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Abstract

Automatic semantic summarisation of human activity
and detection of unusual inactivity are useful goals for a
vision system operating in a supportive home environment.
Learned models of spatial context are used in conjunction
with a tracker to achieve these goals. The tracker uses a
coarse ellipse model and a particle filter to cope with clut-
tered scenes with multiple sources of illumination. Sum-
marisation in terms of semantic regions is demonstrated us-
ing acted scenes through automatic recovery of the instruc-
tions given to the actor. The use of ‘unusual inactivity’ de-
tection as a cue for fall detection is also demonstrated.

1. Introduction

Home environments able to monitor automatically the
activities of their occupants can help extend independent,
quality living and reduce healthcare costs [1, 4, 9]. In par-
ticular, patterns of inactivity can be used to make inferences
about health and to help detect falls. It is important to note
that the significance of inactivity changes with context. A
person lying on a sofa, as she often does, is probably only
resting. In contrast, a person lying on the floor where she
has not previously lain may have fallen and require assis-
tance. The method presented here enables inactivity outside
usual zones of inactivity (e.g. chairs, beds) to be detected.
When combined with body pose and motion infomation this
should provide a useful cue for fall detection. In addition, a
human-readable description of activity in terms of seman-
tic regions provides a useful summary of behaviour.

2. Supportive Home Environments

Sensors in current supportive home environments often
have relatively narrow functionality, e.g. passive infra-red
sensors, pressure pads and fridge door sensors enable room
occupancy, presence in an area or use of a fridge to be mon-
itored [1, 4, 6]. Worn fall detectors are often not worn when
returning home, during housekeeping tasks prone to cause
false alarms, or when uncomfortable [7, 13]. Embedded

sensors, in contrast, have the advantage of ensuring com-
pliance within the home, although multiple sensors are re-
quired. User requirements, acceptability and privacy issues
surrounding the use of computer vision for home monitor-
ing are being explored using a novel drama-based method-
ology described elsewhere [9]. Interpretive aims for such
vision systems range in complexity from monitoring room
occupancy to detecting falls and performing analyses of ac-
tivity patterns. Reduced mobility can be predictive of a fall
and has other health implications. Inactivity detection can,
in a context-dependent way, indirectly indicate ill-health or
a fall. Activity patterns and significant changes in daily or
weekly patterns might also be detected. Resulting informa-
tion could be used as part of an alarm system (potentially
detailing the nature of the alarm event) as well as for pre-
diction and thus prevention of falls through risk assessment.
Summarisation of activity in human-readable form enables
retrospective analysis, providing insights into behaviour and
health to care providers and researchers.

3. Experimental Scenario

Older peoples’ homes are often cluttered with furni-
ture brought from former, larger homes. The position and
orientation of the cameras has been chosen to minimise
occlusion of the person by furniture. The set-up investi-
gated here uses ceiling-mounted, wide-angle cameras with
vertically-oriented optical axes. Standard, as opposed to
infra-red, cameras have been employed; high resolution
infra-red sensing remains relatively expensive. (Preliminary
work has been performed using low-resolution infra-red
sensing for fall detection [5, 14]).

Figure 1 shows a scene used to illustrate the method.
Strong perspective effects due to the wide-angle lens are ap-
parent. Four semantic regions are labelled: two entrances to
the room (H and R), a chair with a telephone beside it (C),
and a sofa (S). A total of97 sequences were acquired at
30Hz with a resolution of480× 360 pixels (46755 frames,
26 minutes). Aquisition was over two days of changeable
weather. The scene contained multiple light sources (win-
dows and indoor lighting) and no attempt was made to con-
trol the extent of lighting changes and cast shadows.



Figure 1. Salient regions: a sofa (S), a chair
(C), the hall door (H) and the rear door (R).

Figure 2. Examples of the strongest particle
overlaid on pixel foreground images. The in-
terior ellipse represents the state estimate.

4. Overhead Tracking

A few systems for overhead person tracking have been
proposed previously for different applications. For exam-
ple, the KidsRoom used overhead tracking as a component
in a perceptual, interactive play-space [3]. In a home en-
vironment, the lighting and layout are far less constrained.
Furthermore, the clothing and body postures that will be
encountered are highly variable and it cannot be assumed
that the articulated structure of the body will be apparent.
It is likely to be very difficult to construct detailed statis-
tical shape models that capture the range of variation in
such a way that enables the unusual poses associated with
events such as falls to be tracked and detected. Instead, the
person’s position in the image along with a coarse repre-
sentation of their shape and orientation in the image were
tracked using an ellipse so that the state at timet was
et = (xt, yt, ψt, st, et) where(xt, yt) is the ellipse centre
and the other parameters are orientation, scale and eccen-
tricity respectively. The authors believe that this represen-
tation of a person is rich enough to support recognition of
relevant actions and events such as falling, lying down, sit-
ting and standing. It is also coarse enough to enable a wide
range of body poses and clothing to be tracked.

Several authors have tracked objects and people using

Figure 3. Example ellipse estimates.

either ellipses or Gaussian ‘blobs’ with elliptical isoprob-
ability contours in image space (e.g. [2, 8, 12, 15]). Mea-
surements made when tracking with an elliptical contour
model assume that the ellipse provides a reasonably accu-
rate 2D shape model and that image features such as edges
will therefore lie close to the contour [2, 12]. In the case
of overhead tracking, body shape is highly deformable and
poorly modelled by an ellipse. A spatial Gaussian distribu-
tion can be effective even when the object is not elliptical
but it is not robust to clutter.

The tracker used here employs a particle filter (Iterated
Likelihood Weighting [12]) with image evidence provided
using an adaptive background model with shadow detec-
tion [10]. Hypothesised ellipses were scored using a func-
tion that provided some robustness to noisy background
cues (e.g. due to shadows or motion of other objects such as
cushions) and highly non-elliptical poses (e.g. outstretched
arms). Specifically, pixels exterior to the ellipse and within
N pixels of the ellipse contour were considered to consti-
tute an adjacent annular region (see Figure 2). The score
was computed such that an ellipse hypothesis was penalised
for having pixels in this adjacent region that were likely
to be foreground and for having pixels in the ellipse inte-
rior that were likely to be background. The nonparametric
representation of the state density enables tracking through
ambiguous situations and is important when dealing with
strong shadows and clutter. Figure 3 shows typical estimates
obtained during tracking. Two ellipses are displayed: the
strongest particle and the mean.

The tracker provided trajectories in the 5D ellipse param-
eter space. These trajectories were temporally smoothed us-
ing a moving average filter and the person’s speed in the im-
age plane was estimated at each point. Smoothed ellipse
centre trajectories and speeds were subsequently used to
provide a compact representation of the person’s global mo-



Figure 4. Smoothed trajectories, inactivity
zones and entry zones.

tion. The remaining parameters provided pose information
but were not used further here. Trajectories were extracted
and represented directly in the image plane. The use of a
ground-plane constraint was inappropriate because the dis-
tance from the person’s ‘centre’ to the floor was large rel-
ative to the camera distance and varied significantly with
body pose. The camera was uncalibrated and the person was
tracked without performing image rectification.

5. Activity Recognition

Within a room in a home, there will typically be a few
places in which an occupant spends most of her time while
in that room. A living room, for example, contains chairs
and sofas and the occupant might even have a favourite
seat in which she invariably sits to watch television, read or
sleep. Such places will be referred to asinactivity zonesto
indicate that occupancy of such a zone tends to involve lit-
tle global motion of the person. A room will have a fixed set
of entrances which also serve as exits. A place in which en-
try and exit occurs will be referred to as anentry zone. Typ-
ical use of a room involves entering followed by visits to
one or moreinactivity zonesand finally exiting the room.
Of course other activities may occur but these tend to be
more highly variable and transient. It is proposed that a use-
ful, compact, semantic representation of behaviour in this
context can be provided by temporal segmentation of sen-
sor data into time spent (i) entering viaentry zones, (ii) in-
active in inactivity zones, (iii) transitioning betweenzones,
and (iv) exiting viaentry zones. In order to achieve the goals
of unusual inactivity detection and behaviour summarisa-
tion, a model of spatial context was learned. This was done
using MAP estimation of Gaussian mixture models to auto-
matically identify and characterise inactivity zones and en-

try zones [11]. The learned models of spatial context can be
used to automatically temporally segment trajectories and
to detect unusual inactivity. The Gaussian components in
the mixtures correspond to 2D inactivity zones and 1D entry
zones (see Figure 4). Each Gaussian PDF,p(xt|k), provides
a model for the spatial extent of a zone,k. Entry zones can
be used to focus tracker initialisation and to semantically la-
bel points of entry and exit. When a person’s speed drops to
an extent that indicates inactivity, the inactivity zone PDFs
provide a way of checking whether the inactivity is occur-
ring in a known inactivity zone. A simple algorithm was
used to decide when the person was inactive in a known in-
activity zone. Speed,st, at each time-step was estimated us-
ing a finite difference over a40-frame temporal window and
p(xt|k)/(st + 0.1) was tested against a threshold.

In order to demonstrate empirically an ability to sum-
marise activity and detect unusual inactivity, an actor was
instructed to perform a series of activities in the room de-
signed to emulate aspects of the way an older person might
use such a room. Instructions were given in terms of the four
regions: H, R, C and S. For example, “enter through the hall
door, sit on the sofa and then exit through the rear door”
(HSR) or “enter through the hall door, sit and use the tele-
phone, sit on the sofa and then exit through the hall door”
(HCSH). Table 1 summarises the13 classes of sequence ac-
quired, classified according to the instructions given to the
actor. The “Fall” class contained sequences in which the ac-
tor was instructed to simulate a fall. (There are obvious bar-
riers to obtaining a video data set of older people falling in
reality). Sequences were allocated at random to training and
test sets such that half of the examples in each class were re-
served for testing. Figure 4 shows smoothed ellipse centre
trajectories obtained from the training data. Tracking errors
occurred in3 of the 97 sequences. Entry/exit and inactiv-
ity points from the training data were used to learn spatial
context models. The Bayesian learning method used [11]
resulted in model zones that exhibited a one-to-one corre-
spondence with the semantic regions referred to in the nat-
ural language instructions given to the actor.

Automatic summarisation of the sequences compared
well with the actor’s instructions. The annotations given in
Table 1 were all recovered correctly with the exception of
two HSH sequences which were incorrectly annotated as
HSSH. This was due to the person leaning forward and the
algorithm therefore labelling them as temporarily leaving
and then reentering the S inactivity zone. Figure 5 shows
some example trajectories with the current ellipse overlaid.
The trajectories here are colour-coded to indicate the tem-
poral segmentation obtained. In each of these cases, the tra-
jectory was correctly segmented into transitions between
zones, inactivity within a known inactivity zone and inac-
tivity while not in a known inactivity zone.



Figure 5. Segmented trajectories and detected unusual inactivity.

Sequence No. of Average duration Tracking
annotation examples (frames) errors
RH 11 103 0
RSR 7 504 0
RSH 4 470 0
RCR 7 514 1
RCH 4 561 0
HR 11 119 1
HSR 4 536 0
HSH 16 506 0
HSCH 5 998 0
HCR 4 619 0
HCH 11 672 1
HCSH 4 1150 0
Fall 9 513 0

Table 1. Annotated sequences.

6. Conclusions

A method was demonstrated in a supportive home en-
vironment for providing human-readable summarisation of
activity and detection of unusual inactivity. High-level ac-
tivity summarisation and context-dependent inactivity de-
tection are also important in other applications. The former
provides an efficient coding for storage and retrieval. The
latter is useful in monitoring and surveillance.

Passive fall detection has been identified as a priority for
supportive home environments for older people. The meth-
ods presented here have gone some way to providing useful
cues for fall detection. In future work it is planned to com-
bine these cues (unusual inactivity) with dynamic models of
falling. Visual environmental factors such as lighting levels
and room layout changes can be significant for many older
people with poor vision and are implicated in falls. Auto-
matic detection of such changes is also under investigation.
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