Mathematics for Computer Graphics

Alexander Pasko www.pasko.org/ap

Tha ctainod alace in 2 aiuc Hall at Comhrid 0 I Inivercity nommomprating Inhn V/ann

Contents

- Notions for sets
- Venn diagrams
- Basic set operations
- Notions of functions
- Properties of functions

Set theory

- Creation of one mathematician: Georg Cantor (1845-1918), born in Russia to a Danish father and a Russian mother and spent most of his life in Germany
- Great importance to the modern formulation of many topics of continuous and discrete

Georg Cantor 1845-1918

Notion of a Set

- A set is a type of structure, representing an unordered collection of zero or more distinct objects (elements).
- Set theory deals with operations between, relations among, and statements about sets.
- All of mathematics can be defined in terms of some form of set theory.
- Sets are extensively used in computer software systems.

Intuition behind Sets

- The elements of a set can be anything: numbers, people, letters of the alphabet, other sets, and so on.
- Almost anything you can do with individual objects, you can also do with sets of objects:
- refer to them, compare them, combine them, ...
- You can also do some things to a set that you probably cannot do to an individual:
- check whether one set is contained in another
- determine how many elements it has
- quantify over its elements (using it for \exists, \forall)

Why do we need sets?

Universal language for explaining mathematical concepts
Practical geometric modelling language Constructive Solid Geometry (CSG)
$\cup, \cap,-$: set operations

Basic Notations for Sets

Sets are conventionally denoted with capital letters S, T, U, \ldots
We may define a particular set in two distinct ways:
$-A=\{2,3,6,8\} \quad$ tabular form of the set.
$-B=\{x \mid x$ is an odd integer $\}$ or $B=\{x: x$ is an odd integer $\}$. Here the symbols " |" and": " are read as "where".
A more general form (a set-builder form):
$S=\{x \mid P(x)\}$ denotes the set S of all the entities (objects) x for which the condition (proposition) $P(x)$ holds true

Set Membership

If an object x is a member of a set \boldsymbol{A}, then we denote this relationship as: $x \in A$ which reads " x belongs to A ", " x is a member of A " or " x is in A ". If an object x is not a member of a set A, then we denote this relationship as: $x \notin A$ which reads " x does not belong to A ", " x is not a member of A " or " x is not in A ".
The symbol " \in " was introduced by the Italian mathematician Giuseppe Peano in 1888.

Finite and Infinite Sets

- We say that a set is finite if it consists of a specific number of different elements. Otherwise, we say that the set is infinite. For instance:
- If \boldsymbol{D} is the set of the days of the week, then \boldsymbol{D} is a finite set.
- If $\boldsymbol{O}=\{1,3,5,7, \ldots\}$, then \boldsymbol{O} is an infinite set.
- If a set \boldsymbol{S} has n elements (where n is nonnegative integer), then we say that S has cardinality n.

Basic Properties of Sets

- Sets are inherently unordered:
- No matter what objects a, b, and c denote,

$$
\{a, b, c\}=\{a, c, b\}=\{b, a, c\}=\ldots
$$

- Multiple listings make no difference:
$-\{a, a, c, c, c, c\}=\{a, c\}$.

Basic properties of sets

- A set \boldsymbol{A} is said to be equal to a set \boldsymbol{B}, if both sets have the same members. We denote this equality as $\boldsymbol{A}=\boldsymbol{B}$
If the two sets are not equal, then we write $\boldsymbol{A} \neq \boldsymbol{B}$
- If $A=\{1,2,3,4\}$ and $B=\{3,1,4,2\}$, then $A=B$
- If $C=\{5,6,5,7\}$ and $D=\{7,5,7,6\}$, then $C=D$

The Empty Set

- A set that contains no elements is called a null set or an empty set and is denoted by the symbol " \varnothing ".
- If A is the set of all people in the world who are older than 200 years, then A is the empty set, i.e. $A=\varnothing$.
- The empty set is the unique set that can be defined as

$$
\varnothing=\{ \}=\{x \mid x \neq x\}=\ldots=\{x \mid \text { False }\}
$$

Subsets and Supersets

- If every element of a set \boldsymbol{A} is also an element of a set B,
then set \mathbf{A} is called \boldsymbol{a} subset of set \boldsymbol{B}. is denoted as
$\boldsymbol{A} \subseteq \boldsymbol{B}$ and reads " \boldsymbol{A} is a subset of \boldsymbol{B} " or " \boldsymbol{A} is contained in B".
- If $\boldsymbol{C}=\{1,3,5\}$ and $\boldsymbol{D}=\{5,4,3,2,1\}$, then $\boldsymbol{C} \subseteq \boldsymbol{D}$.
- If $\boldsymbol{E}=\{2,4,6\}$ and $\boldsymbol{F}=\{6,4,2\}$, then $\boldsymbol{E} \subseteq \boldsymbol{F}$.
- If set \boldsymbol{A} is a subset of set $\boldsymbol{B}(\boldsymbol{A} \subseteq \boldsymbol{B})$, then we can also denote this as $\boldsymbol{B} \supseteq \boldsymbol{A}$, which reads " B is a superset of \boldsymbol{A} " or " \boldsymbol{B} contains \boldsymbol{A} "
- The null set \varnothing is a subset of every set

Proper (Strict) Subsets \& Supersets

- $S \subset T$ (" S is a proper subset of T ") means that $S \subseteq T$ but $T \nsubseteq S$.

Example $:\{1,2\} \subset\{1,2,3\}$
We have $\{1,2,3\} \subseteq\{1,2,3\}$,

$$
\text { but not }\{1,2,3\} \subset\{1,2,3\}
$$

Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- Example: let $S=\{x \mid x \subseteq\{1,2,3\}\}$ then $S=\{\varnothing$,

$$
\begin{aligned}
& \{1\},\{2\},\{3\}, \\
& \{1,2\},\{1,3\},\{2,3\}, \\
& \{1,2,3\}\}
\end{aligned}
$$

- Note that $1 \neq\{1\} \neq\{\{1\}\}$

Cardinality and Finiteness

- |S| (read "the cardinality of S ") is a measure of how many different elements S has.
- E.g., $||\varnothing|=0, \quad|\{1,2,3\}|=3, \quad|\{a, b\} \mid=2$,
$|\{\{1,2,3\},\{4,5\}\}|=\underline{2}$
- If $|S| \in \mathbf{N}$, then we say S is finite.

Otherwise, we say S is infinite.

Power Set

- The power set $\mathrm{P}(\mathrm{S})$ of a set S is the set of all subsets of $S . P(S): \equiv\{x \mid x \subseteq S\}$.
- Example: $P(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\}$.
- Sometimes $\mathrm{P}(S)$ is written $\mathbf{2}^{S}$, because $|P(S)|=2^{|S|}$.
- It turns out $\forall S:|P(S)|>|S|$, e.g. $|P(\mathbf{N})|>|\mathbf{N}|$. There are different sizes of infinite sets.

Venn Diagrams

Venn Diagrams

- In any application of set theory, all the sets under investigation are subsets of a fixed set. We call this set the universal set \boldsymbol{U} or the universe of discourse \boldsymbol{U}.
Example: The universal set U represents all animals, C represents the set of all camels, B represents the set of all birds and A represents the set of all albatrosses, then the Venn diagram represents the relationship of these sets.

Venn Diagrams

The Venn diagram of $A \subseteq B$
The Venn diagram of two disjoint sets.

The Venn diagram of two sets that share some common elements.

Contents

- Notions for sets
- Venn diagrams
- Basic set operations
- Notions of functions
- Properties of functions

Basic Set Operations: Union

The union of sets \boldsymbol{A} and B is the set of elements that belong to set \boldsymbol{A} or to set \boldsymbol{B} or to both sets. We denote the union of sets \boldsymbol{A} and B by $\boldsymbol{A} \cup \boldsymbol{B}$, which reads " \boldsymbol{A} union \boldsymbol{B} ".
$-\boldsymbol{A} \cup B=\{x \mid x \in A \vee x \in B\}$
Example: if $\boldsymbol{A}=\{a, b, c, d\}$ and $B=\{c, d, e, f\}$ then $\boldsymbol{A} \cup \boldsymbol{B}=\{a, b, c, d, e, f\}$.

- The union operation is commutative

$$
A \cup B=B \cup A
$$

- Both sets are subsets of their union
$A \subseteq(A \cup B)$ and $B \subseteq(A \cup B)$.

Basic Set Operations: Union

Venn diagram for the union of sets \boldsymbol{B} and \boldsymbol{A} $B \cup A$

Union Examples

- $\{a, b, c\} \cup\{2,3\}=\{a, b, c, 2,3\}$
- $\{2,3,5\} \cup\{3,5,7\}=\{2,3,5,3,5,7\}=\{2,3,5,7\}$

Intersection operation

The intersection of sets \boldsymbol{A} and \boldsymbol{B} is the set of elements that are common to both sets. We denote the intersection of sets \boldsymbol{A} and oy $\boldsymbol{A} \cap \boldsymbol{B}$, which reads " \boldsymbol{A} intersection \boldsymbol{B} ":
$-\boldsymbol{A} \cap B=\{x \mid x \in A \wedge x \in B\}$
$\mathrm{f} \boldsymbol{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{B}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$, then $\boldsymbol{A} \cap \boldsymbol{B}=\{\mathrm{c}, \mathrm{d}\}$.
The intersection is commutative

$$
A \cap B=B \cap A .
$$

the intersection of two sets is subset of both sets $(A \cap B) \subseteq A$ and $(A \cap B) \subseteq B$.

Intersection Examples

- $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \cap\{2,3\}=\underline{\varnothing}$
- $\{2,4,6\} \cap\{3,4,5\}=\{4\}$

Difference operation

- The difference of sets \boldsymbol{A} and \boldsymbol{B} (subtraction of \boldsymbol{B} from \boldsymbol{A}) is th set of elements that belong to set A and do not belong to set B. We denote the difference of sets \boldsymbol{A} and \boldsymbol{B} by $\boldsymbol{A}-\boldsymbol{B}$,
$-\boldsymbol{A}-\boldsymbol{B}=\{\mathrm{x} \mid \mathrm{x} \in \boldsymbol{A} \wedge \mathrm{x} \ddagger \boldsymbol{B}\}$
Example: If $\boldsymbol{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{B}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$, then $\boldsymbol{A}-\boldsymbol{B}=\{\mathrm{a}, \mathrm{b}\}$.
- The intersection is not commutative: $\boldsymbol{A}-\boldsymbol{B} \neq \boldsymbol{B}$ - \boldsymbol{A}. .

Difference Examples

$$
\begin{aligned}
& \cdot\{1,2,3,4,5,6\}-\{2,3,5,7,9,11\}= \\
& \frac{\{1,4,6\}}{\mathbf{Z}-} \mathbf{N}=\{\ldots,-1,0,1,2, \ldots\}-\{1,2, \ldots\} \\
&=\{x \mid x \text { is an integer but not a natural }\} \\
&=\{\ldots,-3,-2,-1,0\}
\end{aligned}
$$

Set Complements

- When the context clearly defines the universal set U, we say that for any set $A \subseteq U$, the complement of A, written \bar{A} or A^{\prime} is the complement of A with respect to U :

$$
A^{\prime}=U-A
$$

Example: If $U=\mathbf{N}, A=\{3,5\}$

$$
A^{\prime}=\{1,2,4,6,7 \ldots\}
$$

$$
A^{\prime}=U-A
$$

Basic Set Operations:
 summary

Algebra of Sets (1)

\boldsymbol{U} Universal set and its subsets $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$

The Identity Rules:

$$
\begin{aligned}
& A \cup \varnothing=\boldsymbol{A} \\
& \boldsymbol{A} \cap \boldsymbol{U}=\boldsymbol{A} \\
& \boldsymbol{A} \cup \boldsymbol{U}=\boldsymbol{U} \\
& \boldsymbol{A} \cap \varnothing=\varnothing
\end{aligned}
$$

The Complement Rules:

The Idempotent Rules:

$$
\begin{aligned}
& \left(A^{\prime}\right)^{\prime}=A \\
& A \cup A=A \\
& A \cap A=A
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{A} \cup \boldsymbol{A}^{\prime}=\boldsymbol{U} \\
& \boldsymbol{A} \cap \boldsymbol{A}^{\prime}=\varnothing \\
& \boldsymbol{U}^{\prime}=\varnothing \\
& \varnothing^{\prime}=\boldsymbol{U}
\end{aligned}
$$

Algebra of Sets (2)

The Associative Rules:

$$
\begin{aligned}
& (\boldsymbol{A} \cup \boldsymbol{B}) \cup \boldsymbol{C}=\boldsymbol{A} \cup(\boldsymbol{B} \cup \boldsymbol{C}) \\
& (\boldsymbol{A} \cap \boldsymbol{B}) \cap \boldsymbol{C}=\boldsymbol{A} \cap(\boldsymbol{B} \cap \boldsymbol{C})
\end{aligned}
$$

The Distributive Rules:

$$
\begin{aligned}
& A \cup(B \cap C)=(\boldsymbol{A} \cup \boldsymbol{B}) \cap(\boldsymbol{A} \cup \boldsymbol{C}) \\
& \boldsymbol{A} \cap(\boldsymbol{B} \cup \boldsymbol{C})=(\boldsymbol{A} \cap \boldsymbol{B}) \cup(\boldsymbol{A} \cap \boldsymbol{C})
\end{aligned}
$$

The De Morgan Rules:

$$
\begin{aligned}
& (A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \\
& (\boldsymbol{A} \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
\end{aligned}
$$

Constructive Solid Geometry (CSG)

- CSG is based on a set of 3D solid primitives and set-theoretic operations
- Traditional primitives: block, cylinder, cone, sphere, torus
- Operations; union, intersection, difference + translation and rotation

Constructive Solid Geometry (CSG)

CSG tree

- A complex solid is represented with a binary tree usually called CSG tree

Constructive Solid Geometry (CSG)

CSG tree of a 2 D solid

Constructive Solid Geometry (CSG)

CSG tree of a 3D solid

Cartesian Products of Sets

For sets A, B, their Cartesian product $A \times B: \equiv\{(a, b) \mid a \in A \wedge b \in B\}$.
is the set of all possible ordered pairs whose first component is a member of A and whose second component is a member of B
Example:

$$
\{a, b\} \times\{1,2\}=\{(a, 1),(a, 2),(b, 1),(b, 2)\}
$$

- Other terms: product set, set direct product, or cross product
- If R is a relation between A and B then $R \subseteq A \times B$

René Descarte (1506-1650)

Example:

\{John,Mary,Ellen\}x\{News,Soap\} =
\{(John,News), (Mary,News), (Ellen,News),
(John,Soap), (Mary,Soap), (Ellen,Soap)\}

Cartesian Products of Sets

- Note that
- for finite $A, B, \quad|A \times B|=|A| .|B|$
- the Cartesian product is not commutative:
$\neg \forall A B$: $A \times B=B \times A$.
- notation extends naturally to $A_{1} \times A_{2} \times \ldots \times A_{n}$

Sweep as Cartesian Product

- Set of all points visited by an object A moving along a trajectory B is a new solid, called a sweep.

- Translational sweeping (extrusion): 2D area moves along a line normal to the plane of the area.

\mathbf{x}

Review: Set Notations

- Set enumeration $\{a, b, c\}$ and set-builder $\{x \mid P(x)\}$
- \in relation, and the empty set \varnothing.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \not \subset$, etc.
- Cardinality |S|
- Power sets P(S)
- Venn diagrams
- Set operations $\cup, \cap,-, \times$
- Constructive Solid Geometry, sweeping

Contents

- Notions for sets
- Venn diagrams
- Basic set operations
- Notions of functions
- Properties of functions

Functions

- From calculus, you know the concept of a real-valued function f, which assigns to each number $x \in \mathbf{R}$ one particular value $y=f(x)$, where $y \in \mathbf{R}$.
- Example: f defined by the expression

$$
f(x)=x^{2}
$$

- The notion of a function can be generalized to the concept of assigning elements of any set to elements of any set.

Function: Formal Definition

- For any sets A, B, we say that a function f (or "mapping") from A to $B(f: A \rightarrow B)$ is a particular assignment of exactly one element $f(x) \in B$ to each element $x \in A$.
- Some further generalizations of this idea:
- A partial (non-total) function f assigns zero or one elements of B to each element $x \in A$.
- Functions of n arguments; relations.

Basic Properties of Functions

- We can represent a function $f: A \rightarrow B$ as a set of ordered pairs $f=\{(a, f(a)) \mid a \in A\}$.
- This makes f a relation between A and B : f is a subset of $A \times B$. But functions are special:
- for every $a \in A$, there is at least one pair (a, b). Formally:
$\forall a \in A \exists b \in B((a, b) \in f)$
- for every $a \in A$, there is at most one pair (a, b). Formally:
$\neg \exists a, b, c((a, b) \in f \wedge(a, c) \in f \wedge b \neq c)$

Graphs of Functions

- Functions can be represented graphically in several ways:

Bipartite Graph

Like Venn diagrams

Graphs of Functions

A relation over numbers can be represented as a set of points on a plane. (A point is a pair (x, y).)

- A function is then a curve (set of points), with only one y for each x.

Some Function Terminology

- If $f: A \rightarrow B$, and $f(a)=b$ (where $a \in A \& b \in B$), then we say:
$-A$ is the domain of f.
$-B$ is the codomain of f.
$-b$ is the image of a under f.
- a is a pre-image of b under f.
- In general, b may have more than one pre-image.
- The range $R \subseteq B$ of f is $R=\{b \mid \exists a f(a)=b\}$.

Range versus Codomain

- The range of a function may not be its whole codomain.
- The codomain is the set that the function is declared to map all domain values into.
- The range is the particular set of values in the codomain that the function actually maps elements of the domain to.

Range vs. Codomain Example

- Suppose I declare to you that: " f is a function mapping students in this class to the set of grades $\{A, B, C, D, E\}$."
- At this point, you know $f S$ codomain is: $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$, and its range is unknown
- Suppose the grades turn out all As and Bs.
- Then the range of f is $\{A, B\}$, but its codomain is

(n-ary) Functions on a Set

- An n-ary function (also: n-ary operator) over S is any function from the set of ordered n tuples of elements of S, to S itself.
- Examples:
- if $S=\{\mathbf{T}, \mathrm{F}\}, \neg$ can be seen as a unary operator, and \wedge, \vee are binary operators on S.
- \cup and \cap are binary operators on the set of all sets.

