National Centre for Computer Animation

2D Mathematical Foundations 3

Unfortunately, no one can be told what the Matrix is. You have to see it for yourself.

ES Overview

- Introduction to ES
- 2D Graphics in Entertainment Systems
- Sound, Speech \& Music
- 3D Graphics in Entertainment Systems

(ロCLD:

Matrices

A matrix is a rectangular array (table) of scalars:

- its horizontal lines are called rows
- Its vertical lines are called columns
$m=\left[\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right] \quad$ or $\quad m=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$
If the numbers of rows and columns are identical the matrix is a square matrix.

ㄱㄷ몽

Matrix Operations

- Addition/Subtraction
- Multiplication
- with a matrix
- with a vector
- Transformations
- Scale
- Rotation
- Translation

(nccas

Matrix Addition

Matrices are added by adding their individual components.
$o=m+n=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]+\left[\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right]=\left[\begin{array}{ll}m_{11}+n_{11} & m_{12}+m_{12} \\ m_{21}+n_{21} & n_{22}+n_{22}\end{array}\right]$

Matrices are subtracted by adding the inverse of the components.

(GCLD:
 Matrix Multiplication

Multiplying a matrix by a scalar value means to multiply all of the matrices components with that scalar:
$m^{\prime}=\mathrm{s} m=\mathrm{s}\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]=\left[\begin{array}{ll}\mathrm{s} \cdot m_{11} & \mathrm{~s} \cdot m_{12} \\ \mathrm{~s} \cdot m_{21} & \mathrm{~s} \cdot m_{22}\end{array}\right]$

(ロCLD: Matrix Multiplication

Matrix multiplication (scalar product) is not commutative:
$\mathbf{c}=\mathbf{a} \cdot \mathbf{b} \neq \mathbf{c}=\mathbf{b} \cdot \mathbf{a}$

- The number of columns of the left matrix must be equal to the number of rows of the right matrix (in that case the matrices are called conformant).
- The resulting element c_{ij} is the dot product of the $\mathrm{i}^{\text {th }}$ row af a and the $\mathrm{j}^{\text {th }}$ column of b .
$c=a \cdot b=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \cdot\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]=\left[\begin{array}{ll}a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}\end{array}\right]$
\neq
$c=b \cdot a=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right] \cdot\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{ll}b_{11} a_{11}+b_{12} a_{21} & b_{11} a_{12}+b_{12} a_{22} \\ b_{21} a_{11}+b_{22} a_{21} & b_{21} a_{12}+b_{22} a_{22}\end{array}\right]$

ㄱㄷㅁ.
 Matrix Multiplication

For multiplying a matrix by a vector we treat the vector as a matrix with one column:
$v^{\prime}=m \cdot v=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right] \cdot\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{c}v_{1} m_{11}+v_{1} m_{12} \\ v_{2} m_{21}+v_{2} m_{22}\end{array}\right]$
It is important that the vector is on the right side of the multiplication operator if the resulting matrix is supposed to be a vector (otherwise it will be a matrix)

OCCD:

Identity Matrix

The identity matrix is a square matrix in which the values of its main diagonal are all 1 (with all other values being 0).

$$
i=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

2D square ID matrix

$$
\begin{aligned}
& i=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \text { 3D square ID matrix }
\end{aligned}
$$

Multiplying a matrix with the identity matrix has no effect.

Examples

- Multiplying two matrices \mathbf{a} and \mathbf{b}.
$c=a \cdot b=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \cdot\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=\left[\begin{array}{ll}1 \cdot 5+2 \cdot 7 & 1 \cdot 6+2 \cdot 8 \\ 3 \cdot 5+4 \cdot 7 & 3 \cdot 6+4 \cdot 8\end{array}\right]=\left[\begin{array}{cc}5+14 & 6+16 \\ 15+28 & 18+32\end{array}\right]=\left[\begin{array}{cc}19 & 22 \\ 43 & 50\end{array}\right]$
- Multiplying matrix a with the identity matrix.
$b=a \cdot i=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \cdot\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 \cdot 1+2 \cdot 0 & 1 \cdot 0+2 \cdot 1 \\ 3 \cdot 1+4 \cdot 0 & 3 \cdot 0+4 \cdot 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
- Multiplying a matrix \mathbf{m} with a vector \mathbf{v}.
$v^{\prime}=m \cdot v=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \cdot\left[\begin{array}{l}5 \\ 6\end{array}\right]=\left[\begin{array}{c}1 \cdot 5+2 \cdot 6 \\ 3 \cdot 5+4 \cdot 6\end{array}\right]=\left[\begin{array}{c}5+12 \\ 15+24\end{array}\right]=\left[\begin{array}{l}17 \\ 39\end{array}\right]$

ㅁㄷㅁ. Homogeneous Matrices

Some matrix operations require the use of a so called homogeneous matrix.
These require us to add an additional dimension to vectors and matrices (which is left to resemble the identity matrix):
$m=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
normal 2D matrix.
$m=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$
the same as a homogeneous matrix

ㅁㄷ․

Transformations

Transformations allow us to change vectors in space by multiplying them with so called transformation matrices.

These transformations include (but are not limited to):

- scaling
- rotating
- translating (moving/shifting)
of the vectors.
Transforms usually use homogeneous vectors \& matrices.

ㅁㄷ․

Scaling

The matrix for 2D scaling (with scaling factors s_{x} and s_{y}) is:
non-homogeneous:

$$
\overrightarrow{\mathrm{v}}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{s}_{x} & 0 \\
0 & \mathrm{~s}_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

homogeneous:

$$
\overrightarrow{\mathrm{v}}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{s}_{x} & 0 & 0 \\
0 & \mathrm{~s}_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

ㅁㄷㄹ

Rotating

The matrix for 2D rotation (about the origin) by angle θ is:
non-homogeneous:

$$
\overrightarrow{\mathrm{v}}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

homogeneous:

$$
\overrightarrow{\mathrm{v}}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

The matrix for 2D translation (in directions t_{x} and t_{y}) is always a homogeneous matrix:

$$
\overrightarrow{\mathrm{v}}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{x} \\
0 & 1 & \mathrm{t}_{y} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

