

ES Overview

- Introduction to ES
- 2D Graphics in Entertainment Systems
- Sound, Speech \& Music
- 3D Graphics in Entertainment Systems

(ロCCD: Cartesian Coordinates

- named after René Descartes
- one of the most commonly used coordinate systems
- 2D rectangular coordinate system, i.e. defined by two axes that are at right angles (orthogonal/perpendicular) to each other
- axes are labelled x and y, creating the
 $x y$-plane

Points

A point is a location in space with an infinitely small extent.

- Points denominate positions in space in reference (anchored) to the origin of the coordinate system used.
- Their position within the coordinate system is indicated as an ordered pair ($\boldsymbol{x}, \boldsymbol{y}$), i.e. the abscissa (x-coordinate) followed by the ordinate (y-coordinate).

Lines

a

- line
- is an infinitely thin, infinitely long (straight) geometrical object
(given 2 points, there is always exactly one line that passes trough them, providing the shortest connection between them)
- ray
- is a constrained (half of a) line which starts at one point and extends infinitely far in only one direction
- line segment
- is a constrained line which starts at one point and ends at another point (usually named after its end points)

Lines

In 2D space, two lines that do not intersect are said to be parallel (notation: $A \| B$)

Two lines are said to be perpendicular if they meet at a right angle (notation: $A \perp B$)

(nccas

Lines

Equation of line:

$$
y=m x+c
$$

- \boldsymbol{m} is the slope of the line
- \boldsymbol{c} is a constant which is the y-intercept of the line

An angle is formed between two rays that share a common starting point.

- A degree is a measurement unit for angles

Angles

 derived from defining a complete rotation as 360°- As the perimeter of a circle is $2 \pi r$, a complete rotation equals 2π rad (radians)
$\pi / 2=90^{\circ} \quad \pi=180^{\circ} \quad 3 \pi / 2=270^{\circ} \quad 2 \pi=360^{\circ}$
radians $=$ degrees $x \pi / 180$
degrees $=$ radians $\times 180 / \pi$

Degree to Radians Conversions From: http://math.rice.edu/~pcmi/sphere/drg_txt.html

All 3 angles in a triangle add up to 180°

In a triangle with a right angle in it, the sides that form the right angle are called the catheti of the triangle.

The side opposite the right angle is called the hypotenuse.

G들
 Pythagorean Theorem

Named after the Greek mathematician Pythagoras.
The sum of the square values of the two catheti is equal to the square value of the hypothenuse.
$C^{2}=A^{2}+B^{2}$
$\rightarrow \quad C=\sqrt{ }\left(A^{2}+B^{2}\right)$

(CLC:
 Pythagoras Example

Using Pythagoras we can calculate the distance between 2 points:
Points: A $(2,1) \quad B(5,3)$
length of blue line (x-direction): $\quad 5-2=3$
length of turquoise line (y-direction): $\quad 3-1=2$
distance between A and $B: \quad \sqrt{ }\left(3^{2}+2^{2}\right)$
$=\sqrt{ }(9+4)$
$=\sqrt{ } 13$
generalised: $d=\sqrt{ }\left(\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right)$

ㄱㄷㅁ.
 Trigonometric Ratios

Sine (sin) $\quad-\sin (\beta)=$ opposite/hypotenuse
Cosine (cos) - $\cos (\beta)=$ adjacent/hypotenuse
Tangent (tan) - $\boldsymbol{\operatorname { t a n }}(\boldsymbol{\beta})=$ opposite/adjacent

Sine Rule

- useful to discover the length of unknown sides of a triangle if only two angles and one side are known
- commonly used for triangulation
$\frac{\sin (\alpha)}{a}=\frac{\sin (\beta)}{b}=\frac{\sin (\gamma)}{c}$
\leftrightarrow

$$
\frac{a}{\sin (\alpha)}=\frac{b}{\sin (\beta)}=\frac{c}{\sin (\gamma)}
$$

(ICLD: Sine Rule Example

triangulation: determine an unknown distance by measuring two angles and a distance
given: $\alpha=50^{\circ}, \beta=100^{\circ}, c=10$
we know that $\gamma=180^{\circ}-(\boldsymbol{\alpha}+\boldsymbol{\beta})=30^{\circ}$

Cosine Rule

Useful to discover the missing data of a triangle if only two sides and one angle are known (only results in a unique triangle if that angle is contained between the two known sides)
$a^{2}=b^{2}+c^{2}-2 b c \cos (\mathbf{a})$
$b^{2}=c^{2}+a^{2}-2 c a \cos (\beta)$
$c^{2}=a^{2}+b^{2}-2 a b \cos (\mathrm{Y})$
$a=b \cos (\gamma)+c \cos (\beta)$
$b=c \cos (\mathbf{\alpha})+a \cos (\mathrm{y})$

$c=a \cos (\beta)+b \cos (\mathbf{\alpha})$

