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On the Activation Function and Fault Tolerance in
Feedforward Neural Networks

Nait Charif HAMMADI' and Hideo ITO', Members

SUMMARY  Considering the pattern classification/recogni-
tion tasks, the influence of the activation function on fault toler-
ance property of feedforward neural networks is empirically in-
vestigated. The simulation results show that the activation func-
tion largely influences the fault tolerance and the generalization
property of neural networks. It is found that, neural networks
with symmetric sigmoid activation function are largely fault tol-
erant than the networks with asymmetric sigmoid function. How-
ever the close relation between the fault tolerance and the gener-
alization property was not observed and the networks with asym-
metric activation function slightly generalize better than the net-
works with the symmetric activation function. First, the influence
of the activation function on fault tolerance property of neural
networks is investigated on the XOR problem, then the results are
generalized by evaluating the fault tolerance property of different
NNs implementing different benchmark problems.

key words: feedforward neural network, XOR problem, critical
weights, fault tolerance, generalization ability

1. Introduction

Feedforward neural networks (NNs), trained with back-
propagation algorithm (BP) have been applied success-
fully in variety of diverse area such as speech recogni-
tion, optical character recognition, control and medi-
cal analysis[1]. The BP algorithm seeks to minimize
the error in the output of the network as compared
to a target, or desired response[2]. Although it was
thought that NNs are fault tolerant as they consist of
parallel processing elements, recently extensive research
has proved that NNs are not intrinsically fault tolerant,
and the fault tolerance has to be enhanced by adequate
scheme|[3],[4].

The influence of learning time, training with noisy
input data, and noise injection on the synaptic weights
during training on the neural networks under the exis-
tence of fault has been studied [3],[5],[6]. The ability to
perform the generalization is one of the most important
properties of NNs[11]. In an attempt to improve the
generalization capability, a weight smoothing algorithm
was proposed in [12]. This algorithm can be used when
there exists some correlations among neighboring data
patterns. The pruning techniques were also proposed to
enhance the generalization cability of the NNs[10],[15].
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However, the influence of the activation function, which
is an important element in neural networks design, on
the fault tolerance and on the generalization ability of
the NNs has not yet been investigated.

In the design of NNs one has to choose param-
eters like the network topology, the learning rate, the
initial weights, and the activation function. In this pa-
per the influence of the activation function on the fault
tolerance and the generalization ability of feedforward
neural networks are investigated.

It should be noted that the fault tolerance prop-
erty, as the ability to function in the presence of faults,
is different from the ability to classify non-trained data
(generalization ability). Therefore, the training set is
used to assess the fault tolerance property and the set of
non-trained patterns is used to assess the generalization
ability.

Next section describes the neural network archi-
tecture used in the experiments and presents the fault
model adopted. In Sect.3 the influence of the activa-
tion function on fault tolerance property of NN trained
on the XOR problem is presented and discussed. Sec-
tion 4 evaluates the result on a collection of benchmak
problems. In Sect.5 we investigate the influence of the
activation function on the generalization property of
NNs.

2. Neural Network Architecture and Fault Model
2.1 Neural Network Architecture

We consider a feedforward neural network with single
hidden layer denoted by I — H — K, where I, H and K
are the number of neurons in the input layer, the hidden
layer, and the output layer respectively. The input layer
neurons are fully connected to the hidden layer neurons
which are fully connected to the output layer neurons.
The output of the ith neuron is given by

N;
o= ijioj , (D
j=0

where wj; is the synaptic weight corresponding to the
connection from the jth neuron to the ith neuron, N; is
the number of neurons that feeds the ith neuron (which
is equal to the number of neurons in the previous layer)
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Fig. 1 Examples of activation functions.

and f is an activation function. The backpropagation
algorithm requires a continuous differentiable activa-
tion function. A commonly used activation is a sigmoid
function given by

O @

where a, b and c are real positive numbers|14]. The
activation function can be symmetric or asymmetric de-
pending on the values of @ and ¢. The popular examples
of sigmoid function are, the hyperbolic tangent defined
by (a = 2,b =1, and ¢ = 1) giving symmetric output
(—1,1), and the asymmetric function defined by (a = 2,
b =1, c = 0) giving an output (0,1). A symmetric
function defined by (¢ = 1, b = 1, ¢ = 0.5) has been
also used in [14]. Figure 1 shows some examples of the
activation function.

2.2 Input and Output Scaling

The network outputs vary between —c and a — ¢, thus
the target values are rescaled to make their range in
[—c,a — ¢] interval [18]. Such restriction has no influ-
ence on the performance of networks to solve pattern
classification problem[19]. From the theoritical point
of view the scaling of the input is not necessary. How-
ever large input values may result in the deep saturation
of the hidden neurons. To avoid such situation, the in-
puts are scaled in the same range as the output[18].
In this paper, we adopt the linear scaling given by the
following equation

p* 7 7 min _
A’i - aAp _\P c, (3)
i max 4 min

where the element AP the ith element of the p** sam-
ple rescaled to A, A\¥ . = min{A\} and A? =
P

% min 7 max
Max{Al'}.
p

2.3  Fault Model

A physically plausible type of fault is the loss of connec-
tion between two neurons (open fault)[8], this relates
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to the loss of an arc in a directed graph which abstractly
represents the topology of NNs[13]. This fault is equiv-
alent to the case when the synaptic weight is set at 0,
which is equivalent to the conventional stuck-at-0 type.
In addition, the conventional stuck-at-1 fault of synaptic
weights is also considered.

Fault tolerance is frequently cited as an important
property of NNs|[ 8], however, a single fault is frequently
sufficient to completely disrupt a learned function. A
synaptic weight is called a critical weight for a given
type of fault if its stuck-at-fault causes an error at the
output[8]. Necwy is defined as the number of critical
weights in NN when the single stuck-at-0 fault is as-
sumed, and Ncw; the number of critical weights when
the single stuck-at-1 fault is assumed. In the simulation,
to find the number of critical weights Ncwy (Ncwy), a
synaptic weight is set at O (at 1) and all training patterns
are presented to NN. If the network could not recognize
all the training patterns the given link is a critical one.
The sum of critical weights SNcw = Ncwg + Ncw,
measures the ability of the network to maintain func-
tion in the presence of a single fault. The network is
completely fault tolerant when the SNcw is zero.

The output of the neuron & in the output layer is
classified as follows:

Ny,
op =a—c if aszjkoj > 0,
§=0
Ni
o, = —¢ if o= ijkoj < 0. 4
7=0

The output is considered wrong if it switches from a—c
to —c or from —c to a — ¢, this happens if the sign of &
changes.

3. Activation Function on XOR Problem

The XOR function, which may be viewed as a special
case of more general nonlinear problems, is considered
to investigate the influence of the activation function
on the fault tolerance ability of feedforward neural net-
works. The results are generalized by evaluating the
fault tolerance property of different NNs implementing
different benchmark problems (Sects.4 and 5).

The symmetric sigmoid functions or hyperbolic
tangent (¢ = 2, b = 1, ¢ = 1) and the asymmetric
one (a = 2, b = 1, ¢ = 0) are probably the most of-
ten applied activation functions in feedforward neural
networks[15]. In this section the influence of the pa-
rameters a, b and ¢ on the fault tolerance property of
feedforward neural network is investigated.

3.1 Single Fault

The sum of critical weights SNcw = Ncwg + New; is
the fault tolerance metric adopted for the XOR problem



68

2-6-1 net, a=1.5

¢ 0" 05

(a) a = 1.5 for the 2-6-1 NN

2-8-1 net, a=2.0

¢ 0 05

(b} a = 2 for the 2-8-1 NN,

Fig. 2 The surface graph and the corresponding contour plot
representing SNcw, in the NNs with sigmoid activation function,
as a function of b and c.

in the case of single fault. The SNcw will be assessed
as function of @, b and c.

The performance of networks depends on the learn-
ing rate|3], the random start position (initial weights
values) of the network [97,[10], and the size of the net-
work. In this paper to evaluate the fault tolerance of
a given network with a given activation function (i.e.,
given a, b and ¢), the learning rate is fixed at 0.1, and
200 random start positions are used and the results are
averaged.

For each triple a,b, and ¢, the neural network is
trained with the backpropagation algorithm until it rec-
ognize all training patterns. Then it is tested and the
number of critical weights is calculated. The sum of
critical weights SNcw is a multivariable function that
can not be plotted in the two dimensional graph. Fig-
ure 2 depicts the influence of the parameters b and ¢ on
the fault tolerance of the network when a is constant.
It shows the surface graph with the corresponding con-
tour plot (i.e., level lines) of SNcw. The vertical axis
presents the sum of critical weights SNcw. Indepen-
dently of the number of hidden neurons and the value
of a, all the graphs have a similar shape and the sum of
critical weights SNcw is minimal for ¢ = a/2, which is
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a symmetric function.

It can be realized from the simulation results shown
in Fig. 2 that, NNs with symmetric activation function
have significantly less number of critical weights than
the NNs with asymmetric function. This means that the
probability to get a wrong output, when a single fault
is present, is greater for NNs with asymmetric activa-
tion function than the NNs with symmetric activation
function.

3.2 Multiple Faults

The presence of multiple faults in the network is as-
sessed by setting a number of randomly selected weights
to faults. For convenience, the ability of NNs to tolerate
a multiple stuck-at-0 faults and the ability to tolerate a
multiple stuck-at-1 faults are assessed separately. The
patterns of the training set are applied, and the percent-
age of recognized patterns is assessed for each number
of faulty weights. As some weights are more significant
than others, the process was repeated 200 times and the
results are averaged. As the results depend on the ran-
dom start position of the network [97,[10], two handred
random start position are used for each neural network
and the results are averaged. In this case of multiple
faults, the F'T is measured in percent of incorrectly clas-
sified/recognized patterns as function of b and ¢ when
a given persecentage of weights is faulty. We define
the following variables, F'T'5, (respectively F'T10q) the
percentage of incorrectly classified /recognized patterns
when 5% of the weights (respectively 10%) are stuck-at-
0 faults, and F'T'5; (respectively F'T'10,) the percentage
of incorrectly classified /recognized patterns when 5% of
the weights (respectively 10%) are stuck-at-1 faults. Al-
though many networks were investigated with different
number of multiple faults, only two graphs are presented
here. Figure 3 depicts the influence of the parameters
b and ¢ on the fault tolerance of the network when a
is constant. It shows the surface graph with the corre-
sponding contour plot (i.e., level lines) of FT'5¢ 4+ FT5;
and FT10p + F1'10;. The vertical axis presents the
sum of incorrectly classified patterns F'T'5¢ 4+ F'T'5; and
FT10¢ + FT10;. Independently of the number of hid-
den neurons and the value of a, all the graphs have a
similar shape.

From Fig.3 and Fig.4 it can be realzed that the
networks with symetric activation function have quite
better fault tolerance property than the networks with
assymetric activation function. Although the minimum
of FT5y + FT5, and FT10q 4+ FT10; are not obtained
exacltly for symetric activation function.

4. Result Evaluation
In this section the obtained results above are generalized

by evaluating the fault tolerance property of different
NNs implementing different benchmark problems. Two
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a=2, 2-10-1 Net, 5% faults

FT'5y + FT5;

(a)a =2, 5% of faulty weights

a=2.5, 2-10-1 Net, 10% faults

FT10 + FT'10;

(b)a =25, 10% of faulty weights NN.

Fig. 3 The surface graph and the corresponding contour plot
representing the % of incorrectly patterns by 2-10-1 network when
5% (respectively 10%) of its weights are faulty, as a function of b
and c.

types of NNs are investigated, the first one has the hy-
perbolic tangent activation function (denoted by tanh)
(@ = 2,b = 1,c = 1) which is the commun symmetric
function, and the second one (asym) has asymmetric
activation function (¢ = 1,b=1,¢=10).
4.1 Numbers Recognition Problem
The numbers from 0 to 9 presented on 7 X 6 image
plane are used to evaluate the neural network’s ability
to tolerate faults. This set is fairly difficult for classifi-
cation since the pairs of patterns (particularly (6,8), and
(8,9)) are close to each other in the input space (i.e., the
Hamming distance is only 2). The normalized patterns
from 0 to 9 are used in both training and testing phases.
Networks with 6, 10, 14, and 18 hidden neurons are in-
vetigated. Each network is trained by the backpropa-
gation algorithm. After the training has been finished,
the network’s tolerance to damage is assessed. Twenty
experiments are made for each network with different
initial weights.

Table 1 shows the number of critical weights Ncwg
and Ncws, in the networks. Figure 4 presents the per-
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Fig. 4 The percentage of recognized numbers by 49-10-10 net-
works as function of the % of faulty weights stuck-at-0/stuck-at-1.

Table 1  Number of critical weights Ncwg in numbers recogni-
tion problem.

Networks | 42-6-10 | 42-10-10 | 42-14-10 | 42-18-10
tanh N cwg 27.7 32 0.3 0.0
asymN cwo 40.4 16.5 6.1 2.7
tanhNcw; 35.4 6.7 2.3 0.6
asymN cwy 40.8 26.2 18.1 11.4

centage of recognized patterns by 49-10-10 network as
function of the % of faulty weights (that are stuck-at-0
or stuck-at-1).

It can be realized from Table 1 and Fig. 4 that the
neural networks with symmetric sigmoid function ex-
hibit better graceful degradation than the networks with
asymmetric function.

4.2 Parity Check Problem

In this section a parity check problem is considered in
which the input patterns are six dimensional. The de-
sired output is 0 if the corresponding input is made up
of odd number of 1, otherwise the desired output is set
to 0. Networks with 8, 12, 16, and 20 neurons are in-
vestigated.

Table 2 shows the number of critical weights N cwyg
and Ncw;. The results show that the number of critical
weights in the networks with symmetric sigmoid func-
tion tanh is less than in the networks with asymmetric
function asym. Figure 5 presents the percentage of cor-
rectly checked parity using 6-20-1 network as function
of the number of faults.

It can be realized from Table 2 and Fig.5 that the
neural networks with symmetric sigmoid function ex-
hibit better graceful degradation than the networks with
asymmetric function.

4.3 Contact Lens Prescription
The data for the contact lens prescription was obtained

from ftp.ics.uci.edu/pub/machine-learning-databases/.
Based on the the age of a patient, his spectacle prescrip-
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Table 2 Number of critical weights Ncwp and Ncw; for parity

check problem.

IEICE TRANS. INF. & SYST., VOL. E81-D, NO. 1 JANUARY 1998

100

951

@
S
T
/
’

% of Correct Decisions
=2
o
’
1

80 .. tanh (st-0) ~ AR
-- asym (st-0) S o Teel

75 — tanh (st-1) RN T~
-~ asym (st-1) NN

L I R — 7 8 9 10

4 5 6
% of Faulty Weights

Fig. 6 The percentage of correctly taken decisions by 4-6-3 net-
works as function of the % of faulty weights.

Table 4 Number of critical weights Ncwo and Ncw; for Iris
problem.

Networks 6-8-1 | 6-12-1 | 6-16-1 | 6-20-1
tanhNcwg 45.3 36.7 25.9 16.8
asymN cwg 53.5 60.7 62.3 62.7
tanhNcwy 384 36.6 32.6 26.0
asymN cwy 51.6 61.0 59.4 64.4
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Fig. 5 The percentage of correctly checked parity by 6-20-1 net-
works as function of the % of faulty weights.

Table 3 Number of critical weights Ncwo and Ncw; for con-
tact lens prescription problem.

Networks 4-2-3 | 4-4-3 | 4-6-3 | 4-8-3
tanh Ncwy 15.5 15.2 11.9 8.2
asym Ncwg 17.4 229 26.2 28.4
tanh Ncw; 15.7 15.3 14.1 12.7
asym Ncw; 17.6 22.5 25.7 27.5

tion, the tear production rate, and whether he is astig-
matic or not, it should be decieded which type contact
lenses he should be fitted (soft or hard), or he should
not be fitted with any one (no contact lens). This data
base consists of 24 examples, each example is a four di-
mentional vector. Network 4-2-3, 4-4-3, 4-6-3, and 4-8-3
are investigated.

Table 3 shows the number of critical weights N cwg
and Ncw,. Figure 6 presents the percentage of correctly
taken decisions as function of the percentage of faulty
weights.

It can be also realized from Table 3 and Fig. 6 that
neural networks with symmetric sigmoid function ex-
hibit better graceful degradation than the networks with
asymmetric function.

4.4 Iris Problem

The Iris problem is a well-known classification prob-
lem. It conmsists of classification of 150 samples in 3
classes. The data were obtained from the same location
as the “Contact Lens Prescription.” In our experiment
the training test of size 100 consists of the first 33, 33,
and 34 samples of the three classes, respectively. The
remaining 50 samples represent the test set. Network 4-

Networks | 4-4-3 | 4-8-3 | 4-12-3 | 4-14-3
tanh Ncwg 12.2 10.2 9.6 8.7
asym Ncwy 18.5 23.5 27.1 34.6
tanh Ncwq 11.8 10.8 10.2 10.1
asym Ncwy 18.7 24.9 29.5 38.3

100
951 \\::\
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o — tanh (st-1) \‘\ \\\\
- asym (si-1) S R N .
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Fig. 7 The percentage of correctly classified samples by 4-8-3
networks as function of the % of faulty weights.

4-3, 4-8-3, 4-12-3, and 4-16-3 are traind to calassify the
data.

Table 4 shows the number of critical weights N cwg
and Ncw;. Figure 7 presents the percentage of correctly
classified samples as function of the number of faults by
4-8-3 network.

It can be realized from Table 4 and Fig.7 that the
neural networks with symmetric sigmoid function ex-
hibit better graceful degradation than the networks with
asymmetric function.

4.5 Mechanical Parts Classification

This problem consists of classification of mechanical
parts into seven classes based on simularity feature[17].
The training set consist of 19 mechanical parts, each
part is presented on 6 x 9 pixels.
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Table 5 Number of critical weights Ncwy and Ncwg in the

case of Mechanical Parts Classification problem.

Table 6 The % of recognized patterns of test set.

Net | 42-6-10 | 42-10-10 | 42-14-10 | 42-18-10
tanh 81.4 92.5 93.9 94.0
asym 90.8 93.7 94.4 94.2

Table 7 The % of recognized patterns of test set.
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Networks | 54-4-3 | 54-6-3 | 54-8-3 | 54-10-3
tanh 3.0 0.9 0.2 0.0
asym 5.6 7.3 4.2 3.5
tanh 3.1 1.3 0.7 0.0
asym 8.9 7.4 6.6 5.4
100 =
95 - \‘:‘ T -
., %of \\\ \\\\‘_\
%Bs— \\\ —-\\\\/
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g =T . tanh (st-0) e .
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e B S

‘V: of Faul?y Wsighsts
Fig. 8 The percentage of recognized parts by 54-8-3 networks
as function of the % of faulty weights.

Table 5 show the number of critical weights N cwg
and Ncw,. Figure 8 presents the percentage of correctly
classified samples as function of the number of faults
using 54-8-3 network. It can be realized from Table 5
and Fig. 8 that the neural networks with symmetric sig-
moid function exhibit better graceful degradation than
the networks with asymmetric function.

5. Generalization Ability

Since it is usually hard in practical application to get
sufficient amount of training due to finite amount of
data and training time, one can expect that network will
be able to classify non-trained patterns by applying the
generalization principle[3].
5.1 Number Recognition Problem
To evaluate the generalization ability of NNs with the
activation functions tanh, and asym, a test set of 4000
patterns was generated by changing [, 2, and 3 randomly
selected pixels in each normal pattern (400 test patterns
from each number). The patterns of the test set are ap-
plied to the networks, and the percentage of recognized
patterns is assessed. Table 6 shows the results.
Examining Table 6, which presents the average
recognation rates on the test set, it can be seen that the
NNs with asymmetric activation function has slightly
better generalization ability than the NNs with sym-
metric activation function.

5.2 Mechanical Parts Classification

A test set of 3800 patterns was generated by changing 1,

Net 54-4-7 | 54-6-7 | 54-8-7 | 54-10-7
tanh | 95.04 | 9636 | 96.42 96.78
asym | 97.19 98.49 | 98.58 98.92

2, 3, 4, and 5 randomly selected pixels in each normal
pattern (200 test patterns of each pattern). The pat-
terns of the test set are applied to the networks, and the
percentage of recognized patterns is assessed. Table 4
shows the results.

Examining Table 7, it can be seen that the NNs
with asymmetric activation function has slightly better
generalization ability than the NNs with symmetric ac-
tivation function.

For the Iris Problem, all networks were able to clas-
sify 98% of the test set. This means that the generaliza-
tion ability was the same regardless of the activation
function in the case of Iris data.

6. Conclusion

The influence of the activation function on the fault tol-
erance property of feedforward neural network trained
with the backpropagation algorithm have been inves-
tigated. It is found that the NNs with symmetric sig-
moid function have better fault tolerance property than
the NNs with asymmetric function. It was also found
that the networks with asymmetric activation function
slightly generalize better than the NNs with symmetric
activation.

The result obtained in this papaer are expected to
help the network designers to choose the activation func-
tion that yields to networks with better fault tolerance

property.
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