the fault
tolerance property was analyzed [6]. A procedures to
build fault tolerant NNs by replicating the hidden units
are presented [8],[12], and the minimum redundancy
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required to tolerate all possible single faults is analyti-
cally derived [12]. Using error correcting code, a fault
tolerant design which can correct an error at the output
layer neuron was presented [7]. A learning algorithm
that minimizes the difference between faulty and non
faulty networks is proposed, and the close relationship
between generalization and fault tolerance abilities is
discussed [9].

C.T. Chiru et al. found that links that are highly
sensitive have large weights{13]. To enhance the fault
tolerance, they proposed to coerce weights to have small
values during backpropagation algorithm, and addi-
tional hidden neurons are added dynamically to the
network to ensure that desired performance can be ob-
tained. However it is not known a priori the best lim-
ited range for weights and the dynamically addition of
neurons may lead a large number of hidden neurons
without being sure that the network uses optimally the
initial size.

The ability to perform the generalization is one
of the most important properties of NNs[16],[17]. In
an attempt to improve the generalization capability, a
weight smoothing algorithm was proposed [ 18], this al-
gorithm can be used when there exists some correla-
tions among neighboring data patterns. The pruning
techniques also were proposed to enhance the general-
ization ability of the NNs[11].

In the conventional backpropagation algorithm,
weights are modified in order to decrease the error on
the learning pattern without any self-built mechanism
that makes weights encoding the similar amount of in-
formation. This paper proposes a new learning algo-
rithm to enhance the fault tolerance and the general-
ization abilities of feedforward NNs. The algorithm
focuses on the links (weights) that causes an error at
the output when they are open faults. These weights
are considered to encode much information. The algo-
rithm estimates the relevances of the synaptic weights to
the output error in each training cycle, then the weight
which gives the maximum relevance is decreased.

Next section describes the neural network archi-
tecture and presents the fault model adopted for NNs.
The learning algorithm for fault tolerant NNs is pre-
sented in Sect.3, in Sect.4 we evaluate the proposed
algorithm on a character recognition problem by inves-
tigating the NNs fault tolerance and the generalization
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capabilities. The influence of the proposed algorithm
on the maximum relevance and the weights distribution
as compared to that of the standard backpropagation
algorithm (SBPA) is analyzed in Sect. 5.

2, Network Architecture and Fault Model

In this section, an outline of a target neural network
(NN) and fault model are presented.

2.1 Network Architecture

We consider a feedforward NN with single hidden layer.
The input layer neurons are fully connected to the hid-
den layer neurons which are fully connected to the out-
put layer neurons. The neuron model is shown in Fig. 1.
The output o; of the jth neuron is given by

N
Oj = f (Zw”ul> ) (l)
=0

where w;; is the synaptic weight on the connection from
the ith neuron to the jth neuron, N is the number of
neurons that feed the jth neuron (it is equal to the num-
ber of neurons in the previous layer), u; is the output
of the 7th neuron, the bias wo; is treated as a synaptic
weight connected to a fixed input ug=1, and f is the
activation function given by

1
r=-———:.
/(@) 1+ exp(—z)
In the classification task, the activation function
of the neurons in the output layer can be replaced by
threshold activation after training, and the output oy, is
classified as follows:
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Fig. 1 Neuron model.

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. | JANUARY 1997

where H is the number of neurons in the hidden layer.

The output is considered wrong if it switches from
the normal output 1 to 0 or from the normal output 0
to 1, this happens if o changes its sign.

2.2 Fault Model

A physically plausible type of fault is the loss of connec-
tion between two neurons (open fault)[8], this relates
to the loss of an arc in a directed graph which abstractly
represents the topology of NNs [ 14]. This fault is equiv-
alent to the case when the synaptic weight is set at 0,
this fault is also equivalent to the conventional stuck-
at-0 type. This fault is assumed in this paper.

Fault tolerance is frequently cited as an important
property of NNs[8], however, the loss of single weight
is frequently sufficient to completely disrupt a learned
function. A connection link is called an essential link
if its disconnection causes an error at the output[9]. In
our simulation, to find the number of essential links, a
link is cut (its synaptic weight is set at 0) and all the
training patterns are applied to NN. If the network can
not recognize all the training patterns, the given link is
an essential one.

3. Learning Algorithm for Fault Tolerant Nets

Theoretical background for the proposed learning algo-
rithm is presented first, and the algorithm is presented
next.

3.1 Relevance of Synaptic Weights

When a given synaptic weight is stuck-at-faulty value
w; (i.e. its value becomes w;), the first manifestation
of this fault is observed at the level of the summation
of weighted inputs of the neuron j (after the summa-
tion operation, it is not possible to know which weight
was faulty). The error ¢; at the input summation of the
neuron j is given by

N N
g5 = Zwijui — waijui. (4)
i=0

=0

Let us consider that only the connection between a neu-
ron g and the neuron j to be lost (i.e. only the weight
W;o; is stuck-at-0). The error ¢; in the neuron j at the
input summation is given by

€5 = Wigj Uy (5)

which is proportional to the weight magnitude. From
Eq.(5) we realize that small synaptic weights are not
likely to influence the output much, and large weights
are likely to produce a wrong output when they are
stuck-at-0. Here we are not saying that a large weight
do necessarily produce a wrong output when it is stuck-
at-0.
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The pruning techniques described in[4],[11] es-
timate the sensitivity of the error function to removal
of a neuron; then remove the neuron having least effect
in order to enhance the generalization ability. In this
paper it is the weight having the maximum relevance
which is subjected to a modification (decrease).

In this paper the relevance R(w;;) of a given
weight w;; is defined as the maximum error caused at
the primary output by the stuck-at-fault of this weight.
It is given by

R(wij): Max |0pkwij

peP k€K = s, | ©)

where 0P, is the practical output of the kth neuron in
the output layer, o, is the output when the synaptic

weight w;; is stuck at a faulty value w¥;, and | = | de-
notes the absolute value of z. The maximum is over the
set of all primary output neurons K and the set of all
training patterns P. The relevance R(w;;) is an indica-
tion of the importance of the weight w;; to the network.
Note that the output 0Py, is compared to the practi-
cal output rather than the theoretical output. using the
practical output rather than the theoretical one makes
possible using Taylor expansion for easy calculation of
the weights relevance as shown later.

The relevance of any weights R(w;;) can be evalu-
ated exhaustively by setting w;; to 0 and applying all
the training patterns to the NN and evaluating the max-
imum error at the primary output. However the time for
exhaustive evaluation of the maximum relevance can be
very long and impractical since it requires a forward
propagation of all the training patterns for each and
every synaptic weight.

In this paper to avoid the long evaluation time,
the relevances are estimated in the training phase us-
ing the Taylor expansion of the output around fault-
free weights. A.F. Murray et al. perform the Taylor
expansion of the output error function in.term of the
injected synaptic noise in[6]. This allows the authors
to make specific predictions regarding fault tolerance of
NN, the nature of the internal representations devel-
oped during training and the process of training itself.

When the pth pattern is applied to the primary in-
put, the output 0P, of the kth neuron in the output layer
can be expressed as a function of the weight vectors W.
Using the Taylor expansion of the output o (W) to the
second order, the maximum error caused at the primary
output neurons, when w;; is stuck-at-0, is expressed as
follows
80Py,

R(w;;) = Max —wijw( )
ij

pEeP,keK

wijZ 82%0%;,

+ 2 8wij2

W)l (M

The detail of the derivation of the above equation
is given in[15].
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3.2 Learning Algorithm

The algorithm estimates The relevances of the synaptic
weights to the output error in each training cycle of the
standard backpropagation using the Taylor expansion
of the output around fault-free weights. Then the weight
giving the maximum relevance is decreased.

The weight that has the maximum influence (rel-
evance) on the output error in training phase is con-
sidered to encode much information. In this paper we
propose to decrease the weight producing the highest
relevance as follows

Wy

T T4 AR(wi;)’ ®)

Wy 5
where ) is a positive real constant called penalty factor.
The factor 1 + AR(w;;) penalizes the weight that gives
the highest relevance (i.e. that has large influence on the
output error). Too small A will have no influence, and
large A will cause too strong penalty and thus will make
the training process long. Since decreasing the weight
that has a maximum influence on the output may dis-
turb the convergence of the learning process, the penalty
factor \ is set to O after a fixed time T, is over.

The final algorithm is described as follows:

Step 1.
- initialize the weight matrix
- fix the training parameters
- fix the penalty factor A and T
Step 2.
for each training cycle do
. perform the standard backpropagation weights
updating
- calculate the relevances of all weights
- find the weight w;,;, producing the maximum
relevance
Step 3.
- if the algorithm converges STOP.
. if the time T is over, set A to 0 and go to
Step 2..
. otherwise decrease w;,j, as indicated in Eq. (8)
and go to Step 2..

Since it is the weight which has the highest rele-
vance (effect) is decreased, the proposed algorithm is
usually slower than the standard backpropagation al-
gorithm (SBPA). To overcome this shortcoming a max-
imum time T}, is fixed after which the penalty factor is
set to O and the algorithm becomes equivalent to the
SBPA.

4. Evaluation of the Proposed Algorithm

In this section we evaluate the proposed learning algo-
rithm and compare it with the SBPA. We show that the
proposed algorithm do enhance the fault tolerance and
the generalization abilities of NNs. We also present the
time overhead required by the proposed algorithm.
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In the simulation, a character recognition problem
is considered. The characters from A to P presented
on 7x7 binary image plane are used to evaluate the
fault tolerance and the generalization abilities. Four
networks are investigated. The networks have 8, 10, 12,
and 14 neurons in the hidden layer respectively. All
the networks have 49 neurons in the input layer, and
16 neurons in the output layer. The initial weights are
randomly set to values that are uniformly distributed
inside the interval [—1,1].

In the experiments, the 16 normal characters and
16 patterns generated by changing 3 randomly selected
pixels in each normal character are used to train the
networks.

The fault tolerance property, as the ability to func-
tion in the presence of faults, is different from the abil-
ity to classify non-trained data (generalization ability).
The training set is used to assess the fault tolerance and
a test set is generated to assess the generalization ability.

4.1 Fault Tolerance

After the training has been finished, the network’s tol-
erance to damage is assessed. As the results depend
on the weights from which the training process is ini-
tiated [8],[10], 20 experiments were made for each net-
work with different initial weights. Two fault tolerance
metric are adopted, the first is the number of essential
links (which measures the ability of the NN to tolerate a
single fault), the second is the percentage of recognized
patterns as function of the percentage of broken links
in the network (which measures how bad the network’s
performance degrades). Table | presents the number of
essential links (V) in the networks for different value
of A (A = 0 means the SBPA). The results show that
Ne; in networks trained with the proposed algorithm is
significantly reduced as compared to NV,; in the network
trained with the SBPA. This means that the proposed
algorithm leads to a network that exhibits better grace-
ful degradation. The networks 49-12-12 , and 49-14-16
when trained with the proposed algorithm, becomes, in
many cases, complete fault tolerant (i.e N.; =0, it can
tolerate any single open fault). It was found interesting
in experiments that all the essential links are hidden-to-
output connections.

The presence of more faults is in the network is as-
sessed by cutting a number of randomly selected links,
then the patterns of the training set are applied, and the

Table 1 The average number of essential links N,; for different
value of M.

Network | 49-8-16 49-10-16 49-12-16 49-14-16

A=00 47.8 28.4 18.44 10.2

A=05 38.6 14.4 2.6 0.3

A=10 379 11.4 0.3 0.1

A=50 35.8 9.5 0.4 0.0

A= 10 342 7.1 1.1 0.0
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percentage of recognized patterns is assessed. As some
links are more significant than others, the process was
repeated 200 times for each number of broken links and
the results are averaged. This evaluation is done for 20
random start positions (initial weights), and the results
are averaged.

The simulation results are presented in Fig.2 and
Fig.3 for the networks 49-10-16 and 49-14-16 respec-
tively. The results show that the NNs trained with the
proposed algorithm (FTNs) do exhibit better graceful
degradation than those trained with the SBPA (SBNs).
The recognition rate of SBNs degrades faster than the
FTNS. The recognition rate is almost the same for A = 5
and A = 10, and it is better to some extent than the
recognition rate for A = 1 and A = 0.5.

Comparing the recognition rate by 49-10-16 and
49-14-16, it can be realized that the fault tolerance do in-
crease as the number of hidden neurons increases. This
result proves that the finding of M.D. Emmerson and
R.I. Damper in[8], who stated that “ the fault toler-
ance do not increase as the number of hidden neurons
increases,” is not a general for all the pattern recogni-
tion problems.
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Fig. 2 The percentage of recognized patterns by 49-10-16 net-
works as function of the % of broken links.
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Fig. 3 The percentage of recognized patterns by 49-14-16 net-
works as function of the % of broken links.
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Table 2 The average recognition rate in the networks for dif-
ferent values of .

Network | 49-8-16  49-10-16  49-12-16  49-14-16
A=00 86.65 89.25 90.13 91.21
A=05 89.19 91.95 94.37 9481

A=10 89.93 91.68 93.71 94.83
A= 350 91.23 93.44 93.47 95.69
A=10 92.37 92.18 94.53 95.07

Table 3 The average of time overhead (O:) required by the
proposed learning algorithm.

penalty X | 49-8-16 49-10-16  49-12-16  49-14-16
0.5 419 39.2 36.7 319
1 59.6 40.3 41.3 345
5 62.3 44.8 39.9 389
10 64.2 45.6 46.2 39.1

4.2 Generalization Ability

In addition to the fault tolerance property, the ability to
perform the generalization is one of the most important
properties of NNs[16]. To evaluate the generalization
ability, a test set of 16,000 patterns was generated by
changing 1, 2, and 3 randomly selected pixels in each
normal pattern, (1000 test patterns from each character).
The patterns of the test set are applied to the network,
and the percentage of recognized patterns is assessed.
Examining Table 2, which present the average recogni-
tion rates on the test set, it can be seen that the proposed
algorithm usually do improve the recognition rate of
NNs. The amelioration depends on the value of A and
the network size.

4.3 The Time Overhead

The time overhead Or required by the proposed learn-
ing algorithm is defined as follows:

9)

where t,, is the learning time of the proposed algorithm,
and t, that of SBPA. Table 3 shows the time overhead
Or required by the proposed learning algorithm. It de-
pends on the size of the network, the value of A and the
maximum time T, after which the penalty factor A is set
at 0.

During the simulation, the maximum time T) was
fixed to the average necessary time for the convergence
of the networks trained with the SBPA.

5. Analysis

In this section, the influence of the proposed learning
algorithm on the maximum relevance and the weights
distribution is analyzed.
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Fig. 4 The maximum relevance in a 49-12-16 network.

5.1 Maximum Relevance

The maximum relevance presents the maximum error
caused at the primary output by an open fault. Fig-
ure 4 presents the maximum relevance during training
phase of 49-12-16 network for both the proposed algo-
rithm A = 5 and SBPA (A = 0). This graph presents
a case where a complete fault tolerant network was ob-
tained (N.; = 0). The results of exhaustive evaluation
are also plotted for reference. Taylor R is the relevance
obtained using Eq.(7) and Exhaustive R is the rele-
vance evaluated exhaustively. The figure shows that the
maximum relevance (i.e the maximum error at the out-
put) of the proposed method (A = 5) is almost constant
about 0.3 whereas that of the SBPA (A = 0) becomes
larger when the number of training cycle increases. This
means that the effect of an open fault on the output er-
ror in SBN is larger than that in FTN, that is FTN is
more fault tolerant. The figure also shows that the es-
timates of the maximum relevance obtained by Taylor
expansion are close the maximum relevance evaluated
exhaustively. During the simulation it was found that
the weight which has the maximum relevance is always
a hidden-to-output weight. This finding allowed us to
minimize the time overhead by estimating only the rel-
evance of hidden-to-output weights.

5.2 Distribution of Weight’s Magnitude

We assumed that the large synaptic weights are prob-
ably on the essential links. Then it is interesting to
compare the distribution of weights after training has
been finished in both the FTNs and SBNs. Through the
experiments it was found that the essential links are al-
ways hidden-to-output connections. Figure 5 shows the
distribution of the hidden-to-output weights (w;) for
fifty 49-8-12 networks. We obtain a bimodal distribu-
tion for the FTNs and a simple normal distribution for
the SBNs. The distribution shows that FTNs have less
number of small |w; | (non informative weights) and
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Fig. 5 The distribution of the hidden-to-output weights.

less number of large |w;x| (probably critical weights)
than SBN. It shows also that the proposed algorithm
generates an hidden-to-output weight distribution that
has smaller variance than that generated by SBPA.

6. Conclusion

A new learning algorithm for fault tolerant neural net-
works was presented. This algorithm uses the Taylor
expansion of the output around fault-free weights to es-
timate the relevances of weights to the output error, then
decrease the weight producing the maximum relevance.
This technique provides an effective design option to
build fault tolerant networks. The simulation results
indicate that the network trained with the proposed al-
gorithm do exhibit better fault tolerance than the stan-
dard backpropagation network and that it is possible to
obtain a complete fault tolerant network (i.e the number
of essential links is zero). The results also indicated that
the networks generalization ability was improved using
the proposed algorithm. Further, using the Taylor ex-
pansion, the relevance was closely estimated. The anal-
ysis of weights distributions shows that the proposed
algorithm generates a hidden-to-output weight distribu-
tion that has small variance and less number of weights
having small absolute values than that generated by the
standard backpropagation algorithm.
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