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Abstract
(NNs) is presented. The proposed NN-based approach is composed of eight modules of neural

In this paper, a modular approach of still image compression using neural networks

networks, where each module is trained so as to suit best a particular image cluster. A dynamical
construction algorithm (DCA) is developed for building each module of neural network. The
DCA eliminates the need for preassignment of hidden layer size. Moreover, the NN constructed
using the DCA, termed as dynamically constructive neural network (DCNN), has optimal size
that reduces the hardware requirement. Wavelet transform based sub-image block classification
technique is adopted for partitioning images into eight image clusters, The image compression
system using modules of DCNINs gives better peak signal to noise ratio (PSNR) for a given bit rate
as compared to other recent methods. Computer simulation results are presented to demonstrate

the effectiveness of the proposed technique.

Keywords:
wavelet transform

1. Introduction

Due to the limitation of storage and trans-
mission capacity, the efficient digital representa-
tion of signals has become inevitable for a wide
class of applications, such as, video conferencing,
remote sensing via satellite, digital TV/HDTV
broadcasting, computer tomography (CT), mag-
netic resonance imaging (MRI), computer com-
munications and so on [1], [2]. The term efficient
digital representation refers to data compression,
i.e., the elimination of redundancy from the raw
digital data. The more correlated is the data,
the morc data items can be removed, resulting in
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image compression, dynamical construction algorithm, dynamically constructive neural network,

larger degree of compressiot.

Numerous methods have been proposed so far
for the lossy-compression of digital images {3]-[9].
Most current approaches fall into one of three ma-
Jor categories: predictive coding, transform cod-
ing, or vector quantization. In predictive coding
technique, the difference between the truc and its
predicted image is coded for transmission. Since
the magnitude of the error signal is less as com-
pared to the true image, doing this requires less
bits per second. However, the quality of the re-
constructed image is highly dependent on the ac-
curacy of the predictor.

The efficiency of the transform-based coders
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depends on the type of transform being used,
e.g., the discrete cosine transform (DCT), or the
wavelet transform. In the latter case, the appro-
priate selection of the wavelet for an arbitrary im-
age is very important to obtain high compression
ratio. The outcome of a vector quantizing im-
age compression system is highly dependent on
the choice of a code book. Besides, because of
high computational complexity this technique is
impractical for many applications.

Neural network based image compression is
drawing much attention in recent days because
of its massively parallel structure, high degree
of interconnection and the propensity for storing
experimental knowledge and capability to self-
organize [7], [9]-[15].

Cottrell and Munro [10] used a two layer neu-
ral network for image compression. This method
suffers from edge degradation at high compres-
sion ratio and restricted performance due to the
difference between average intensities of training
and test images [12]. This lechnique was ex-
tended to multilayer networks by Wahhab and
Fahmy [14].

A multilayer hierarchical neural network based
approach is developed in [13]. In [11], [12], [15],
training images are divided into small sub-image
blocks. Similar sub-image blocks are grouped to
form image clusters which are used as training
sets for different neural networks (NNs). This
results in reduced edge degradation and improved
generalization. However, all of these methods opt
for an arbitrary selection of the size of the neural
network.

A larger size network increases not only the
learning time but also decreases its generaliza-
tion ability [16]. On the other hand, a smaller
size network may not learn completely the prob-
lem to be useful. As such the nced for optimum
selection of the network size is vital for applica-
tions such as image compression.

In this paper, we alleviate this problem by us-
ing dynamically constructive neural networks for
image compression. A dynamical construction
algorithm (DCA) is developed for building such
a network. The dynamically constructive neural
network (DCNN) built using the DCA provides
nearly optimal size network and thereby elimi-
nates the requirement for the preassignment of
the network size. A modular approach is adopted
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for image compression using modules of DCNNs
where cach module of DCNN is optimized for
a particular image cluster. Wavelet transform
based sub-image block classification is adopted
for partitioning training images into different im-
age clusters.

This paper is organized as follows. In Section
2, we present neural itmage compression scheme.
In Section 3, we describe the dynamical construc-
tion algorithm (DCA) for building a DCNN. In
Section 4, we present wavelet based sub-image
block classification technique. In Section 5, we
present simulation results to show the efficacy of
the proposed method. Finally, the paper con-
cludes with some remarks in Section 6.

2. New Neural Image Compressor

Let that X denote the input image which is an
N x N matrix of pixels given by

Tl Ti2 L1IN

Tor  E22 TaN
X = .

N1 TN2 NN

The whole image can be stretched to an ¥ 2x1
vector of pixels to supply as the input to a neural
network consisting of N? input nodes. However,
in case of digital images usually N 2 is a very large
quantity and hence the size of the neural net-
work. This requires a huge computational com-
plexity which may be impractical in some cases.
Alike the DCT based image compression tech-
niques [17], we divide the input image into M 2
number of blocks of size & X & as

1 2 e M
M1 M2 p2M
X j—
2 2 2
pME-MIL  pM*-Mi2 . M

where kM = N, and z" is the nth block of the
original image X and is given by
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Fig. 1 Image compression using DCNNs

where z}; denotes the value of the ijth pixel of
the nth block. Each block is then stretched to a
1-D sequence given by

¥ = [y )]

= ["E?l o "U?kﬂ?gl T mgk Tt x’k‘l " -wk‘k]T(l)

During training, stretched sub-image blocks
are classified into 8 image clusters and are used
as training sets for 8 different DCNNs. The clas-
sification technique is described 1n Section 4. The
DCNNs are trained in parallel on corresponding
training sets. For example, a set of 8 DCNNs
are trained on 8 different training sets. DONN 1
is trained on training set 1, DCNN 2 is trained
on training set 2 and so on. It is to be noted
that the networks are trained on residual image
blocks, ohtained by subtracting block mean value
from respective block pixels.

The proposed image compression scheme us-
ing DCNNs is shown in Fig. 2. The whole image
is compressed block by block. As such, the in-
put image is first divided into sub-image blocks
of k= k pixels and then stretched to 1-D sequences
of 1x k? pixels for feeding to DCNNs. Residual se-
quence of pixels r*{m) of the nth sub-image block
are obtained by subtracting block mean from all
the block pixels which are then fed into all the
trained dynamical networks simultaneously.
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The network with the least mean square error
is selected as the desired block compressor. The
uniformly quantized output of the hidden nodes
of this network along with the mean value of the
block (M) and the network identifier codeword
constitute the compressed data for the nth sub-
image block. An eight bit uniform quantizer is
used to quantize the output of the hidden layer
nodes as well as the block mean.

In the decompressor, the residual block pixel
values (7"(m)) are reproduced by linearly com-
bining the quantized output of the hidden nodes
of the selected network and the weights of this
network from hidden layer to output layer. The
reconstructed sequence of pixel values y™{m) are
obtained by using the relation

g'(m) =7(m} + My} (2)

where m =1,2,--+, k%, k? is the total number of
pixels in a block and n =1,2,.--, M2

3. Dynamical Construction Algorithm

S0 far mainly fixed architectures with a fixed
number of hidden neurons have been considered
for feedforward neural network. One of the few
exceptions is the cascade correlation architecture
proposed by Fahlman and its variants [18]- [21].
However, the cascade correlation network is not a
gimple multilayer network since each new neuron
ig itself a new layer and the number of layers is
equal to the number of hidden neurons.

Thus, in the case of a large network the time
necessary for an input to propagate to the out-
put may be critical. One of the characteristics of
the conventional single hidden layer network is its
parallel processing architecture {i.e., the neurons
in a hidden layer can be processed in parallel).

Therefore, the delay is minimal and it can be
used in applications that require a quick response
as in image compression-decompression problem.
With this in mind here we propose a dynamical
construction algorithm (DCA) that starts with a
single hidden neuron and a new hidden neuron
is added to the network whenever i fails to con-
verge.

Before inserting the new hidden neuron into
the network only the weights connecting the new
hidden neuron to the other neurons are trained
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until there is a significant reduction of the output
CITOT.

The output 0? of the jth neuron in a two layer
neural network is given by

K
=f (Z wijuy + by‘) (3)
=1

where w;; is the synaptic weight corresponding to
the connection from the ith neuron in the previ-
ous layer to the jth neuron, + is the output of
the 4th neuron, K is the number of neurons that
feeds the jth neuron (which is equal to the num-
ber of neurons in the previous layer), b; is the
bias, and f is the activation function. Usually, f
is chosen to be a nonlinear function, e.g., sigmoid
function. However, linear networks may outper-
form the nonlinear ones in terms of both training
speed and compression performance {4], [9].

The hidden neurons are added dynamically
one by one in a dynamically constructive neural
network. FEach new hidden neuron receives a
connection from each of the network’s inputs.
All the input-to-hidden and hidden-to-output
weights are trained repeatedly, not only the
hidden-to-outpul weights.

The dynamical construction algorithm
consists of cyclic repetition of three phases,
Train-Normal-Net (denoted by Pryn), Train-
Candidates (Prg), and Neurons-Addition
(P a), after Tnitialization phase.

The Initialization phase initializes the pa-
rameters such as the learning rate, mean square
error goal, number of epochs, the values of the
weights and the maximum size of the neural net-
work. Pryy starts with a single hidden neuron
and all the weights are trained with the back-
propagation algorithm [22] which minimizes the
mean-squared error (objective function) given by

P= 3 - )2 (1)

where P is the number of patterns in the training
set, T is the number of neurons in the input and
output layer, d? is the desired output and of is
the output of the ith neuron for the pth pattern.

One training cycle corresponds to the presen-
tation of all the patterns in the training set to
the network just once. After a given number of
cycles Ty, we test whether desired error goal is
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achieved or the network has reached the prede-
fined maximum size to stop the dynamical con-
struction algorithm (DCA). If not, Pre starts for
further minimization of the residual error. In Ppe
an independent candidate neuron is created (Fig.
2). This neuron is temporarily connected to all
the input neurons and all cutput neurons of a
virtual output layer.

The wirtual output layer is a {temporal layer
of the same size as the original output layer (it
has the same number of neurons as the original
output layer). The output ] of the ith necuron
of the virtual layer is given by

= f(Res] + wol) (5)

where w; is the weight corresponding to the con-
nection between the candidate neuron and the ith
neuron of the virtual output layer, of is the out-
put of the candidate neuron, and Res! is given
by

H
Resf = Z whio’,'; + b; (6)
h=

where H is the number of hidden neurons in this
stage of the learning process, wy; is the weight
on the connection from the Ath hidden neuron to
the ith output neuron, and oﬁz is the output of
the hth hidden neuron.

The output of, of the candidate neuron is given
by

ok =f (Z wi, st + bc) (7)
where w;,

", is the weight on the connection from
the ith neuron of the input layer to the candidate
neuron, .sf is the ith element of the input vector
and b" is the bias of the candidate neuron.

In the Pre, all the previously trained weights
are temporarily kept “frozen”. For each
candidate neuron, the input-to-candidate and
candidate-fo-virtual weights are trained to min-
imize the output error given by

1 P T
Land*_PZZ (8)

p=1i—0

FPre stops when there is no significant reduc-
tion of the output error after T.,,q cycle. Then
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Fig. 2 Dynamical construction algorithm:
A candidate neuron is created and the
weights on dashed lines are trained
while all others are kept frozen

P 4 starts, and the candidate neuron is definitely
added to the network as a normal hidden neu-
ron. And the whole network is then trained in
Pryn. This process is repeated until the maxi-
mum network size is reached or desired error goal
is achieved.

The network obtained finally is called DCNN
(dynamically constructive neural network). Fig.
2 presents an example where a network is being
dynamically constructed. In the phase Pryy (1
and 3) all the weights are updated. In the phase
Pre only the weights on the dashed connections
are updated.

The advantage of the proposed algorithm is
that it can find the size of the neural network
without specifying it before training. Besides
that, il results in a optimal network for a training
set which may lead to better generalization [16].
This is augmented by the use of residual blocks
for training of neural networks that removes the
average intensity effect [12] and hence improves
the generalization capability of the neural net-
work.

4. Wavelet-Based Sub-image Block
Classification Method

The wavelet transform decomposes a signal
into a weighted sum of basis functions which

are translated and dilated version of a proto-
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type function 4, known as wavelet prototype or
maother wavelet. In the proposed method, the sin-
gle level DWT (discrete wavelet transform) of all
sub-image blocks are performed. In this work, we
assume that the block size be 8 x &, i.e., & = 8.
Each image block is stretched to 1-I) sequence of
1 x 64 pixels. For stretched image data y™(m),
its DWT up to a level J is defined as

J
yim) = 3> do (DU (m — 291)
j=11cz

+ Zazi(l)%-f(m - ZJI) (9)

ez

where ¥l (m — 271) are the analysis wavelets and
Bqs (m — 271) are the scaling sequences.

The detail coefficients, d,;({), express high
frequency characteristics of the signal analyzed
while the coarse or approximation coefficients,
ag; (1), express the low frequency characteristics
of the signal analyzed. The detail and approxi-
mation coeflicients are computed using Mallat’s
herringbone algorithm [23].

The coefficients are found by convolving y™(m)
with appropriately designed qudrature mirror fil-
ters (QMF) and then downsampled by a factor of
two. The QMF pair consists of a highpass filter
with impulse function ¢(m) and a lowpass filter
with impulse function g(m). The detail and ap-
proximation coefficients are then determined by
the following equations:

doi (1) =) y™(m)eh; (m — 21) (10

ay (1) = Zy m)gy: (m 2”) {11)
0
Sub-image blocks are classified by their coarse
energies. Coarse energy of a sub-image block rep-
resents its coarse level of activity and is defined
as
32
Coarse Energy(CE) = Zag,(l)2, ji=1 (12
=1

Orthogonal wavelet, e.g., Daubechies wavelet
[24} of order 3 is used as the mother wavelet.
Coarse energies of all sub-image blocks are i1hus
computed. The maximum of (he computed en-
ergies is used to normalize the coarse energy of
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Table 1 Threshold ranges of coarse energy

Class No. Threshold Range
i 0< CFE <166
2 1.66 < C'E < 3.33
3 3.33 < CF < 6.66
4 6.66 <« OF < 8.33
5 833 < OF < 16.66
6 16.66 < CF < 33.33
7 3333 < CF <50
8 50 < CF <100

each block. The sub-image blocks are then ar-
ranged in ascending order of these energies and
classified into eight groups or clusters of unequal
elements by thresholding,

Table 1 presents the threshold ranges of coarse
energy for different classes.

These eight groups are used as training sets for
eight different DCNNs. Energy corresponding to
detail coeffictents is not taken into consideration
for a sub-image block classification because the
coarse energy is found to be quite dominant over
it. However, any other feature from detail coeffi-
cients may be extracted for further improvement
of the sub-image block classification technique.
Research is undergoing in that direction.

5. Simulation Results

Three images, {each of 256 x 256 pixels with
gray level intensity of 0-255), namely, trees, fruit
and flowers were used for training. MATLAB
[25] was used for simulation. The terms bit rate
(BR), peak signal to noise ratioc (PSNR) and
mean square error (MSE), used in this paper for
evaluating the performance of the proposed im-
age compression scheme, are defined as follows.

The bit rate (BR) is given by
(Bhy + )

64
where B is the number of bits used to code the
signal at the hidden nodes, s is the side infor-

mation (network identifier and block mean) to be
transmitted and hy is defined as

_ 224:1 hBn
h"x’ - 64
Eh:l B

where /3, is the number of blocks coded by a dy-
namical network with & hidden neurons.

BR = bit /pixel (13)

(14)
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(d)

Fig. 3 Image compression results for ‘Saturn’ using
DCNN: (a) Original ‘Saturn’ at 8 bit/pixcl;
{b) Reproduced ‘Saturn’ at 1.49 bit/pixel;
(c) Reproduced‘Saturn’ at 0.70 bit/pixel;
{<) Reproduced ‘Saturn’ at 0.53 bit/pixel
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d
Fig. 4 Image compressiZ)n results for ‘Lena’ using
DOCNN: (a) Original ‘Lena’ at 8 bit/pixel;

(b} Reproduced image at 1.42 bit/pixel;

(¢) Reproduced image at 0.73 bit/pixel;

(d) Reproduced image at 0.53 bit/pixel
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The peak signal to noisc ratio (PSNR) and
mean square error (MSE) are calculated using
Eqgns. (15) and (16) defined as

2
PSNR = 101log,, (ﬂ) dB (15)

MSE
1 M? k2=64
MSE =2 > (¥"(m)-§"(m))* (16)
n=1 m=1

where N2 is the total number of pixels in the
image and M? is the total number of blocks in
the image.

The performance of the proposed DCNN
scheme is tested with the standard images ‘Sat-
urn’ and ‘Lena’. Notice that theses images are
not used for training DCNNs, The reconstructed
‘Saturn’ and ‘Lena’ images using the proposed
method are shown in Figs. 3 and 4, respectively.

The fidelity of the reproduced images using
the proposed method is indeed quite satisfactory.
In Fig. 5, a comparison of the different methods
in terms of PSNR for different bit rates is pre-
sented for the test image ‘Saturn’. In this figure,
Method 1 is the proposed method (image com-
pression using DCNN), Method 2 and Method 3
are described in [15] and Method 4 is described
in [12].

Apart from a slight aberration at the begin-
ning, the proposed method outperforms the other
methods. The better performance of the pro-
posed method may be attributed to the opti-
mal size of a DCNN for a training set as it may
lead to beiter generalization. As a result, the
selected DCNN can reproduce the corresponding
sub-image block with better generalization.

In contrast, in the methods described in [12]
and [15], the number of nodes in the hidden layer
are arbitrarily assigned. The neural networks are
not optimal. Moreover, the classification tech-
nique adopted in this paper is different from that
of [12] and [15]. The better performance signi-
fies that similar image blocks are grouped in an
image cluster to a greater degree as compared to
the methods described in [12] and [15].

Another advantage of the proposed method is
that it can provide optimal size network. This
may help in reducing hardware requirement. For
example, the number of nodes in the hidden layer
of the 8 different neural networks that provide a
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Fig. 5 Comparison of different methods in

terms of PSNR against bit rate for
test image ‘Saturn’

PSNR of 34.66 dB (for test image ‘Saturn’} are
1, 5,85, 7,7, 7, and 10.

On the contrary, the number of hidden nodes
of all the 8 neural networks in other methods
(Method 2, Method 3 and Method 4) is 7, produc-
ing the same PSNR. The reduction in the number
of connections is approximately 10%. The num-
ber of nodes in the hidden layer of the 8 different
neural networks that provide a PSNR of 27.55 dB
for the test image ‘Lena’ are 1, 5, 6, 5, 6, 5, 6,
and 10. On the other hand, the number of hid-
den nodes of all the & neural networks in other
methods (Method 2, Method 3 and Method 4) is
8, producing the same PSNR. The reduction in
the number of connections is approximately 29%.

6. Conclusions

We have presented a modular approach of im-
age compression using neural networks built with
dynamical construction algorithm (DCA). The
DCA eliminates the requirement for the preas-
signment of the hidden layer size as required by
most of the conventional methods. Each DCNN
is trained on a particular image cluster. Wavelet
transform based sub-image block classification
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technique is proposed for partitioning training
images into different image clusters.

The image cornpression system using DCNNs
demonstrate better PSNR for a given bit rate as
compared to recently proposed image compres-
sion methods using neural networks. In addition,
DCNN has optimal size that may reduce hard-
ware requirement.

The proposed sub-image block classification
technique considers coarse energy factor only. In-
clusion of a feature parameter from detail coefli-
cients and fuzzy decision making in thresholding
of energies may provide better classification. Fur-
ther work is being carried out in these directions.
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