
CGI2012 manuscript No.
(will be inserted by the editor)

Generating Real-time Muscle Activations for Skeletal Hand
Motion: An Evolutionary Approach

Arun Somasekharan · Hammadi Nait-Charif · Jian Jun Zhang

Abstract This paper presents a system that gener-

ates muscle activations from captured motion by bor-

rowing principles from biomechanics and neural con-

trol. A physics engine compliant muscle system is de-

veloped using the human hand as an example. A ma-

chine learning approach using evolutionary neural net-

works is adopted for creating the muscle control system

and dynamical simulation is performed using a real-

time physics engine that is used in present day games.

The system was trained for a single finger and then

tested on the five fingers of the hand. The simulation

results show that the system produced a close mimic of

the motion-captured hand animation. The system also

produced a believable animation from motion data not

present in the training set.

Keywords Artificial Neural Networks · Genetic

Algorithms · Physics Engines · Games · Animation

1 Introduction

Physics-based animation of characters using anatom-

ically similar muscles is a complex problem involving

both activation dynamics and force calculations, mak-

ing it computationally expensive [1]. Coordinating com-

plex motion of articulate characters automatically at a

physical level requires some form of controller archi-

tecture. Proportional Derivative (PD) controllers have

gained a lot of popularity in the field of physically-based

Arun Somasekharan
asomasekharan@bournemouth.ac.uk

Hammadi Nait-Charif
hncharif@bournemouth.ac.uk

Jian Jun Zhang
jzhang@bournemouth.ac.uk

animation, due to their simple linear formulation and

feedback nature [2]. PD controllers have been used in

animating a Luxo Jr lamp character [3], grasp anima-

tion of hands [4]. Through a post-stabilisation process,

they have also been used as line segment muscle ac-

tuators in biomechanical simulations [5]. Evolving con-

trollers for coordinated motion in physics-based charac-

ters have been researched in the field of Artificial Life.

Sims in [6] evolved both morphology and the neural

controller of virtual creatures. [7] uses neural networks

to learn muscle control of the human neck. Neural net-

works have also been used in learning muscle activa-

tion patterns from Electromyographic (EMG) record-

ings for biomechanical simulations of the human body

[8]. But a majority of the implemented algorithms exist

in customised simulation environments that often com-

promises their compatibility with generic physics simu-
lators often found in games [1] [5]. Due to these reasons,

most of these methods are unsuitable for physically an-

imating game characters. Thus, a motor control sys-

tem capable of generating real-time muscle activations

can be invaluable in creating physically-based anima-

tion of game characters. Such a system would be able

to produce localised damages on game characters by

de-activating the muscles in the proximity of the dam-

aged area. This type of effect is impossible with current

PD controllers. This paper proposes a machine learn-

ing approach that defines a functional mapping between

a motion envelope and activations of musculature to

produce the same motion. The muscle activation space

is explored indirectly using Genetic Algorithms (GA).

The contributions of this paper towards the creation of

such a controller are:

– An artificial neural network (ANN) that predicts

muscle activations which correspond to the direction

of movement in motion data.

2 Arun Somasekharan et al.

– A force-scaling method that allows for timing con-

trol in physical animation.

– A simplified linear piece-wise line segment based

muscle model that is optimized for a generic com-

mercial quality real-time game physics engine. From

a real-time perspective, this simplified model is very

important.

The remainder of the paper is structured as follows:

section 2 describes the controller system and muscle ac-

tuator system, section 3 presents the simulation results

and section 4 concludes this paper.

2 Real-time Muscle Activation System

A high level muscle system is implemented that con-

forms to generic physics engine standards. The motor

control system produces coordinated muscle activations

on a per frame basis. It primarily consists of a mono-

lithic feed-forward artificial neural network consisting

of an input layer, one hidden layer and an output layer.

Input to the network are pose vectors calculated from

motion capture data. Genetic evolution is performed to

select the best network from a stochastically generated

population of networks. Fig. 1 shows the component-

Fig. 1 The architecture of the system.

wise architecture and data flow.

2.1 Thin Muscle Structure and Force Scaling

The motion of the rigid skeleton is governed by the

contact interactions of the tendons with the underlying

bones [1]. In order to simulate that, special geometry

place holders, termed as muscle locators, are used to

specify points of contact of muscular tendons with the

bones. The locators also define the path of the tendons.

Using vector decomposition a vector V is written as,

V = n̂+ t̂ (1)

These normal, n̂, and tangential, t̂, components are

essential to model the contact forces prevalent at each

muscle locator along the thin structure, on the rigid

body linkage. Contrary to existing controllers [1] [5],

this implementation accepts the force magnitude as a

user-specified quantity, and the direction of the force

vector is dependent on the layout of the thin muscle

structure on the rigid body linkage. By making force

magnitude an input quantity, control is not completely

abstracted from the animator. The force associated with

a thin muscle structure is modulated using an activation

level a (where 0 ≤ a ≤ 1), thereby producing different

scaled forces per thin muscle structure. Thus the mag-

nitude of the force on the rigid linkage is distributed

among the involved muscle structures.

Using Eq.1, we can represent force scaling for a sin-

gle thin muscle structure as,

F s = a
∣∣Fm∣∣ k∑

i=1

(n̂i + t̂i) (2)

where F s is the scaled force vector, a is the activation

level for the thin muscle, Fm is the user input force

magnitude, k is the number of muscle locators for the

thin muscle structure, n̂i and t̂i, the normal and tangen-

tial components of the contact vectors at each muscle

locator on the thin muscle structure.

2.2 Artificial Neural Network

Muscle activation dynamics can be considered as a time

series problem with dependency on previous states of

the motion trajectory of the skeletal linkage. The neu-

ral networks used in time series prediction normally

have standard feed-forward architecture [9]. The net-

work accepts an N-tuple set as inputs that describe the

sequence d steps back in time. This method is often

termed as a sliding window technique [9]. So for every

t+1 step, the network outputs the activations that al-

low the muscle to contract so that the dynamic linkages

mimic the orientation of the input skeletal set. Mathe-

matically, a predictor function can be defined as,

x(t+ d) = f(x(t), x(t− 1),, x(t−N + 1)) (3)

where f is a real valued function that calculates

the value of the observed system at a future time t +

d. Based on the structure of the human hand, there

are two ways of creating the neural network controller.

They are:

– Single neural network controlling all finger muscles

as a group

– Individual neural networks for each finger.

In this paper, the second option was preferred due

to the duplicative nature of the tendon layout on each

finger. A fully connected feed forward monolithic neural

network was created for the forefinger of the hand. The

motion samples used in the training are captured hand

Generating Real-time Muscle Activations for Skeletal Hand Motion: An Evolutionary Approach 3

motions stored in the Autodesk FBX format embedded

with hierarchical transformations for joints/nodes. The

FBX data is converted to a simple 3D vector data for-

mat for each frame and stored as a text file (see Fig. 1).

With 3 components per vector and 3 vectors per finger

(for each phalange considered in the training), there are

9 inputs. Two previous states t − 1 and t − 2 are also

used to predict the activations at time t. Thus the to-

tal number of inputs becomes 27. The outputs of the

network are muscle activations. 8 muscles are used for

each finger which directly dictates the number of output

neurons in the ANN.

2.3 Genetic Evolution

Artificial neural networks that use evolutionary algo-

rithms for training, architecture design etc are termed

as evolutionary neural networks (ENN) [10]. In the ENN

used in this research, the architecture is fixed and synap-

tic weights are evolved using the GA. The chromosomes

undergoing evolution encodes the connection weights of

the ANN and the evaluation is performed through suit-

able objective functions that rate the motion produced

by each network in the population. A primary objective

function is used in conjunction with a penalty function.

They are:

2.3.1 Pose-based Objective Function

A simplified vector chain can be extracted from the 3D

skeletal key frame. Since the dynamic model of the hand

(or any articulate body) is segmented with joints that

constrain the rigid bodies (phalanges), the result is a

vector chain containing a set of non-arbitrary vectors.

The orientations of the resulting vector chain is used

for pose identification of the articulated rigid bodies.

By comparing the angles derived from the direc-

tional cosines of two sets of vector fields, it is possible

to estimate the similarity in two poses. If V1 and V2 are

two vectors, with directional cosine angles, θ1, ω1, φ1
and θ2, ω2, φ2 respectively, then,

(θ2, ω2, φ2) − (θ1, ω1, φ1) = (εθ, εω, εφ) (4)

where εθ, εω, εφ are the respective error differentials.

The representative measure of εθ, εω, εφ termed as

εprime, is defined by,

εprime = max(εθ, εω, εφ) (5)

The Root Mean Square (RMS), is used to calculate a

representative measure for all the εprime of the n vector

sets in the source and target poses.

εprimeRMS =

√√√√ n∑
i=1

(εprimei)
2

n
(6)

A threshold δ, which is user specified and having a

very small value, is used as a comparison target for

εprimeRMS . Thus, a multi-dimensional comparison prob-

lem is reduced to a single variable comparison. So it is

safe to assume that a target and a source pose are the

same if εprimeRMS ≤ δ.

2.3.2 Penalty Function

Initial test runs used only the pose based objective func-

tion for calculating the fitness of each network. But it

was observed that some of the generated networks cre-

ated continuous variation in activation than other net-

works. Constant activation causes the rigid bodies to

reach a constraint maximum and maintain that pose

for the duration of simulation. In order to properly iso-

late neural networks capable of creating variety in gen-

erated motion, a penalty term is introduced into the

primary objective function, which penalises the fitness

of the network depending on the motion generated dur-

ing the training simulation. The penalty is calculated

by comparing subsequent frames in all the stored poses

of the generated motion by the network.

ξaccum =

N∑
f=0

(Pf+d − Pf) (7)

where Pf is the current pose and d = 1, 2, 3....N is

the frame offset. The sequence of poses is examined by

measuring the amount of deviation between poses. This

is indicative of the amount of movement generated by

the network. Thus, subtracting Eq. 7 from Eq. 6,

ε = εprimeRMS − ξaccum (8)

Thus the final fitness f is f = 1
ε . The inclusion of

the penalty term produces negative fitness with higher

fitness closer to 0.

3 Simulation Results

The real-time physics engine, NVIDIA’s PhysX was

used for the simulations. The development platform was

a Windows 7 laptop with an Intel i3 2.4 GHz Proces-

sor and a system memory of 4 Gb equipped with an

NVIDIA GeForce GT 415M graphics card with 1Gb of

video memory.

The system works completely in real-time producing

frame rates of 45 frames per second (fps) on the above

given configuration. Muscle visualization produces a dras-

tic drop in frame rate (11 fps), but in its absence sim-

ulation runs very smoothly. Even though there were

6 motion samples used, only one sample was used for

training since the sample had sufficient variation for

4 Arun Somasekharan et al.

generalisation. The generalised network was replicated

for the remaining 4 fingers to produce the complete

hand animation.

Fig. 2 A few key frames captured from the generated ani-
mation. Dynamic hand model on the left and motion capture
sample model on the right.

The population size used was 50. Since deciding on

the number of hidden neurons is more of a heuristic

than clearly defined through a formula, trial and error

was relied on heavily. Earlier runs using 10-15 hidden

neuron failed to provide any useful results. Successful

convergence occurred with hidden neuron number set

at 30. The GA was able to produce a good solution in
32 generations. Standard GA operators were used in

the beginning, without any noticeable difference. Sim-

ulations were run for as long as 100-120 generations

without achieving convergence. Previous research, like

in [11] and [12], suggests that cross-over lacks efficiency

in real-valued evolutionary neural network problems in-

volving dynamic learning. So mutation along with an

elitist selection, was preferred over crossover thus pre-

venting high divergence or genetic drift in the individu-

als of the population. A dynamic hand model was con-

structed using reference scaled rigid blocks and joint

constraints. Fig. 2 shows key frames from the generated

animation using an unknown motion sample as input.

The laterality in both the dynamic hand model and the

motion capture model used in training, are different -

the dynamic hand model is a right hand while the mo-

tion capture model is a left hand. The trained neural

network also generalises to unknown motion samples.

From a production point of view, the system would be

useful in converting a kinematic animation (which was

either key-framed or motion captured) into a physics-

based dynamic animation. Since the input to the ANN

are vectors, a traditional IK driven skeleton can be used

to activate the muscles. An in-game application would

be situation induced damage on the characters where

de-activating the muscles corresponding to a damaged

body area would result in motion that is adaptively

handicapped. This type of effect is not possible with

conventional PD controller driven physics characters.

4 Conclusion

We have presented a system that successfully maps

muscle activations to motion captured skeletal anima-

tion using a hybrid machine learning method using evo-

lutionary neural networks. The system was created with

due consideration to hand animation in a real-time phys-

ical environment that is commonly found in games and
other real-time media.

References

1. S. Sueda, A. Kaufman, D.K. Pai, Musculotendon simula-
tion for hand animation, ACM Transaction Graphics. Vol.
27, 3, pp. 1-8 (2008)

2. M. van de Panne , R. Kim , E. Flume, Virtual Wind-up
Toys for Animation, Proc. of Graphics Interface ’94, pp.
208-215 (1994)

3. L. Gritz , J. K. Hahn, Genetic Programming for Artic-
ulated Figure Motion, J. of Visualization and Computer
Animation, Vol. 6, pp. 129-142 (1995)

4. N. S. Pollard, V. B. Zordan, Physically based grasping con-
trol from example, 2005 ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, (2005)

5. R. Weinstein, E. Guendelman, R. Fedkiw, Impulse-based
control of joints and muscles, IEEE Trans. on Visualization
and Computer Graphics, Vol. 14, 1, pp. 37-46 (2008)

6. K. Sims, Evolving Virtual Creatures, Proc. of the 21st
annual conf. on Computer Graphics and Interactive Tech-
niques, pp. 15-22 (1994)

7. S.H. Lee, D. Terzopoulos, Heads up!: biomechanical mod-
eling and neuromuscular control of the neck, ACM Trans-
actions Graphics, Vol. 25, 3, pp. 11881198 (2006)

8. S.D. Prentice, A.E. Patla, D.A. Stacey, Simple artificial
neural network models can generate basic muscle activity
patterns for human locomotion at different speeds, Experi-
mental Brain Research, Vol. 123 pp. 474-480 (1998)

9. R. J. Frank, N. Davey, S. P. Hunt, Time series prediction
and neural networks, J. of Intelligent and Robotic Systems,
Vol. 31, 1, pp. 91-103 (2001)

10. X. Yao, Evolving Artificial Neural Networks, Proc. of the
IEEE, Vol. 87, 9, pp. 1423-1447 (1999)

11. T. Reil, P. Husbands, Evolution of central pattern genera-
tors for bipedal walking in a real-time physics environment,
IEEE Trans. on Evolutionary Computation, Vol. 6, 2, pp.
159-168 (2002)

12. R.A. Watson, G.S. Hornby, J.B. Pollack, Modeling Build-
ing Block Interdependency, Proc. of Parallel Problem Solv-
ing from Nature V (PPSN V), pp. 97-106 (1998)

